Partitions and decompositions of graphs

Julien Bensmail

LaBRI - Université de Bordeaux
Talence, France

June 10th, 2014



Foreword

Graph problems considered in this thesis:



Foreword

Graph problems considered in this thesis:

@ Vertex-partition into connected subgraphs with prescribed orders



Foreword

Graph problems considered in this thesis:

@ Vertex-partition into connected subgraphs with prescribed orders

o Introduction of irregularity via an edge-colouring



Foreword

Graph problems considered in this thesis:

@ Vertex-partition into connected subgraphs with prescribed orders

o Introduction of irregularity via an edge-colouring

In both cases: Algorithmic and combinatorial concerns



- First problem -

Vertex-partitioning graphs into connected subgraphs

Kalinowski Marczyk Pilsniak Przybyto  Wozniak
Baudon Foucaud Sopena
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A few terminology

G: (undirected simple) graph
m = (n1, ny, ..., np): partition of |V(G)|

Realizable sequence, Realization

7 is realizable in G if there is a realization of w in G, i.e. a partition
(W4, Va,..., V,,) of V(G) such that G[V/] is connected and has order n;

for every i € {1,2, ..., p}.

(2,2,2,2) No!
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What with a stronger connectivity constraint?
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Notion of “best” partitionable graph [Barth, Baudon, Puech, 2002]
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Graphs in which all sequences are realizable

Notion of “best” partitionable graph [Barth, Baudon, Puech, 2002]

Arbitrarily partitionable (AP) graph

G is arbitrarily partitionable (AP) if all sequences are realizable in G.

Examples: all graphs with an Hamiltonian path

Few structural results

Theorem [Barth, Fournier, 2006]

If T is an AP tree, then A(T) < 4 and every 4-node is adjacent to a leaf.

Theorem [Baudon, Foucaud, Przybylo, Wozniak, 2014]

Removing at least two vertices from an AP graph may result in infinitely
many components, but their orders follow an exponential growth.
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Hardness of realizing sequences in graphs

REALIZATION

Input: a graph G and a sequence 7.
Question: is 7 realizable in G?

Summarizing theorem

REALIZATION is NP-complete, even when

m=(3,3,...,3) [Dyer, Frieze, 1985],

G is a subdivided star [B., 2014],

G is a split graph [Broesma, Kratsch, Woeginger, 2013],
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AP GRAPH

Input: a graph G.
Question: is G AP?

AP GRAPH € NP U co-NP?

o NP: asymptotically, #partitions of n — exp(n)
@ co-NP: too many potential realizations

Positive evidences though

Summarizing theorem

AP GRAPH is in P when restricted to
@ subdivided stars [Barth, Fournier, 2006],
@ split graphs [Broesma, Kratsch, Woeginger, 2013].

NP-completeness of REALIZATION for subdivided stars and split graphs! ...



On polynomial kernels of sequences

Classic idea: reduce the number of sequences to check

(polynomial) Kernel of sequences

A kernel for G is a set K of sequences such that
G is AP if and only if K is “realizable” in G.
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On polynomial kernels of sequences

Classic idea: reduce the number of sequences to check

(polynomial) Kernel of sequences

A kernel for G is a set K of sequences such that
G is AP if and only if K is “realizable” in G.

K is polynomial if it has size O(|V(G)|°M).

Major open question related to AP graphs:

Conjecture [Barth, Fournier, 2006]

Every graph admits a polynomial kernel.




New positive results on AP GRAPH

Summarizing theorem [B., 2014]

AP GRAPH is in
@ P when G is a complete multipartite graph,

@ NP when G has at least ['V(G)l_lngv(c)‘)_z—‘ universal vertices,

@ NP when G is a specific compound graph.
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New positive results on AP GRAPH

Summarizing theorem [B., 2014]

AP GRAPH is in

@ P when G is a complete multipartite graph,
@ NP when G has at least [w—‘ universal vertices,

@ NP when G is a specific compound graph.

