Partitions and decompositions of graphs

Julien Bensmail

LaBRI - Université de Bordeaux Talence, France

June 10th, 2014

• Vertex-partition into connected subgraphs with prescribed orders

- Vertex-partition into connected subgraphs with prescribed orders
- Introduction of irregularity via an edge-colouring

- Vertex-partition into connected subgraphs with prescribed orders
- Introduction of irregularity via an edge-colouring

In both cases: Algorithmic and combinatorial concerns

- First problem -

Vertex-partitioning graphs into connected subgraphs

Kalinowski Marczyk Pilśniak Przybyło Woźniak Baudon Foucaud Sopena

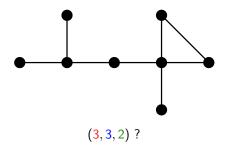
G: (undirected simple) graph $\pi = (n_1, n_2, ..., n_p)$: partition of |V(G)|

G: (undirected simple) graph $\pi = (n_1, n_2, ..., n_p)$: partition of |V(G)|

Realizable sequence, Realization

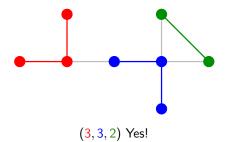
G: (undirected simple) graph $\pi = (n_1, n_2, ..., n_p)$: partition of |V(G)|

Realizable sequence, Realization



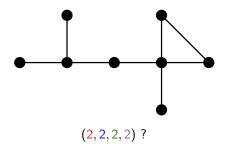
G: (undirected simple) graph $\pi = (n_1, n_2, ..., n_p)$: partition of |V(G)|

Realizable sequence, Realization



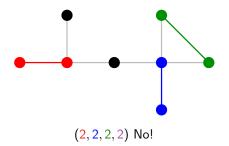
G: (undirected simple) graph $\pi = (n_1, n_2, ..., n_p)$: partition of |V(G)|

Realizable sequence, Realization



G: (undirected simple) graph $\pi = (n_1, n_2, ..., n_p)$: partition of |V(G)|

Realizable sequence, Realization



• Is a sequence realizable?

- Is a sequence realizable?
- Are all sequences realizable?

- Is a sequence realizable?
- Are all sequences realizable?
- What with vertex-membership constraints?

- Is a sequence realizable?
- Are all sequences realizable?
- What with vertex-membership constraints?
- What with a stronger connectivity constraint?

• Is a sequence realizable?

• Are all sequences realizable?

- What with vertex-membership constraints?
- What with a stronger connectivity constraint?

Graphs in which all sequences are realizable

Notion of "best" partitionable graph [Barth, Baudon, Puech, 2002]

Arbitrarily partitionable (AP) graph

G is arbitrarily partitionable (AP) if all sequences are realizable in G.

Examples: all graphs with an Hamiltonian path

Graphs in which all sequences are realizable

Notion of "best" partitionable graph [Barth, Baudon, Puech, 2002]

Arbitrarily partitionable (AP) graph

G is arbitrarily partitionable (AP) if all sequences are realizable in G.

Examples: all graphs with an Hamiltonian path

Few structural results

Theorem [Barth, Fournier, 2006]

If T is an AP tree, then $\Delta(T) \leq 4$ and every 4-node is adjacent to a leaf.

Graphs in which all sequences are realizable

Notion of "best" partitionable graph [Barth, Baudon, Puech, 2002]

Arbitrarily partitionable (AP) graph

G is arbitrarily partitionable (AP) if all sequences are realizable in G.

Examples: all graphs with an Hamiltonian path

Few structural results

Theorem [Barth, Fournier, 2006]

If T is an AP tree, then $\Delta(T) \leq 4$ and every 4-node is adjacent to a leaf.

Theorem [Baudon, Foucaud, Przybyło, Woźniak, 2014]

Removing at least two vertices from an AP graph may result in infinitely many components, but their orders follow an exponential growth.

Hardness of realizing sequences in graphs

REALIZATION

Input: a graph G and a sequence π . Question: is π realizable in G?

Hardness of realizing sequences in graphs

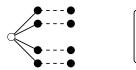
REALIZATION

Input: a graph G and a sequence π . Question: is π realizable in G?

