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Edge-colouring

G: undirected simple graph
A: maximum degree of G

Definition
A proper edge-colouring of G is an assignment of colours to its
edges such that every two adjacent edges have distinct colours.

X'(G): min{k : G has a proper k-edge-colouring}

Theorem [Vizing, 1964]
Either x/(G) = A (Class 1) or x/(G) = A + 1 (Class 2).
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Theorem [Holyer, 1981]
Deciding whether a given graph is Class 1 is NP-complete.

Theorem [Edmonds, 1965]
Finding a maximum matching of G can be done in time O(|V(G)|*).

better complexity in case G is bipartite
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Strong edge-colouring

Definition [Fouquet and Jolivet, 1983]

A strong edge-colouring of G is a proper edge-colouring where every
two edges joined by an edge are assigned distinct colours.

strong edge-colouring = edge-partition into induced matchings
= proper vertex-colouring of L(G)?
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Strong edge-colouring

Definition [Fouquet and Jolivet, 1983]

A strong edge-colouring of G is a proper edge-colouring where every
two edges joined by an edge are assigned distinct colours.

Xs(G): min{k : G has a strong k-edge-colouring}
Xs(G) = x(L(G)?)



Upper bounds
X5(G) < 2A(A — 1) + 1 (counting)




Upper bounds
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Theorem [Molloy and Reed, 1997]
If A is large enough, then x.(G) < 1.998A2.
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Conjecture [Erd6s and Neset¥il, 1985]

2 A2 for A even, and

We have Y.(G) < {4
Xs(G) < {1(5A2 — 2A + 1) otherwise.

verified for A < 3 (Andersen, 1992, Hordk et al., 1993)

tightness: consider C2, where
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Conjecture [Erd6s and Neset¥il, 1985]

%Az for A even, and

We have Y.(G) <
Xs(G) < {1(5A2 — 2A + 1) otherwise.

Theorem [Chung et al., 1990]
If G has no induced 2K5, then

2A? for A even, and
%(5A2 — 2A + 1) otherwise.

|E(G) S{

Besides, these upper bounds are reached if and only if G = C5A.
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Other graph classes

Conjecture [Faudree et al., 1990]
If G is bipartite, then y.(G) < A2

Conjecture [Brualdi and Quinn Massey, 1993]
If G is bipartite with parts X and Y, then x.(G) < A(X)A(Y).

Theorem [alii, 2012+]
If G is k-degenerate, then x4(G) < (4k — 2)A — 2k? + O(k).




Other graph classes - planar graphs

Theorem [Faudree et al., 1990]
If G is planar, then x.(G) < 4A + 4.




Other graph classes - planar graphs

Theorem [Faudree et al., 1990]
If G is planar, then x.(G) < 4A + 4.

NN
@

Xs(G) =4A -4
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Other graph classes - planar graphs

Theorem [Faudree et al., 1990]
If G is planar, then x.(G) < 4A + 4.

Theorem [Hocquard et al., 2011]
If G is outerplanar, then x.(G) < 3A — 3. This bound is tight.

g: girth of G

Theorem [Hudak et al., 2013]
If G is planar with g > 6, then x.(G) < 3A +5.

some such graphs need 2.4A + ¢ colours



Other graph classes - planar graphs

Theorem [Faudree et al., 1990]
If G is planar, then x.(G) < 4A + 4.

Theorem [Hocquard et al., 2011]
If G is outerplanar, then x.(G) < 3A — 3. This bound is tight.

g: girth of G

Theorem [B., Harutyunyan, Hocquard and Valicov, 2013+]
If G is planar with g > 6, then x.(G) < 3A + 1.

some such graphs need 2.4A + ¢ colours



Proof outline

H: minimal (vertices+edges) counterexample

1. structural properties of H
2. discharging procedure
2.1 weight function w: for every x € V(H), set w(x) = 2d(x) —

such that Z w(x) <0

xeV/(H)
2.2 discharging rules

2.3 new weight function w* such that Z w(x) = Z w*(x)
xEV(H) x€V(H)
3. using 1., we get to the contradiction

0< Z Zw(x)<0

xeV(H x€V/(H)

H cannot exist
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Planar graphs - remarks

Theorem [Faudree et al., 1990]
If G is planar, then x.(G) < 4A + 4.

Observation (Grotzsch + Vizing)
If G is planar with g > 7, then x4(G) < 3A + 3.

Theorem [Vizing, 1965]
If G is planar with A > 8, then G is Class 1.

Conjecture [Vizing, 1965]
If G is planar with A > 6, then G is Class 1.

proved for A =7 (Sanders and Zhao, 2001)
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Planar graphs - remarks

Theorem [Faudree et al., 1990]
If G is planar, then x.(G) < 4A + 4.

Observation (Grotzsch + Vizing)
If G is planar with g > 7, then x4(G) < 3A + 3.

Corollary
If G is planar with A > 7, then x.(G) < 4A.

what about remaining values of A? what for specific g7

Question
If A =g =4, then can G be Class 27




Summary

A>7 | Ae{56} | A= A=
no girth restriction 4A 4A +4 | 4A +4 | 3A+1
g>4 4N 4N 4A +4 | 3A+1
g>5 4N 4A 4N 3A+1
g>6 3A+1 3A+1 3A+1 3A
g>7 3A 3A 3A 3A




Summary

A>7 |Ae{56}| A=4 | A=
no girth restriction 4A 4A +4 | 4A +4 | 3A+1
g>4 4N 4N 4A +4 | 3A+1
g>5 4N 4A 4N 3A+1
g>6 3A+1 3A+1 3A+1 3A
g>7 3A 3A 3A 3A

Thank you for your attention!



