Strong edge-colouring of sparse planar graphs

J. Bensmail, A. Harutyunyan, H. Hocquard and P. Valicov

ICGT 2014, Grenoble

July 1st, 2014

Edge-colouring

- G: undirected simple graph
- Δ : maximum degree of G

Definition

A proper edge-colouring of G is an assignment of colours to its edges such that every two adjacent edges have distinct colours.

Edge-colouring

- G: undirected simple graph
- Δ : maximum degree of G

Definition

A proper edge-colouring of G is an assignment of colours to its edges such that every two adjacent edges have distinct colours.

proper edge-colouring = edge-partition into matchings

Edge-colouring

- G: undirected simple graph
- Δ : maximum degree of G

Definition

A proper edge-colouring of G is an assignment of colours to its edges such that every two adjacent edges have distinct colours.

 $\chi'(G)$: min{k : G has a proper k-edge-colouring}

Theorem [Vizing, 1964] Either $\chi'(G) = \Delta$ (Class 1) or $\chi'(G) = \Delta + 1$ (Class 2). Theorem [Holyer, 1981] Deciding whether a given graph is Class 1 is NP-complete. Theorem [Holyer, 1981]

Deciding whether a given graph is Class 1 is NP-complete.

Theorem [Edmonds, 1965]

Finding a maximum matching of G can be done in time $\mathcal{O}(|V(G)|^4)$.

Theorem [Holyer, 1981]

Deciding whether a given graph is Class 1 is NP-complete.

Theorem [Edmonds, 1965]

Finding a maximum matching of G can be done in time $\mathcal{O}(|V(G)|^4)$.

better complexity in case G is bipartite

Definition [Fouquet and Jolivet, 1983]

Definition [Fouquet and Jolivet, 1983]

Definition [Fouquet and Jolivet, 1983]

Definition [Fouquet and Jolivet, 1983]

Definition [Fouquet and Jolivet, 1983]

Definition [Fouquet and Jolivet, 1983]

A strong edge-colouring of G is a proper edge-colouring where every two edges joined by an edge are assigned distinct colours.

strong edge-colouring = edge-partition into *induced* matchings

Definition [Fouquet and Jolivet, 1983]

A strong edge-colouring of G is a proper edge-colouring where every two edges joined by an edge are assigned distinct colours.

strong edge-colouring = edge-partition into *induced* matchings = proper vertex-colouring of $L(G)^2$

Definition [Fouquet and Jolivet, 1983]

A strong edge-colouring of G is a proper edge-colouring where every two edges joined by an edge are assigned distinct colours.

 $\chi'_{s}(G)$: min{k : G has a strong k-edge-colouring}

Definition [Fouquet and Jolivet, 1983]

A strong edge-colouring of G is a proper edge-colouring where every two edges joined by an edge are assigned distinct colours.

 $\chi'_{s}(G)$: min{k : G has a strong k-edge-colouring} $\chi'_{s}(G) = \chi(L(G)^{2})$

Upper bounds

 $\chi_{s}'(G) \leq 2\Delta(\Delta - 1) + 1 \text{ (counting)}$

Upper bounds

 $\chi_{s}'(G) \leq 2\Delta(\Delta - 1) + 1 \text{ (counting)}$

Theorem [Molloy and Reed, 1997] If Δ is large enough, then $\chi'_s(G) \leq 1.998\Delta^2$. Conjecture [Erdős and Nešetřil, 1985] We have $\chi'_s(G) \leq \begin{cases} \frac{5}{4}\Delta^2 \text{ for } \Delta \text{ even, and} \\ \frac{1}{4}(5\Delta^2 - 2\Delta + 1) \text{ otherwise.} \end{cases}$ Conjecture [Erdős and Nešetřil, 1985] We have $\chi'_s(G) \leq \begin{cases} \frac{5}{4}\Delta^2 \text{ for } \Delta \text{ even, and} \\ \frac{1}{4}(5\Delta^2 - 2\Delta + 1) \text{ otherwise.} \end{cases}$

verified for $\Delta \leq 3$ (Andersen, 1992, Horák *et al.*, 1993) tightness: consider C_5^{Δ} , where