Summarizing theorem

 $\operatorname{Realization}$ is NP-complete, even when

- $\pi = (3, 3, ..., 3)$ [Dyer, Frieze, 1985],
- G is a subdivided star [B., 2014],
- G is a split graph [Broesma, Kratsch, Woeginger, 2013],
- o ...



AP GRAPH

Input: a graph *G*. Question: is *G* AP?

AP GRAPH

Input: a graph *G*. Question: is *G* AP?

AP GRAPH $\in \mathsf{NP} \cup \mathsf{co-NP}$?

AP GRAPH

Input: a graph *G*. Question: is *G* AP?

- AP GRAPH $\in \mathsf{NP} \cup \mathsf{co-NP}$?
 - NP: asymptotically, #partitions of $n \to \exp(n)$
 - co-NP: too many potential realizations

AP GRAPH

Input: a graph *G*. Question: is *G* AP?

- AP GRAPH $\in \mathsf{NP} \cup \mathsf{co-NP}$?
 - NP: asymptotically, #partitions of $n \to \exp(n)$
 - co-NP: too many potential realizations

Positive evidences though

Summarizing theorem

 $\operatorname{AP}\,\operatorname{GRAPH}$ is in P when restricted to

- subdivided stars [Barth, Fournier, 2006],
- split graphs [Broesma, Kratsch, Woeginger, 2013].

AP GRAPH

Input: a graph *G*. Question: is *G* AP?

- AP GRAPH $\in \mathsf{NP} \cup \mathsf{co-NP}$?
 - NP: asymptotically, #partitions of $n \to \exp(n)$
 - co-NP: too many potential realizations

Positive evidences though

Summarizing theorem AP GRAPH is in P when restricted to

- subdivided stars [Barth, Fournier, 2006],
- split graphs [Broesma, Kratsch, Woeginger, 2013].

NP-completeness of $\operatorname{Realization}$ for subdivided stars and split graphs! ...

On polynomial kernels of sequences

Classic idea: reduce the number of sequences to check

(polynomial) Kernel of sequences

A kernel for G is a set K of sequences such that

G is AP if and only if K is "realizable" in G.

K is polynomial if it has size $\mathcal{O}(|V(G)|^{\mathcal{O}(1)})$.

On polynomial kernels of sequences

Classic idea: reduce the number of sequences to check

(polynomial) Kernel of sequences

A kernel for G is a set K of sequences such that

G is AP if and only if K is "realizable" in G.

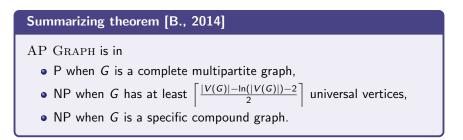
K is polynomial if it has size $\mathcal{O}(|V(G)|^{\mathcal{O}(1)})$.

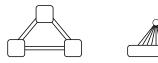
Major open question related to AP graphs:

Conjecture [Barth, Fournier, 2006]

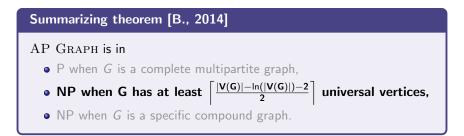
Every graph admits a polynomial kernel.

New positive results on AP Graph

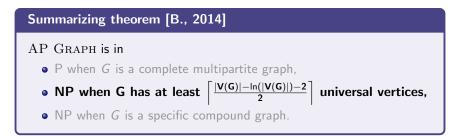




New positive results on AP Graph



New positive results on AP GRAPH



Corollary [Horňák, Marczyk, Schiermeyer, Woźniak, 2012]

Every graph G with at least $\left\lceil \frac{|V(G)|-5}{2} \right\rceil$ universal vertices is AP.

 $K_{\mathcal{U}_k}(n) = \{\pi : \text{the greatest element value of } \pi \text{ appears at least } k+1 \text{ times} \}$

Theorem [B., 2014]

 $K_{\mathcal{U}_k}(|V(G)|)$ is a kernel for G whenever it has at least k universal vertices.

