Strong edge-colouring of sparse planar graphs

J. Bensmail, A. Harutyunyan, H. Hocquard and P. Valicov

ICGT 2014, Grenoble
July 1st, 2014

Edge-colouring

G: undirected simple graph
Δ : maximum degree of G

Definition

A proper edge-colouring of G is an assignment of colours to its edges such that every two adjacent edges have distinct colours.

Edge-colouring

G: undirected simple graph
Δ : maximum degree of G

Definition

A proper edge-colouring of G is an assignment of colours to its edges such that every two adjacent edges have distinct colours.
proper edge-colouring $=$ edge-partition into matchings

Edge-colouring

G: undirected simple graph
Δ : maximum degree of G

Definition

A proper edge-colouring of G is an assignment of colours to its edges such that every two adjacent edges have distinct colours.
$\chi^{\prime}(G): \min \{k: G$ has a proper k-edge-colouring $\}$

Theorem [Vizing, 1964]
Either $\chi^{\prime}(G)=\Delta($ Class 1$)$ or $\chi^{\prime}(G)=\Delta+1$ (Class 2).

Theorem [Holyer, 1981]
Deciding whether a given graph is Class 1 is NP-complete.

Theorem [Holyer, 1981]
Deciding whether a given graph is Class 1 is NP-complete.

Theorem [Edmonds, 1965]
Finding a maximum matching of G can be done in time $\mathcal{O}\left(|V(G)|^{4}\right)$.

Theorem [Holyer, 1981]
Deciding whether a given graph is Class 1 is NP-complete.

Theorem [Edmonds, 1965]
Finding a maximum matching of G can be done in time $\mathcal{O}\left(|V(G)|^{4}\right)$.
better complexity in case G is bipartite

Strong edge-colouring

Definition [Fouquet and Jolivet, 1983]
A strong edge-colouring of G is a proper edge-colouring where every two edges joined by an edge are assigned distinct colours.

Strong edge-colouring

Definition [Fouquet and Jolivet, 1983]
A strong edge-colouring of G is a proper edge-colouring where every two edges joined by an edge are assigned distinct colours.

Strong edge-colouring

Definition [Fouquet and Jolivet, 1983]
A strong edge-colouring of G is a proper edge-colouring where every two edges joined by an edge are assigned distinct colours.

Strong edge-colouring

Definition [Fouquet and Jolivet, 1983]
A strong edge-colouring of G is a proper edge-colouring where every two edges joined by an edge are assigned distinct colours.

Strong edge-colouring

Definition [Fouquet and Jolivet, 1983]
A strong edge-colouring of G is a proper edge-colouring where every two edges joined by an edge are assigned distinct colours.

Strong edge-colouring

Definition [Fouquet and Jolivet, 1983]
A strong edge-colouring of G is a proper edge-colouring where every two edges joined by an edge are assigned distinct colours.

strong edge-colouring $=$ edge-partition into induced matchings

Strong edge-colouring

Definition [Fouquet and Jolivet, 1983]
A strong edge-colouring of G is a proper edge-colouring where every two edges joined by an edge are assigned distinct colours.

strong edge-colouring $=$ edge-partition into induced matchings
$=$ proper vertex-colouring of $L(G)^{2}$

Strong edge-colouring

Definition [Fouquet and Jolivet, 1983]
A strong edge-colouring of G is a proper edge-colouring where every two edges joined by an edge are assigned distinct colours.

$\chi_{s}^{\prime}(G): \min \{k: G$ has a strong k-edge-colouring $\}$

Strong edge-colouring

Definition [Fouquet and Jolivet, 1983]
A strong edge-colouring of G is a proper edge-colouring where every two edges joined by an edge are assigned distinct colours.

$\chi_{s}^{\prime}(G): \min \{k: G$ has a strong k-edge-colouring $\}$
$\chi_{s}^{\prime}(G)=\chi\left(L(G)^{2}\right)$

Upper bounds

$\chi_{s}^{\prime}(G) \leq 2 \Delta(\Delta-1)+1$ (counting)

Upper bounds

$\chi_{s}^{\prime}(G) \leq 2 \Delta(\Delta-1)+1$ (counting)

Theorem [Molloy and Reed, 1997]
If Δ is large enough, then $\chi_{s}^{\prime}(G) \leq 1.998 \Delta^{2}$.