A

Corollary [Horiiak, Marczyk, Schiermeyer, Wozniak, 2012]

Every graph G with at least [M%M-‘ universal vertices is AP.
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A kernel for graphs with universal vertices

Ky (n) = {7 : the greatest element value of 7 appears at least k + 1 times}

Theorem [B., 2014]

K (|[V(G)]) is a kernel for G whenever it has at least k universal vertices.

Proof. Prove that G is AP < Ky, (|V(G)|) is realizable in G
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A kernel for graphs with universal vertices

Ky (n) = {7 : the greatest element value of 7 appears at least k + 1 times}

Theorem [B., 2014]

K (|[V(G)]) is a kernel for G whenever it has at least k universal vertices.

Proof. Prove that G is AP < Ky, (|V(G)|) is realizable in G
=) True (definition)
<) Ku, (|V(G)|) realizable in G

For every m = (n1, o, ..., np) & Ky, (|V(G)]) with ny > ny > ... > np, set

!/
™ = (nk+17 17 17 sty 17 Nk+1, 1a 17 ) 17 ooy Mk41, 17 17 cry 1a Npt15 Mk425 +o05 np)

7' € Ky, (|V(G)|), which admits a realization in G where the universal vertices are
each uniquely included in one big connected subgraph — Realizationof 7in G N
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On the polynomiality of K, (n)

Theorem [B., 2014]

Ky, (n) is a cubic kernel whenever k > [%-‘

Proof. 7w € Ky, (n) = (x > k + 1 occurrences of n;) + (partition of n — xn)

n—xn < In(n)
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On the polynomiality of K, (n)

Theorem [B., 2014]

Ky, (n) is a cubic kernel whenever k > [%-‘

Proof. 7w € Ky, (n) = (x > k + 1 occurrences of n;) + (partition of n — xn)

n—xn <
n—(k+1)2 < In(n)
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Conclusions and open questions

+ New polynomial kernels towards the NPness of AP GrRAPH

+ (sometimes) New definition invariants

- Very narrow and particular classes of graphs

- General polynomial kernel?

? Consider large value of graph invariants (e.g. density, average degree, etc.)

? Other graph classes (e.g. triangulated plane graphs)

13 /27



- Second problem -

Introducing irregularity in graphs via an edge-colouring

Przybyto ~ Stevens = WozZniak
Baudon Renault Sopena
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Regularity VS Irregularity

Regular graph: all vertices have the same degree
Totally irregular graph: all vertices have distinct degrees

G simple graph, at least two vertices: cannot be totally irregular!

Question [Chartrand et al., 1988]

What is the least integer x > 2 such that G can be turned into a totally
irregular multigraph by multiplying each of its edges at most x times?

x < |V(G)| [Nierhoff, 2000]

15 /27



Locally irregular graphs

Another definition of irregularity for simple graphs [Alavi et al., 1987]

Locally irregular graph

G is locally irregular if its adjacent vertices have distinct degrees.
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Locally irregular graphs

Another definition of irregularity for simple graphs [Alavi et al., 1987]

Locally irregular graph

G is locally irregular if its adjacent vertices have distinct degrees.

Turning G into a locally irregular multigraph?

1-2-3 Conjecture [Karoriski, tuczak, Thomason, 2004]

x < 5 [Kalkowski, Karoriski, Pfender, 2010]
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Main conjecture

Irregular chromatic index

The irregular chromatic index of G, denoted X/, (G), is

min{k : G admits a locally irregular k-edge-colouring}.

K> has no locally irregular edge-colouring!

Exception, Colourable graph

An exception is a graph with infinite irregular chromatic index. A
colourable graph is a graph which is not an exception.

Conjecture [Baudon, B., Przybylo, Wozniak, 2013]

If G is colourable, then x/,(G) < 3.
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Exception graphs

Theorem [Baudon, B., Przybylo, Wozniak, 2013]

G is an exception if and only if G is an odd length path or cycle, or a
member of 7.

Family 7 :
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Exception graphs

Theorem [Baudon, B., Przybylo, Wozniak, 2013]

G is an exception if and only if G is an odd length path or cycle, or a
member of T .