Proof. Prove that G is AP $\Leftrightarrow \mathcal{K}_{\mathcal{U}_k}(|\mathcal{V}(G)|)$ is realizable in G

 $K_{\mathcal{U}_k}(n) = \{\pi : \text{the greatest element value of } \pi \text{ appears at least } k+1 \text{ times} \}$

Theorem [B., 2014]

 $K_{\mathcal{U}_k}(|V(G)|)$ is a kernel for G whenever it has at least k universal vertices.

Proof. Prove that G is AP $\Leftrightarrow \mathcal{K}_{\mathcal{U}_k}(|\mathcal{V}(G)|)$ is realizable in G

 \Rightarrow) True (definition)

 $\mathcal{K}_{\mathcal{U}_k}(n) = \{\pi : \text{the greatest element value of } \pi \text{ appears at least } k+1 \text{ times} \}$

Theorem [B., 2014]

 $K_{\mathcal{U}_k}(|V(G)|)$ is a kernel for G whenever it has at least k universal vertices.

Proof. Prove that G is AP $\Leftrightarrow \mathcal{K}_{\mathcal{U}_k}(|\mathcal{V}(G)|)$ is realizable in G

- \Rightarrow) True (definition)
- \Leftarrow) $K_{\mathcal{U}_k}(|V(G)|)$ realizable in G

 $\mathcal{K}_{\mathcal{U}_k}(n) = \{\pi : \text{the greatest element value of } \pi \text{ appears at least } k+1 \text{ times} \}$

Theorem [B., 2014]

 $K_{\mathcal{U}_k}(|V(G)|)$ is a kernel for G whenever it has at least k universal vertices.

Proof. Prove that G is AP $\Leftrightarrow \mathcal{K}_{\mathcal{U}_k}(|\mathcal{V}(G)|)$ is realizable in G

 \Rightarrow) True (definition)

 \Leftarrow) $K_{\mathcal{U}_k}(|V(G)|)$ realizable in G

For every $\pi = (n_1, n_2, ..., n_p)
ot\in \mathcal{K}_{\mathcal{U}_k}(|V(G)|)$ with $n_1 \ge n_2 \ge ... \ge n_p$, set

$$\pi = (n_1, n_2, ..., n_k, n_{k+1}, n_{k+2}, ..., n_p)$$

 $\mathcal{K}_{\mathcal{U}_k}(n) = \{\pi : \text{the greatest element value of } \pi \text{ appears at least } k+1 \text{ times} \}$

Theorem [B., 2014]

 $K_{\mathcal{U}_k}(|V(G)|)$ is a kernel for G whenever it has at least k universal vertices.

Proof. Prove that G is AP $\Leftrightarrow \mathcal{K}_{\mathcal{U}_k}(|\mathcal{V}(G)|)$ is realizable in G

 \Rightarrow) True (definition)

 \Leftarrow) $K_{\mathcal{U}_k}(|V(G)|)$ realizable in G

For every $\pi = (n_1, n_2, ..., n_p)
ot\in \mathcal{K}_{\mathcal{U}_k}(|V(G)|)$ with $n_1 \ge n_2 \ge ... \ge n_p$, set

 $(\mathbf{n_{k+1}}, \mathbf{1}, \mathbf{1}, ..., \mathbf{1}, n_2, ..., n_k, n_{k+1}, n_{k+2}, ..., n_p)$

 $\mathcal{K}_{\mathcal{U}_k}(n) = \{\pi : \text{the greatest element value of } \pi \text{ appears at least } k+1 \text{ times} \}$

Theorem [B., 2014]

 $K_{\mathcal{U}_k}(|V(G)|)$ is a kernel for G whenever it has at least k universal vertices.

Proof. Prove that G is AP $\Leftrightarrow \mathcal{K}_{\mathcal{U}_k}(|\mathcal{V}(G)|)$ is realizable in G

- \Rightarrow) True (definition)
- \Leftarrow) $K_{\mathcal{U}_k}(|V(G)|)$ realizable in G

For every $\pi = (n_1, n_2, ..., n_p)
ot\in \mathcal{K}_{\mathcal{U}_k}(|V(G)|)$ with $n_1 \geq n_2 \geq ... \geq n_p$, set

$$(n_{k+1}, 1, 1, ..., 1, n_{k+1}, 1, 1, ..., 1, ..., n_k, n_{k+1}, n_{k+2}, ..., n_p)$$

 $\mathcal{K}_{\mathcal{U}_k}(n) = \{\pi : \text{the greatest element value of } \pi \text{ appears at least } k+1 \text{ times} \}$

Theorem [B., 2014]

 $K_{\mathcal{U}_k}(|V(G)|)$ is a kernel for G whenever it has at least k universal vertices.

