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Foreword

Graph problems considered in this thesis:

Vertex-partition into connected subgraphs with prescribed orders

Introduction of irregularity via an edge-colouring

In both cases: Algorithmic and combinatorial concerns
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- First problem -

Vertex-partitioning graphs into connected subgraphs

Kalinowski Marczyk Piĺsniak Przyby lo Woźniak
Baudon Foucaud Sopena
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A few terminology

G : (undirected simple) graph
π = (n1, n2, ..., np): partition of |V (G )|

Realizable sequence, Realization

π is realizable in G if there is a realization of π in G , i.e. a partition
(V1,V2, ...,Vp) of V (G ) such that G [Vi ] is connected and has order ni
for every i ∈ {1, 2, ..., p}.

(3, 3, 2)
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Our considerations

Is a sequence realizable?

Are all sequences realizable?

What with vertex-membership constraints?

What with a stronger connectivity constraint?
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Graphs in which all sequences are realizable

Notion of “best” partitionable graph [Barth, Baudon, Puech, 2002]

Arbitrarily partitionable (AP) graph

G is arbitrarily partitionable (AP) if all sequences are realizable in G .

Examples: all graphs with an Hamiltonian path

Few structural results

Theorem [Barth, Fournier, 2006]

If T is an AP tree, then ∆(T ) ≤ 4 and every 4-node is adjacent to a leaf.

Theorem [Baudon, Foucaud, Przyby lo, Woźniak, 2014]

Removing at least two vertices from an AP graph may result in infinitely
many components, but their orders follow an exponential growth.
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Hardness of realizing sequences in graphs

Realization

Input: a graph G and a sequence π.
Question: is π realizable in G?

Summarizing theorem

Realization is NP-complete, even when

π = (3, 3, ..., 3) [Dyer, Frieze, 1985],

G is a subdivided star [B., 2014],

G is a split graph [Broesma, Kratsch, Woeginger, 2013],

...
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Hardness of recognizing AP graphs

AP Graph

Input: a graph G .
Question: is G AP?

AP Graph ∈ NP ∪ co-NP?

NP: asymptotically, #partitions of n → exp(n)

co-NP: too many potential realizations

Positive evidences though

Summarizing theorem

AP Graph is in P when restricted to

subdivided stars [Barth, Fournier, 2006],

split graphs [Broesma, Kratsch, Woeginger, 2013].

NP-completeness of Realization for subdivided stars and split graphs! ...
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On polynomial kernels of sequences

Classic idea: reduce the number of sequences to check

(polynomial) Kernel of sequences

A kernel for G is a set K of sequences such that

G is AP if and only if K is “realizable” in G .

K is polynomial if it has size O(|V (G )|O(1)).

Major open question related to AP graphs:

Conjecture [Barth, Fournier, 2006]

Every graph admits a polynomial kernel.
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New positive results on AP Graph

Summarizing theorem [B., 2014]

AP Graph is in

P when G is a complete multipartite graph,

NP when G has at least
⌈
|V (G)|−ln(|V (G)|)−2

2

⌉
universal vertices,

NP when G is a specific compound graph.

Corollary [Horňák, Marczyk, Schiermeyer, Woźniak, 2012]

Every graph G with at least
⌈
|V (G)|−5

2

⌉
universal vertices is AP.
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A kernel for graphs with universal vertices

KUk (n) = {π : the greatest element value of π appears at least k + 1 times}

Theorem [B., 2014]

KUk (|V (G )|) is a kernel for G whenever it has at least k universal vertices.

Proof. Prove that G is AP ⇔ KUk (|V (G )|) is realizable in G

⇒) True (definition)

⇐) KUk (|V (G )|) realizable in G

For every π = (n1, n2, ..., np) 6∈ KUk (|V (G )|) with n1 ≥ n2 ≥ ... ≥ np, set

π′ ∈ KUk (|V (G )|), which admits a realization in G where the universal vertices are
each uniquely included in one big connected subgraph → Realization of π in G �
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On the polynomiality of KUk(n)

Theorem [B., 2014]

KUk (n) is a cubic kernel whenever k ≥
⌈
n−ln(n)−2

2

⌉
.

Proof. π ∈ KUk (n) = (x ≥ k + 1 occurrences of n1) + (partition of n − xn1)

n − xn1 ≤ ln(n)

n − (k + 1)2 ≤ ln(n)
...

k ≥
⌈
n−ln(n)−2

2

⌉
�
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Conclusions and open questions

+ New polynomial kernels towards the NPness of AP Graph

+ (sometimes) New definition invariants

- Very narrow and particular classes of graphs

- General polynomial kernel?

? Consider large value of graph invariants (e.g. density, average degree, etc.)

? Other graph classes (e.g. triangulated plane graphs)
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- Second problem -

Introducing irregularity in graphs via an edge-colouring

Przyby lo Stevens Woźniak
Baudon Renault Sopena
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Regularity VS Irregularity

Regular graph: all vertices have the same degree

Totally irregular graph: all vertices have distinct degrees

G simple graph, at least two vertices: cannot be totally irregular!

