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Edge-colouring

G : undirected simple graph
∆: maximum degree of G

Definition

A proper edge-colouring of G is an assignment of colours to its
edges such that every two adjacent edges have distinct colours.
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Edge-colouring

G : undirected simple graph
∆: maximum degree of G

Definition

A proper edge-colouring of G is an assignment of colours to its
edges such that every two adjacent edges have distinct colours.

χ′(G ): min{k : G has a proper k-edge-colouring}

Theorem [Vizing, 1964]

Either χ′(G ) = ∆ (Class 1) or χ′(G ) = ∆ + 1 (Class 2).
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Theorem [Holyer, 1981]

Deciding whether a given graph is Class 1 is NP-complete.

Theorem [Edmonds, 1965]

Finding a maximum matching of G can be done in time O(|V (G )|4).

better complexity in case G is bipartite
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Definition [Fouquet and Jolivet, 1983]
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two edges joined by an edge are assigned distinct colours.
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Strong edge-colouring

Definition [Fouquet and Jolivet, 1983]

A strong edge-colouring of G is a proper edge-colouring where every
two edges joined by an edge are assigned distinct colours.

strong edge-colouring = edge-partition into induced matchings
= proper vertex-colouring of L(G )2
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Strong edge-colouring

Definition [Fouquet and Jolivet, 1983]

A strong edge-colouring of G is a proper edge-colouring where every
two edges joined by an edge are assigned distinct colours.

χ′s(G ): min{k : G has a strong k-edge-colouring}
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Strong edge-colouring

Definition [Fouquet and Jolivet, 1983]

A strong edge-colouring of G is a proper edge-colouring where every
two edges joined by an edge are assigned distinct colours.

χ′s(G ): min{k : G has a strong k-edge-colouring}
χ′s(G ) = χ(L(G )2)
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Upper bounds

χ′s(G ) ≤ 2∆(∆− 1) + 1 (counting)

     

∆− 1

∆− 1

∆− 1

∆

u v

Theorem [Molloy and Reed, 1997]

If ∆ is large enough, then χ′s(G ) ≤ 1.998∆2.
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Conjecture [Erdős and Nešeťril, 1985]

We have χ′s(G ) ≤
{

5
4 ∆2 for ∆ even, and
1
4 (5∆2 − 2∆ + 1) otherwise.

Theorem [Chung et al., 1990]

If G has no induced 2K2, then

|E (G )| ≤
{

5
4 ∆2 for ∆ even, and
1
4 (5∆2 − 2∆ + 1) otherwise.

Besides, these upper bounds are reached if and only if G = C∆
5 .
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Conjecture [Erdős and Nešeťril, 1985]

We have χ′s(G ) ≤
{

5
4 ∆2 for ∆ even, and
1
4 (5∆2 − 2∆ + 1) otherwise.

verified for ∆ ≤ 3 (Andersen, 1992, Horák et al., 1993)

tightness: consider C∆
5 , where

I1

I2

I3

I4 I5

././

./

./

./

• every Ij is an independent set

• if ∆ = 2k , then |Ij | = k

• if ∆ = 2k + 1, then |I1| = |I2| = |I3| = k
and |I4| = |I5| = k + 1

Theorem [Chung et al., 1990]

If G has no induced 2K2, then

|E (G )| ≤
{

5
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1
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Besides, these upper bounds are reached if and only if G = C∆
5 .
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Other graph classes

Conjecture [Faudree et al., 1990]

If G is bipartite, then χ′s(G ) ≤ ∆2.

Conjecture [Brualdi and Quinn Massey, 1993]

If G is bipartite with parts X and Y , then χ′s(G ) ≤ ∆(X )∆(Y ).

Theorem [alii, 2012+]

If G is k-degenerate, then χ′s(G ) ≤ (4k − 2)∆− 2k2 +O(k).
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Other graph classes - planar graphs

Theorem [Faudree et al., 1990]

If G is planar, then χ′s(G ) ≤ 4∆ + 4.

some such graphs need 2.4∆ + c colours
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Theorem [Faudree et al., 1990]

If G is planar, then χ′s(G ) ≤ 4∆ + 4.

··
·

··
·

· · ·· · ·

χ′s(G ) = 4∆− 4

some such graphs need 2.4∆ + c colours
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Other graph classes - planar graphs

Theorem [Faudree et al., 1990]

If G is planar, then χ′s(G ) ≤ 4∆ + 4.

Theorem [Hocquard et al., 2011]

If G is outerplanar, then χ′s(G ) ≤ 3∆− 3. This bound is tight.

g : girth of G

Theorem [Hudák et al., 2013]

If G is planar with g ≥ 6, then χ′s(G ) ≤ 3∆ + 5.

some such graphs need 2.4∆ + c colours
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Other graph classes - planar graphs

Theorem [Faudree et al., 1990]

If G is planar, then χ′s(G ) ≤ 4∆ + 4.

Theorem [Hocquard et al., 2011]

If G is outerplanar, then χ′s(G ) ≤ 3∆− 3. This bound is tight.

g : girth of G

Theorem [B., Harutyunyan, Hocquard and Valicov, 2013+]

If G is planar with g ≥ 6, then χ′s(G ) ≤ 3∆ + 1.

some such graphs need 2.4∆ + c colours
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Proof outline

H: minimal (vertices+edges) counterexample

1. structural properties of H

2. discharging procedure

2.1 weight function ω: for every x ∈ V (H), set ω(x) = 2d(x)− 6

such that
∑

x∈V (H)

ω(x) < 0

2.2 discharging rules

2.3 new weight function ω∗ such that
∑

x∈V (H)

ω(x) =
∑

x∈V (H)

ω∗(x)

3. using 1., we get to the contradiction

0 ≤
∑

x∈V (H)

ω∗(x) =
∑

x∈V (H)

ω(x) < 0

H cannot exist



10/11

Planar graphs - remarks

Theorem [Faudree et al., 1990]

If G is planar, then χ′s(G ) ≤ 4∆ + 4.

Observation (Grötzsch + Vizing)

If G is planar with g ≥ 7, then χ′s(G ) ≤ 3∆ + 3.
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Summary

∆ ≥ 7 ∆ ∈ {5, 6} ∆ = 4 ∆ = 3

no girth restriction 4∆ 4∆ + 4 4∆ + 4 3∆ + 1

g ≥ 4 4∆ 4∆ 4∆ + 4 3∆ + 1

g ≥ 5 4∆ 4∆ 4∆ 3∆ + 1

g ≥ 6 3∆ + 1 3∆ + 1 3∆ + 1 3∆

g ≥ 7 3∆ 3∆ 3∆ 3∆

Thank you for your attention!
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