Proof. Prove that G is AP $\Leftrightarrow \mathcal{K}_{\mathcal{U}_k}(|\mathcal{V}(G)|)$ is realizable in G

- \Rightarrow) True (definition)
- \Leftarrow) $K_{\mathcal{U}_k}(|V(G)|)$ realizable in G

For every $\pi = (n_1, n_2, ..., n_p)
ot\in \mathcal{K}_{\mathcal{U}_k}(|V(G)|)$ with $n_1 \geq n_2 \geq ... \geq n_p$, set

 $(n_{k+1}, 1, 1, ..., 1, n_{k+1}, 1, 1, ..., 1, ..., n_{k+1}, 1, 1, ..., 1, n_{k+1}, n_{k+2}, ..., n_p)$

 $\mathcal{K}_{\mathcal{U}_k}(n) = \{\pi : \text{the greatest element value of } \pi \text{ appears at least } k+1 \text{ times} \}$

Theorem [B., 2014]

 $K_{\mathcal{U}_k}(|V(G)|)$ is a kernel for G whenever it has at least k universal vertices.

Proof. Prove that G is AP $\Leftrightarrow \mathcal{K}_{\mathcal{U}_k}(|\mathcal{V}(G)|)$ is realizable in G

- \Rightarrow) True (definition)
- \Leftarrow) $K_{\mathcal{U}_k}(|V(G)|)$ realizable in G

For every $\pi = (n_1, n_2, ..., n_p)
ot\in \mathcal{K}_{\mathcal{U}_k}(|V(G)|)$ with $n_1 \ge n_2 \ge ... \ge n_p$, set

$$\pi' = (n_{k+1}, 1, 1, \dots, 1, n_{k+1}, 1, 1, \dots, 1, \dots, n_{k+1}, 1, 1, \dots, 1, n_{k+1}, n_{k+2}, \dots, n_p)$$

 $\mathcal{K}_{\mathcal{U}_k}(n) = \{\pi : \text{the greatest element value of } \pi \text{ appears at least } k+1 \text{ times} \}$

Theorem [B., 2014]

 $K_{\mathcal{U}_k}(|V(G)|)$ is a kernel for G whenever it has at least k universal vertices.

Proof. Prove that G is AP $\Leftrightarrow K_{\mathcal{U}_k}(|V(G)|)$ is realizable in G

 \Rightarrow) True (definition)

 \Leftarrow) $K_{\mathcal{U}_k}(|V(G)|)$ realizable in G

For every $\pi = (n_1, n_2, ..., n_p) \notin K_{\mathcal{U}_k}(|V(G)|)$ with $n_1 \ge n_2 \ge ... \ge n_p$, set

 $\pi' = (n_{k+1}, 1, 1, ..., 1, n_{k+1}, 1, 1, ..., 1, ..., n_{k+1}, 1, 1, ..., 1, n_{k+1}, n_{k+2}, ..., n_p)$

 $\pi' \in K_{\mathcal{U}_k}(|V(G)|)$, which admits a realization in G where the universal vertices are each uniquely included in one big connected subgraph \rightarrow Realization of π in G

Theorem [B., 2014]

$$\mathcal{K}_{\mathcal{U}_k}(n)$$
 is a cubic kernel whenever $k \geq \left\lceil rac{n - \ln(n) - 2}{2}
ight
ceil$

Proof. $\pi \in K_{\mathcal{U}_k}(n) = (x \ge k + 1 \text{ occurrences of } n_1) + (\text{partition of } n - xn_1)$

$$n - xn_1 \leq \ln(n)$$

Theorem [B., 2014]

$$\mathcal{K}_{\mathcal{U}_k}(n)$$
 is a cubic kernel whenever $k \geq \left\lceil rac{n - \ln(n) - 2}{2}
ight
ceil$