Question [Chartrand et al., 1988]

What is the least integer x ≥ 2 such that G can be turned into a totally
irregular multigraph by multiplying each of its edges at most x times?

x ≤ |V (G )| [Nierhoff, 2000]
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Locally irregular graphs

Another definition of irregularity for simple graphs [Alavi et al., 1987]

Locally irregular graph

G is locally irregular if its adjacent vertices have distinct degrees.

Turning G into a locally irregular multigraph?

1-2-3 Conjecture [Karoński,  Luczak, Thomason, 2004]

x ≤ 3.

x ≤ 5 [Kalkowski, Karoński, Pfender, 2010]
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Our considerations

Finding an {a, b}-edge-colouring yielding a locally irregular multigraph?

Decomposition into locally irregular subgraphs?

What about oriented graphs?
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Our approach

Decomposing G into edge-disjoint locally irregular subgraphs

Locally irregular edge-colouring

An edge-colouring is locally irregular if every colour class induces a locally
irregular subgraph.
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Main conjecture

Irregular chromatic index

The irregular chromatic index of G , denoted χ′irr (G ), is

min{k : G admits a locally irregular k-edge-colouring}.

K2 has no locally irregular edge-colouring!

Exception, Colourable graph

An exception is a graph with infinite irregular chromatic index. A
colourable graph is a graph which is not an exception.

Conjecture [Baudon, B., Przyby lo, Woźniak, 2013]

If G is colourable, then χ′irr (G ) ≤ 3.

19 / 27
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Exception graphs

Theorem [Baudon, B., Przyby lo, Woźniak, 2013]

G is an exception if and only if G is an odd length path or cycle, or a
member of T .

Family T :

Recognition: polynomial time
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On the irregular chromatic index of colourable graphs

Smallest locally irregular non-trivial graph: P3

Corollary [Baudon, B., Przyby lo, Woźniak, 2013]

If G is colourable, then

χ′irr (G ) ≤
⌊
|E (G )|

2

⌋
.

Summarizing theorem [Baudon, B., Przyby lo, Woźniak, 2013]

χ′irr (G ) ≤ 3 if G is a
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Irregular chromatic index of regular graphs

Theorem [Baudon, B., Przyby lo, Woźniak, 2013]

If G is d-regular with d ≥ 107, then χ′irr (G ) ≤ 3.

Proof (sketch). Two steps

Find E (G ) = E1 ∪ E2 ∪ E3 yielding three subgraphs G1, G2 and G3 such that
for every uv ∈ E (G ), we have dGi (u) 6= dGj (v) for every i 6= j

each vertex u has degree “almost” dG (u)/3 in G1, G2 and G3

Existence of a such degree repartition? ⇒ Lovász Local Lemma!
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Irregular chromatic index of regular graphs

Theorem [Baudon, B., Przyby lo, Woźniak, 2013]

If G is d-regular with d ≥ 107, then χ′irr (G ) ≤ 3.

Proof (sketch). Choosing the edges? Use of the following �

Corollary [Addario-Berry et al., 2007]

Given a positive integer λ ≤ δ(G)
6 and an assignment

t : V → {0, 1, ..., λ− 1},

there exists a spanning subgraph H of G such that dH(v) ∈ { d(v)3 , d(v)3 +

1, ..., 2d(v)3 }, and either dH(v) ≡ t(v) (mod λ) or dH(v) ≡ t(v) + 1
(mod λ) for every vertex v of G .
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Complexity matters

Theorem [Baudon, B., Sopena, 2014]

Determining the irregular chromatic index of a tree T can be done in time
O(|V (T )|).

Theorem [Baudon, B., Sopena, 2014]

Determining whether χ′irr (G ) ≤ 2 is NP-complete.
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Open questions and perspectives

+ Characterization of exceptions

+ Verification of our conjecture for several classes of graphs

+ Positive and negative complexity results

- No weaker constant version of our conjecture

- No clue for bipartite graphs

? Upper bounds of χ′irr involving other graph parameters

? Weaker problems?
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Recent results

What if we allow K2 in decompositions?

Regular-irregular edge-colouring, Regular-irregular chromatic index

An edge-colouring is regular-irregular if every colour class induces a sub-
graph including regular or locally irregular components. The regular-
irregular chromatic index of G , denoted χ′reg−irr (G ), is

min{k : G admits a regular-irregular k-edge-colouring}.

Theorem [B., Stevens, 2014]

If G is bipartite, then χ′reg−irr (G ) ≤ 6.

Proof (sketch). Decomposition into auxiliary structures

bipartite = forest + Eulerian bipartite
χ′reg−irr (bipartite) ≤ χ′reg−irr (forest) + χ′reg−irr (Eulerian bipartite)
χ′reg−irr (bipartite) ≤ 2 + 4
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Recent results

Theorem [B., Stevens, 2014]

χ′reg−irr (G ) ≤ 6 log(χ(G )).

Proof (sketch). G decomposes into at most log(χ(G )) bipartite graphs �

Thank you for your attention
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