Family 7 :

Recognition: polynomial time
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On the irregular chromatic index of colourable graphs

Smallest locally irregular non-trivial graph: P

Corollary [Baudon, B., Przybyto, Wozniak, 2013]

If G is colourable, then

Xirr(G) < {@J .
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Corollary [Baudon, B., Przybyto, Wozniak, 2013]

If G is colourable, then

Xi(G) <3if G is a

colourable path or cycle,

@ particular colourable bipartite graph (including trees),
@ complete graph on at least four vertices,

@ Cartesian product of graphs with x/, <3,

o d-regular graph with d > 107.
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Irregular chromatic index of regular graphs

Theorem [Baudon, B., Przybylo, Wozniak, 2013]

If G is d-regular with d > 107, then X/, (G) < 3.

Proof (sketch). Two steps

Find E(G) = E; U E; U E3 yielding three subgraphs Gy, G, and G; such that
o for every uv € E(G), we have dg,(u) # dg,(v) for every i # j

@ each vertex u has degree “almost” dg(u)/3 in Gy, G; and G3
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Irregular chromatic index of regular graphs

Theorem [Baudon, B., Przybylo, Wozniak, 2013]

If G is d-regular with d > 107, then X/, (G) < 3.

Proof (sketch). Two steps

Find E(G) = E; U E; U E3 yielding three subgraphs Gy, G, and G; such that
o for every uv € E(G), we have dg,(u) # dg,(v) for every i # j
@ each vertex u has degree “almost” dg(u)/3 in Gy, G; and G3

Existence of a such degree repartition? = Lovasz Local Lemma!
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Irregular chromatic index of regular graphs

Theorem [Baudon, B., Przybylo, Wozniak, 2013]

If G is d-regular with d > 107, then X/, (G) < 3.

Proof (sketch). Choosing the edges? Use of the following |

Corollary [Addario-Berry et al., 2007]

¥(6)
6

Given a positive integer A < and an assignment

t:V —{0,1,..,)A—1},

there exists a spanning subgraph H of G such that dy(v) € {=Z2,
1,...,2d3(v)}, and either dy(v) = t(v) (mod A) or du(v) = t(v) +1
(mod X) for every vertex v of G.

23 /27



Complexity matters

Theorem [Baudon, B., Sopena, 2014]

Determining the irregular chromatic index of a tree T can be done in time

O(V(T)))-

Theorem [Baudon, B., Sopena, 2014]

Determining whether x/,.(G) < 2 is NP-complete.

24 /27



Open questions and perspectives

+ Characterization of exceptions
+ Verification of our conjecture for several classes of graphs

+ Positive and negative complexity results
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Open questions and perspectives
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+ Verification of our conjecture for several classes of graphs

+ Positive and negative complexity results

- No weaker constant version of our conjecture

- No clue for bipartite graphs

? Upper bounds of x/,, involving other graph parameters

? Weaker problems?
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Recent results

What if we allow K, in decompositions?

Regular-irregular edge-colouring, Regular-irregular chromatic index

An edge-colouring is regular-irregular if every colour class induces a sub-
graph including regular or locally irregular components. The regular-
irregular chromatic index of G, denoted X7, _;,(G), is

min{k : G admits a regular-irregular k-edge-colouring}.
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graph including regular or locally irregular components. The regular-
irregular chromatic index of G, denoted X7, _;,(G), is

min{k : G admits a regular-irregular k-edge-colouring}.

Theorem [B., Stevens, 2014]

If G is bipartite, then x/., ;,(G) <6.

Proof (sketch). Decomposition into auxiliary structures |
bipartite = forest + Eulerian bipartite
Xreg—iw(DiDartite) < x.. ;. (forest) + X7, (Eulerian bipartite)
X’,eg_ . (bipartite) < 2 + 4
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Recent results

Theorem [B., Stevens, 2014]

X/reg—irr(G) S 6 |Og(X(G))

Proof (sketch). G decomposes into at most log(x(G)) bipartite graphs |
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Recent results

Theorem [B., Stevens, 2014]

X/reg—irr(G) S 6 |Og(X(G))

Proof (sketch). G decomposes into at most log(x(G)) bipartite graphs |

Thank you for your attention
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