• every I_j is an independent set

• if
$$\Delta = 2k$$
, then $|I_j| = k$

• if
$$\Delta = 2k + 1$$
, then $|I_1| = |I_2| = |I_3| = k$
and $|I_4| = |I_5| = k + 1$

Conjecture [Erdős and Nešetřil, 1985]
We have
$$\chi'_{s}(G) \leq \begin{cases} \frac{5}{4}\Delta^{2} \text{ for } \Delta \text{ even, and} \\ \frac{1}{4}(5\Delta^{2} - 2\Delta + 1) \text{ otherwise.} \end{cases}$$

Theorem [Chung *et al.*, 1990] If *G* has no induced 2*K*₂, then $|E(G)| \leq \begin{cases} \frac{5}{4}\Delta^2 \text{ for } \Delta \text{ even, and} \\ \frac{1}{4}(5\Delta^2 - 2\Delta + 1) \text{ otherwise.} \end{cases}$

Besides, these upper bounds are reached if and only if $G = C_5^{\Delta}$.

Other graph classes

Conjecture [Faudree et al., 1990]

If G is bipartite, then $\chi'_{s}(G) \leq \Delta^{2}$.

Other graph classes

Conjecture [Faudree et al., 1990]

If G is bipartite, then $\chi'_s(G) \leq \Delta^2$.

Conjecture [Brualdi and Quinn Massey, 1993] If G is bipartite with parts X and Y, then $\chi'_s(G) \leq \Delta(X)\Delta(Y)$.

Other graph classes

Conjecture [Faudree et al., 1990]

If G is bipartite, then $\chi'_s(G) \leq \Delta^2$.

Conjecture [Brualdi and Quinn Massey, 1993] If G is bipartite with parts X and Y, then $\chi'_s(G) \leq \Delta(X)\Delta(Y)$.

Theorem [alii, 2012+] If G is k-degenerate, then $\chi'_s(G) \leq (4k-2)\Delta - 2k^2 + O(k)$.

Theorem [Faudree *et al.*, 1990] If G is planar, then $\chi'_{s}(G) \leq 4\Delta + 4$.

Theorem [Faudree *et al.*, 1990] If G is planar, then $\chi'_s(G) \le 4\Delta + 4$.

$$\chi'_{s}(G) = 4\Delta - 4$$

Theorem [Faudree *et al.*, 1990] If G is planar, then $\chi'_s(G) \le 4\Delta + 4$.

Theorem [Hocquard *et al.*, 2011] If G is outerplanar, then $\chi'_s(G) \leq 3\Delta - 3$. This bound is tight.

Theorem [Faudree *et al.*, 1990] If G is planar, then $\chi'_s(G) \le 4\Delta + 4$.

Theorem [Hocquard et al., 2011]

If G is outerplanar, then $\chi'_s(G) \leq 3\Delta - 3$. This bound is tight.

g: girth of G

Theorem [Hudák et al., 2013]

If G is planar with $g \ge 6$, then $\chi'_s(G) \le 3\Delta + 5$.

some such graphs need $2.4\Delta + c$ colours

Theorem [Faudree *et al.*, 1990] If G is planar, then $\chi'_s(G) \le 4\Delta + 4$.

Theorem [Hocquard et al., 2011]

If G is outerplanar, then $\chi'_s(G) \leq 3\Delta - 3$. This bound is tight.

g: girth of G

Theorem [B., Harutyunyan, Hocquard and Valicov, 2013+] If G is planar with $g \ge 6$, then $\chi'_{\mathfrak{s}}(G) \le 3\Delta + 1$.

some such graphs need $2.4\Delta + c$ colours

Proof outline

H: minimal (vertices+edges) counterexample

- 1. structural properties of H
- 2. discharging procedure

2.1 weight function ω: for every x ∈ V(H), set ω(x) = 2d(x) - 6 such that ∑_{x∈V(H)} ω(x) < 0
2.2 discharging rules
2.3 new weight function ω* such that ∑_{x∈V(H)} ω(x) = ∑_{x∈V(H)} ω*(x)

3. using 1., we get to the contradiction

$$0 \leq \sum_{x \in V(H)} \omega^*(x) = \sum_{x \in V(H)} \omega(x) < 0$$

H cannot exist

Theorem [Faudree *et al.*, 1990] If G is planar, then $\chi'_s(G) \le 4\Delta + 4$.