Proof. $\pi \in K_{\mathcal{U}_k}(n) = (x \ge k + 1 \text{ occurrences of } n_1) + (\text{partition of } n - xn_1)$

$$n - xn_1 \leq \ln(n)$$

 $n - (k+1)2 \leq \ln(n)$

Theorem [B., 2014]

$$\mathcal{K}_{\mathcal{U}_k}(n)$$
 is a cubic kernel whenever $k \geq \left\lceil rac{n - \ln(n) - 2}{2}
ight
ceil$

Proof. $\pi \in K_{\mathcal{U}_k}(n) = (x \ge k + 1 \text{ occurrences of } n_1) + (\text{partition of } n - xn_1)$

$$n - xn_1 \leq \ln(n)$$

$$n - (k+1)2 \leq \ln(n)$$

$$\dots$$

$$k \geq \left\lceil \frac{n - \ln(n) - 2}{2} \right\rceil$$

+ New polynomial kernels towards the NPness of AP GRAPH + (sometimes) New definition invariants

- + New polynomial kernels towards the NPness of $\rm AP~Graph$
- + (sometimes) New definition invariants
 - Very narrow and particular classes of graphs
 - General polynomial kernel?

- + New polynomial kernels towards the NPness of $\rm AP~Graph$
- + (sometimes) New definition invariants
 - Very narrow and particular classes of graphs
 - General polynomial kernel?
 - ? Consider large value of graph invariants (e.g. density, average degree, etc.)
- ? Other graph classes (e.g. triangulated plane graphs)

- Second problem -

Introducing irregularity in graphs via an edge-colouring

Przybyło Stevens Woźniak Baudon Renault Sopena

Regular graph: all vertices have the same degree

Regular graph: all vertices have the *same* degree Totally irregular graph: all vertices have *distinct* degrees

Regular graph: all vertices have the same degree

Totally irregular graph: all vertices have distinct degrees

G simple graph, at least two vertices: cannot be totally irregular!

Question [Chartrand et al., 1988]

What is the least integer $x \ge 2$ such that G can be turned into a totally irregular *multigraph* by multiplying each of its edges at most x times?

Regular graph: all vertices have the same degree

Totally irregular graph: all vertices have distinct degrees

G simple graph, at least two vertices: cannot be totally irregular!

Question [Chartrand et al., 1988]

What is the least integer $x \ge 2$ such that G can be turned into a totally irregular *multigraph* by multiplying each of its edges at most x times?

Regular graph: all vertices have the same degree

Totally irregular graph: all vertices have distinct degrees

G simple graph, at least two vertices: cannot be totally irregular!

Question [Chartrand et al., 1988]

What is the least integer $x \ge 2$ such that G can be turned into a totally irregular *multigraph* by multiplying each of its edges at most x times?

Regular graph: all vertices have the same degree

Totally irregular graph: all vertices have distinct degrees

G simple graph, at least two vertices: cannot be totally irregular!

Question [Chartrand et al., 1988]

What is the least integer $x \ge 2$ such that G can be turned into a totally irregular *multigraph* by multiplying each of its edges at most x times?

 $x \leq |V(G)|$ [Nierhoff, 2000]

Locally irregular graphs

Another definition of irregularity for simple graphs [Alavi et al., 1987]

Locally irregular graph

G is locally irregular if its adjacent vertices have distinct degrees.

Locally irregular graphs

Another definition of irregularity for simple graphs [Alavi et al., 1987]

Locally irregular graph

G is locally irregular if its adjacent vertices have distinct degrees.

Turning G into a locally irregular multigraph?

 $x \leq 5$ [Kalkowski, Karoński, Pfender, 2010]

• Finding an $\{a, b\}$ -edge-colouring yielding a locally irregular multigraph?

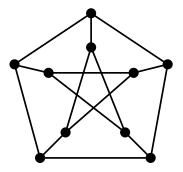
- Finding an $\{a, b\}$ -edge-colouring yielding a locally irregular multigraph?
- Decomposition into locally irregular subgraphs?

- Finding an {a, b}-edge-colouring yielding a locally irregular multigraph?
- Decomposition into locally irregular subgraphs?
- What about oriented graphs?

- Finding an {*a*, *b*}-edge-colouring yielding a locally irregular multigraph?
- Decomposition into locally irregular subgraphs?
- What about oriented graphs?