Conjecture [Erdős and Nešetřil, 1985]
We have $\chi_{s}^{\prime}(G) \leq\left\{\begin{array}{l}\frac{5}{4} \Delta^{2} \text { for } \Delta \text { even, and } \\ \frac{1}{4}\left(5 \Delta^{2}-2 \Delta+1\right) \text { otherwise. }\end{array}\right.$

Conjecture [Erdős and Nešetřil, 1985]

We have $\chi_{s}^{\prime}(G) \leq\left\{\begin{array}{l}\frac{5}{4} \Delta^{2} \text { for } \Delta \text { even, and } \\ \frac{1}{4}\left(5 \Delta^{2}-2 \Delta+1\right) \text { otherwise. }\end{array}\right.$
verified for $\Delta \leq 3$ (Andersen, 1992, Horák et al., 1993) tightness: consider C_{5}^{Δ}, where

- every l_{j} is an independent set
- if $\Delta=2 k$, then $\left|I_{j}\right|=k$
- if $\Delta=2 k+1$, then $\left|I_{1}\right|=\left|I_{2}\right|=\left|I_{3}\right|=k$ and $\left|I_{4}\right|=\left|I_{5}\right|=k+1$

Conjecture [Erdős and Nešetřil, 1985]
We have $\chi_{s}^{\prime}(G) \leq\left\{\begin{array}{l}\frac{5}{4} \Delta^{2} \text { for } \Delta \text { even, and } \\ \frac{1}{4}\left(5 \Delta^{2}-2 \Delta+1\right) \text { otherwise. }\end{array}\right.$

Theorem [Chung et al., 1990]
If G has no induced $2 K_{2}$, then

$$
|E(G)| \leq\left\{\begin{array}{l}
\frac{5}{4} \Delta^{2} \text { for } \Delta \text { even, and } \\
\frac{1}{4}\left(5 \Delta^{2}-2 \Delta+1\right) \text { otherwise. }
\end{array}\right.
$$

Besides, these upper bounds are reached if and only if $G=C_{5}^{\Delta}$.

Other graph classes

Conjecture [Faudree et al., 1990]
If G is bipartite, then $\chi_{s}^{\prime}(G) \leq \Delta^{2}$.

Other graph classes

Conjecture [Faudree et al., 1990]
If G is bipartite, then $\chi_{s}^{\prime}(G) \leq \Delta^{2}$.

Conjecture [Brualdi and Quinn Massey, 1993] If G is bipartite with parts X and Y, then $\chi_{s}^{\prime}(G) \leq \Delta(X) \Delta(Y)$.

Other graph classes

Conjecture [Faudree et al., 1990]
If G is bipartite, then $\chi_{s}^{\prime}(G) \leq \Delta^{2}$.

Conjecture [Brualdi and Quinn Massey, 1993] If G is bipartite with parts X and Y, then $\chi_{s}^{\prime}(G) \leq \Delta(X) \Delta(Y)$.

Theorem [alii, 2012+]
If G is k-degenerate, then $\chi_{s}^{\prime}(G) \leq(4 k-2) \Delta-2 k^{2}+\mathcal{O}(k)$.

Other graph classes - planar graphs

Theorem [Faudree et al., 1990]
If G is planar, then $\chi_{s}^{\prime}(G) \leq 4 \Delta+4$.

Other graph classes - planar graphs

Theorem [Faudree et al., 1990]
If G is planar, then $\chi_{s}^{\prime}(G) \leq 4 \Delta+4$.

$$
\chi_{s}^{\prime}(G)=4 \Delta-4
$$

Other graph classes - planar graphs

Theorem [Faudree et al., 1990]
If G is planar, then $\chi_{s}^{\prime}(G) \leq 4 \Delta+4$.

Theorem [Hocquard et al., 2011]
If G is outerplanar, then $\chi_{s}^{\prime}(G) \leq 3 \Delta-3$. This bound is tight.

Other graph classes - planar graphs

Theorem [Faudree et al., 1990] If G is planar, then $\chi_{s}^{\prime}(G) \leq 4 \Delta+4$.

Theorem [Hocquard et al., 2011]
If G is outerplanar, then $\chi_{s}^{\prime}(G) \leq 3 \Delta-3$. This bound is tight.
g : girth of G
Theorem [Hudák et al., 2013]
If G is planar with $g \geq 6$, then $\chi_{s}^{\prime}(G) \leq 3 \Delta+5$.
some such graphs need $2.4 \Delta+c$ colours

Other graph classes - planar graphs

Theorem [Faudree et al., 1990] If G is planar, then $\chi_{s}^{\prime}(G) \leq 4 \Delta+4$.

Theorem [Hocquard et al., 2011]
If G is outerplanar, then $\chi_{s}^{\prime}(G) \leq 3 \Delta-3$. This bound is tight.
g : girth of G
Theorem [B., Harutyunyan, Hocquard and Valicov, 2013+] If G is planar with $g \geq 6$, then $\chi_{s}^{\prime}(G) \leq 3 \Delta+1$. some such graphs need $2.4 \Delta+c$ colours

Proof outline

H : minimal (vertices+edges) counterexample

1. structural properties of H
2. discharging procedure
2.1 weight function ω : for every $x \in V(H)$, set $\omega(x)=2 d(x)-6$ such that $\sum_{x \in V(H)} \omega(x)<0$
2.2 discharging rules
2.3 new weight function ω^{*} such that $\sum_{x \in V(H)} \omega(x)=\sum_{x \in V(H)} \omega^{*}(x)$
3. using 1., we get to the contradiction

$$
0 \leq \sum_{x \in V(H)} \omega^{*}(x)=\sum_{x \in V(H)} \omega(x)<0
$$

H cannot exist

Planar graphs - remarks

Theorem [Faudree et al., 1990]
If G is planar, then $\chi_{s}^{\prime}(G) \leq 4 \Delta+4$.