Theorem [Faudree *et al.*, 1990] If G is planar, then $\chi'_s(G) \le 4\Delta + 4$.

Observation (Grötzsch + Vizing) If G is planar with $g \ge 7$, then $\chi'_s(G) \le 3\Delta + 3$.

Theorem [Faudree *et al.*, 1990] If G is planar, then $\chi'_s(G) \le 4\Delta + 4$.

Observation (Grötzsch + Vizing) If G is planar with $g \ge 7$, then $\chi'_{s}(G) \le 3\Delta + 3$.

Theorem [Vizing, 1965] If G is planar with $\Delta \ge 8$, then G is Class 1.

Theorem [Faudree *et al.*, 1990] If G is planar, then $\chi'_s(G) \le 4\Delta + 4$.

Observation (Grötzsch + Vizing) If G is planar with $g \ge 7$, then $\chi'_{s}(G) \le 3\Delta + 3$.

Theorem [Vizing, 1965] If G is planar with $\Delta \ge 8$, then G is Class 1.

Conjecture [Vizing, 1965] If G is planar with $\Delta \ge 6$, then G is Class 1.

Theorem [Faudree *et al.*, 1990] If G is planar, then $\chi'_s(G) \le 4\Delta + 4$.

Observation (Grötzsch + Vizing) If G is planar with $g \ge 7$, then $\chi'_{s}(G) \le 3\Delta + 3$.

Theorem [Vizing, 1965] If G is planar with $\Delta \ge 8$, then G is Class 1.

Conjecture [Vizing, 1965] If G is planar with $\Delta \ge 6$, then G is Class 1.

proved for $\Delta = 7$ (Sanders and Zhao, 2001)

Theorem [Faudree *et al.*, 1990] If G is planar, then $\chi'_s(G) \le 4\Delta + 4$.

Observation (Grötzsch + Vizing) If G is planar with $g \ge 7$, then $\chi'_{s}(G) \le 3\Delta + 3$.

Corollary

If G is planar with $\Delta \geq 7$, then $\chi'_s(G) \leq 4\Delta$.

Theorem [Faudree *et al.*, 1990] If G is planar, then $\chi'_s(G) \le 4\Delta + 4$.

Observation (Grötzsch + Vizing) If G is planar with $g \ge 7$, then $\chi'_{s}(G) \le 3\Delta + 3$.

Corollary

If G is planar with $\Delta \geq 7$, then $\chi'_s(G) \leq 4\Delta$.

what about remaining values of Δ ? what for specific g?

Theorem [Faudree *et al.*, 1990] If G is planar, then $\chi'_s(G) \le 4\Delta + 4$.

Observation (Grötzsch + Vizing) If G is planar with $g \ge 7$, then $\chi'_{s}(G) \le 3\Delta + 3$.

Corollary

If G is planar with $\Delta \geq 7$, then $\chi'_s(G) \leq 4\Delta$.

what about remaining values of Δ ? what for specific g?

Question If $\Delta = g = 4$, then can G be Class 2?

Summary

	$\Delta \ge 7$	$\Delta \in \{5,6\}$	$\Delta = 4$	$\Delta = 3$
no girth restriction	4Δ	4Δ +4	$4\Delta + 4$	$3\Delta + 1$
$g \ge 4$	4Δ	4Δ	4Δ + 4	$3\Delta + 1$
$g \ge 5$	4Δ	4Δ	4Δ	$3\Delta + 1$
$g \ge 6$	$3\Delta + 1$	$3\Delta + 1$	$3\Delta + 1$	3Δ
$g \ge 7$	3Δ	3Δ	3Δ	3Δ

Summary

	$\Delta \ge 7$	$\Delta \in \{5,6\}$	$\Delta = 4$	$\Delta = 3$
no girth restriction	4Δ	4Δ + 4	4Δ + 4	$3\Delta + 1$
$g \ge 4$	4Δ	4Δ	$4\Delta + 4$	$3\Delta + 1$
$g \ge 5$	4Δ	4Δ	4Δ	$3\Delta + 1$
$g \ge 6$	$3\Delta + 1$	$3\Delta + 1$	$3\Delta + 1$	3Δ
$g \ge 7$	3Δ	3Δ	3Δ	3Δ

Thank you for your attention!