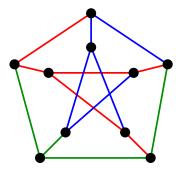
Decomposing G into edge-disjoint locally irregular subgraphs

Locally irregular edge-colouring



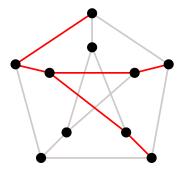
Decomposing G into edge-disjoint locally irregular subgraphs

Locally irregular edge-colouring



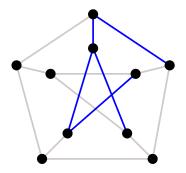
Decomposing G into edge-disjoint locally irregular subgraphs

Locally irregular edge-colouring



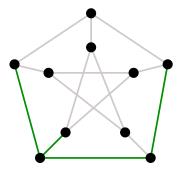
Decomposing G into edge-disjoint locally irregular subgraphs

Locally irregular edge-colouring



Decomposing G into edge-disjoint locally irregular subgraphs

Locally irregular edge-colouring



Main conjecture

Irregular chromatic index

The *irregular chromatic index* of *G*, denoted $\chi'_{irr}(G)$, is

 $\min\{k : G \text{ admits a locally irregular } k \text{-edge-colouring}\}.$

Main conjecture

Irregular chromatic index

The *irregular chromatic index* of *G*, denoted $\chi'_{irr}(G)$, is

 $\min\{k : G \text{ admits a locally irregular } k \text{-edge-colouring}\}.$

 K_2 has no locally irregular edge-colouring!

Exception, Colourable graph

An *exception* is a graph with infinite irregular chromatic index. A *colourable* graph is a graph which is not an exception.

Main conjecture

Irregular chromatic index

The *irregular chromatic index* of *G*, denoted $\chi'_{irr}(G)$, is

 $\min\{k : G \text{ admits a locally irregular } k \text{-edge-colouring}\}.$

 K_2 has no locally irregular edge-colouring!

Exception, Colourable graph

An *exception* is a graph with infinite irregular chromatic index. A *colourable* graph is a graph which is not an exception.

Conjecture [Baudon, B., Przybyło, Woźniak, 2013]

If G is colourable, then $\chi'_{irr}(G) \leq 3$.

Theorem [Baudon, B., Przybyło, Woźniak, 2013]

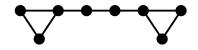
 ${\it G}$ is an exception if and only if ${\it G}$ is an odd length path or cycle, or a member of ${\cal T}.$

Theorem [Baudon, B., Przybyło, Woźniak, 2013]

 ${\it G}$ is an exception if and only if ${\it G}$ is an odd length path or cycle, or a member of ${\cal T}.$

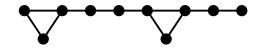
Theorem [Baudon, B., Przybyło, Woźniak, 2013]

 ${\it G}$ is an exception if and only if ${\it G}$ is an odd length path or cycle, or a member of ${\cal T}.$



Theorem [Baudon, B., Przybyło, Woźniak, 2013]

 ${\it G}$ is an exception if and only if ${\it G}$ is an odd length path or cycle, or a member of ${\cal T}.$

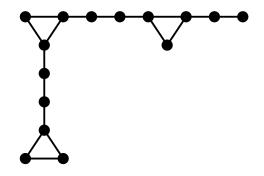


Exception graphs

Theorem [Baudon, B., Przybyło, Woźniak, 2013]

 ${\it G}$ is an exception if and only if ${\it G}$ is an odd length path or cycle, or a member of ${\cal T}.$

Family \mathcal{T} :

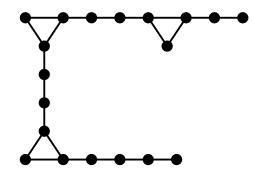


Exception graphs

Theorem [Baudon, B., Przybyło, Woźniak, 2013]

 ${\it G}$ is an exception if and only if ${\it G}$ is an odd length path or cycle, or a member of ${\cal T}.$

Family \mathcal{T} :

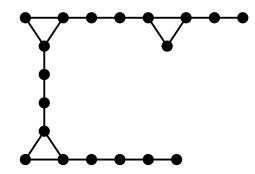


Exception graphs

Theorem [Baudon, B., Przybyło, Woźniak, 2013]