Planar graphs - remarks

Theorem [Faudree et al., 1990]
If G is planar, then $\chi_{s}^{\prime}(G) \leq 4 \Delta+4$.

Observation (Grötzsch + Vizing)
 If G is planar with $g \geq 7$, then $\chi_{s}^{\prime}(G) \leq 3 \Delta+3$.

Planar graphs - remarks

Theorem [Faudree et al., 1990] If G is planar, then $\chi_{s}^{\prime}(G) \leq 4 \Delta+4$.

> Observation (Grötzsch + Vizing)
> If G is planar with $g \geq 7$, then $\chi_{s}^{\prime}(G) \leq 3 \Delta+3$.

Theorem [Vizing, 1965]
If G is planar with $\Delta \geq 8$, then G is Class 1 .

Planar graphs - remarks

Theorem [Faudree et al., 1990] If G is planar, then $\chi_{s}^{\prime}(G) \leq 4 \Delta+4$.

> Observation (Grötzsch + Vizing) If G is planar with $g \geq 7$, then $\chi_{s}^{\prime}(G) \leq 3 \Delta+3$.

Theorem [Vizing, 1965]
If G is planar with $\Delta \geq 8$, then G is Class 1 .
Conjecture [Vizing, 1965]
If G is planar with $\Delta \geq 6$, then G is Class 1 .

Planar graphs - remarks

Theorem [Faudree et al., 1990] If G is planar, then $\chi_{s}^{\prime}(G) \leq 4 \Delta+4$.

> Observation (Grötzsch + Vizing) If G is planar with $g \geq 7$, then $\chi_{s}^{\prime}(G) \leq 3 \Delta+3$.

Theorem [Vizing, 1965] If G is planar with $\Delta \geq 8$, then G is Class 1 .

Conjecture [Vizing, 1965]
If G is planar with $\Delta \geq 6$, then G is Class 1 .
proved for $\Delta=7$ (Sanders and Zhao, 2001)

Planar graphs - remarks

Theorem [Faudree et al., 1990] If G is planar, then $\chi_{s}^{\prime}(G) \leq 4 \Delta+4$.

> Observation (Grötzsch + Vizing)
> If G is planar with $g \geq 7$, then $\chi_{s}^{\prime}(G) \leq 3 \Delta+3$.

Corollary

If G is planar with $\Delta \geq 7$, then $\chi_{s}^{\prime}(G) \leq 4 \Delta$.

Planar graphs - remarks

Theorem [Faudree et al., 1990] If G is planar, then $\chi_{s}^{\prime}(G) \leq 4 \Delta+4$.

> Observation (Grötzsch + Vizing) If G is planar with $g \geq 7$, then $\chi_{s}^{\prime}(G) \leq 3 \Delta+3$.

Corollary

If G is planar with $\Delta \geq 7$, then $\chi_{s}^{\prime}(G) \leq 4 \Delta$.
what about remaining values of Δ ? what for specific g ?

Planar graphs - remarks

Theorem [Faudree et al., 1990] If G is planar, then $\chi_{s}^{\prime}(G) \leq 4 \Delta+4$.

Observation (Grötzsch + Vizing)
If G is planar with $g \geq 7$, then $\chi_{s}^{\prime}(G) \leq 3 \Delta+3$.

Corollary

If G is planar with $\Delta \geq 7$, then $\chi_{s}^{\prime}(G) \leq 4 \Delta$.
what about remaining values of Δ ? what for specific g ?
Question
If $\Delta=g=4$, then can G be Class 2?

Summary

	$\Delta \geq 7$	$\Delta \in\{5,6\}$	$\Delta=4$	$\Delta=3$
no girth restriction	4Δ	$\mathbf{4 \Delta}+\mathbf{4}$	$\mathbf{4 \Delta}+\mathbf{4}$	$3 \Delta+1$
$g \geq 4$	4Δ	4Δ	$\mathbf{4 \Delta}+\mathbf{4}$	$3 \Delta+1$
$g \geq 5$	4Δ	4Δ	4Δ	$3 \Delta+1$
$g \geq 6$	$3 \Delta+1$	$3 \Delta+1$	$3 \Delta+1$	3Δ
$g \geq 7$	3Δ	3Δ	3Δ	3Δ

Summary

	$\Delta \geq 7$	$\Delta \in\{5,6\}$	$\Delta=4$	$\Delta=3$
no girth restriction	4Δ	$\mathbf{4 \Delta + 4}$	$\mathbf{4 \Delta + 4}$	$3 \Delta+1$
$g \geq 4$	4Δ	4Δ	$4 \Delta+4$	$3 \Delta+1$
$g \geq 5$	4Δ	4Δ	4Δ	$3 \Delta+1$
$g \geq 6$	$3 \Delta+1$	$3 \Delta+1$	$3 \Delta+1$	3Δ
$g \geq 7$	3Δ	3Δ	3Δ	3Δ

Thank you for your attention!