 ${\it G}$ is an exception if and only if ${\it G}$ is an odd length path or cycle, or a member of ${\cal T}.$

Family \mathcal{T} :



Recognition: polynomial time

On the irregular chromatic index of colourable graphs

Smallest locally irregular non-trivial graph: P_3

Corollary [Baudon, B., Przybyło, Woźniak, 2013]

If G is colourable, then

$$\chi'_{irr}(G) \leq \left\lfloor \frac{|E(G)|}{2} \right\rfloor.$$

On the irregular chromatic index of colourable graphs

Smallest locally irregular non-trivial graph: P_3

Corollary [Baudon, B., Przybyło, Woźniak, 2013]

If G is colourable, then

$$\chi'_{irr}(G) \leq \left\lfloor \frac{|E(G)|}{2} \right\rfloor.$$

Summarizing theorem [Baudon, B., Przybyło, Woźniak, 2013]

 $\chi_{\it irr}'({\it G})\leq$ 3 if ${\it G}$ is a

- colourable path or cycle,
- particular colourable bipartite graph (including trees),
- complete graph on at least four vertices,
- Cartesian product of graphs verifying the conjecture,
- *d*-regular graph with $d \ge 10^7$.

On the irregular chromatic index of colourable graphs

Smallest locally irregular non-trivial graph: P₃

Corollary [Baudon, B., Przybyło, Woźniak, 2013]

If G is colourable, then

$$\chi'_{irr}(G) \leq \left\lfloor \frac{|E(G)|}{2} \right\rfloor.$$

Summarizing theorem [Baudon, B., Przybyło, Woźniak, 2013]

 $\chi_{\it irr}'({\it G})\leq$ 3 if ${\it G}$ is a

- colourable path or cycle,
- particular colourable bipartite graph (including trees),
- complete graph on at least four vertices,
- Cartesian product of graphs with $\chi'_{irr} \leq$ 3,
- d-regular graph with d $\geq 10^7.$

Theorem [Baudon, B., Przybyło, Woźniak, 2013]

If G is d-regular with $d \ge 10^7$, then $\chi'_{irr}(G) \le 3$.

Proof (sketch). Two steps

Find $E(G) = E_1 \cup E_2 \cup E_3$ yielding three subgraphs G_1 , G_2 and G_3 such that

- for every $uv \in E(G)$, we have $d_{G_i}(u) \neq d_{G_j}(v)$ for every $i \neq j$
- each vertex u has degree "almost" $d_G(u)/3$ in G_1 , G_2 and G_3

Theorem [Baudon, B., Przybyło, Woźniak, 2013]

If G is d-regular with $d \ge 10^7$, then $\chi'_{irr}(G) \le 3$.

Proof (sketch). Two steps

Find $E(G) = E_1 \cup E_2 \cup E_3$ yielding three subgraphs G_1 , G_2 and G_3 such that

- for every $uv \in E(G)$, we have $d_{G_i}(u) \neq d_{G_j}(v)$ for every $i \neq j$
- each vertex u has degree "almost" $d_G(u)/3$ in G_1 , G_2 and G_3

Existence of a such degree repartition?

Theorem [Baudon, B., Przybyło, Woźniak, 2013]

If G is d-regular with $d \ge 10^7$, then $\chi'_{irr}(G) \le 3$.

Proof (sketch). Two steps

Find $E(G) = E_1 \cup E_2 \cup E_3$ yielding three subgraphs G_1 , G_2 and G_3 such that

- for every $uv \in E(G)$, we have $d_{G_i}(u) \neq d_{G_j}(v)$ for every $i \neq j$
- each vertex u has degree "almost" $d_G(u)/3$ in G_1 , G_2 and G_3

Existence of a such degree repartition? \Rightarrow Lovász Local Lemma!

Theorem [Baudon, B., Przybyło, Woźniak, 2013]

If G is d-regular with $d \ge 10^7$, then $\chi'_{irr}(G) \le 3$.

Proof (sketch). Choosing the edges? Use of the following

Corollary [Addario-Berry et al., 2007]

Given a positive integer $\lambda \leq \frac{\delta(G)}{6}$ and an assignment

 $t: V \rightarrow \{0, 1, ..., \lambda - 1\},$

there exists a spanning subgraph H of G such that $d_H(v) \in \{\frac{d(v)}{3}, \frac{d(v)}{3} + 1, ..., \frac{2d(v)}{3}\}$, and either $d_H(v) \equiv t(v) \pmod{\lambda}$ or $d_H(v) \equiv t(v) + 1 \pmod{\lambda}$ for every vertex v of G.

Theorem [Baudon, B., Sopena, 2014]

Determining the irregular chromatic index of a tree T can be done in time $\mathcal{O}(|V(T)|)$.

Theorem [Baudon, B., Sopena, 2014]

Determining whether $\chi'_{irr}(G) \leq 2$ is NP-complete.

- + Characterization of exceptions
- $+\,$ Verification of our conjecture for several classes of graphs
- $\ + \$ Positive and negative complexity results

- + Characterization of exceptions
- $+\,$ Verification of our conjecture for several classes of graphs
- $\ + \$ Positive and negative complexity results
 - No weaker constant version of our conjecture
 - No clue for bipartite graphs

- + Characterization of exceptions
- $+\,$ Verification of our conjecture for several classes of graphs
- $\ + \$ Positive and negative complexity results
 - No weaker constant version of our conjecture
 - No clue for bipartite graphs
- ? Upper bounds of $\chi'_{\it irr}$ involving other graph parameters
- ? Weaker problems?

What if we allow K_2 in decompositions?

Regular-irregular edge-colouring, Regular-irregular chromatic index

An edge-colouring is *regular-irregular* if every colour class induces a subgraph including regular or locally irregular components. The *regular-irregular chromatic index* of *G*, denoted $\chi'_{reg-irr}(G)$, is

 $\min\{k : G \text{ admits a regular-irregular } k \text{-edge-colouring}\}.$

What if we allow K_2 in decompositions?

Regular-irregular edge-colouring, Regular-irregular chromatic index

An edge-colouring is *regular-irregular* if every colour class induces a subgraph including regular or locally irregular components. The *regular-irregular chromatic index* of *G*, denoted $\chi'_{reg-irr}(G)$, is

 $\min\{k : G \text{ admits a regular-irregular } k \text{-edge-colouring}\}.$

Theorem [B., Stevens, 2014]

If G is bipartite, then $\chi'_{reg-irr}(G) \leq 6$.

Proof (sketch). Decomposition into auxiliary structures

bipartite = forest + Eulerian bipartite

What if we allow K_2 in decompositions?

Regular-irregular edge-colouring, Regular-irregular chromatic index

An edge-colouring is *regular-irregular* if every colour class induces a subgraph including regular or locally irregular components. The *regular-irregular chromatic index* of *G*, denoted $\chi'_{reg-irr}(G)$, is

 $\min\{k : G \text{ admits a regular-irregular } k \text{-edge-colouring}\}.$

Theorem [B., Stevens, 2014]

If G is bipartite, then $\chi'_{reg-irr}(G) \leq 6$.

Proof (sketch). Decomposition into auxiliary structures

What if we allow K_2 in decompositions?

Regular-irregular edge-colouring, Regular-irregular chromatic index

An edge-colouring is *regular-irregular* if every colour class induces a subgraph including regular or locally irregular components. The *regular-irregular chromatic index* of *G*, denoted $\chi'_{reg-irr}(G)$, is

 $\min\{k : G \text{ admits a regular-irregular } k \text{-edge-colouring}\}.$

Theorem [B., Stevens, 2014]

If G is bipartite, then
$$\chi'_{reg-irr}(G) \leq 6$$
.

Proof (sketch). Decomposition into auxiliary structures

Theorem [B., Stevens, 2014]

 $\chi'_{reg-irr}(G) \leq 6\log(\chi(G)).$

Proof (sketch). G decomposes into at most $log(\chi(G))$ bipartite graphs

Theorem [B., Stevens, 2014]

 $\chi'_{reg-irr}(G) \leq 6\log(\chi(G)).$

Proof (sketch). G decomposes into at most $log(\chi(G))$ bipartite graphs

Thank you for your attention