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Augmentation = Bigger matching.
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Berge and Edmonds’ results

Maximum matching = Biggest matching.
1(G) = Cardinality of a maximum matching of G.

Theorem [Berge, 1957]

Maximum matching < No augmenting path.

Finding augmenting paths?

Theorem [Edmonds’ Blossom Algorithm, 1965]

Detection in polynomial time.

Hence, 1(G) can be determined in poly-time.



Today's motivation (let's pretend ©)

Plane — Suitable landing slot times/tracks (edges) + Scheduled one (matching).

G (@nw)
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General question

For odd k > 1, attain a largest matching via (< k)-augmentations?

p<k(G, M): Its cardinality for G equipped with M.
Note: 11<1(G,0) = u(G).



Note: order matters ®

k = 5. First attempt.
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First dichotomy

(< k)-MATCHING PROBLEM - (< k)-MP
Input: A graph G, and a matching M of G.
Question: What is the value of p<x(G, M)?
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First dichotomy

(< k)-MATCHING PROBLEM - (< k)-MP

Input: A graph G, and a matching M of G.

Question: What is the value of p<x(G, M)?

Reminder: (< 00)-MP is in P, by Berge and Edmonds’ results.

For fixed k's, a dichotomy:

Theorem [Nisse, Salch, Weber, 2015+]

(£ k)-MP is
@ in P for k=1,3;
@ NP-hard for every odd k > 5.

Latter statement true for planar bipartite graphs with A < 3 and arb. large girth.
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Towards a second dichotomy

Summary:
@ For k =1, 3, the problem is settled.
o For odd k > 5, NP-hard for graphs close to trees.
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Towards a second dichotomy

Summary:
@ For k =1, 3, the problem is settled.
o For odd k > 5, NP-hard for graphs close to trees.

Complexity of (< k)-MP for trees?

Today’s talk:
o (< k)-MP is in P for caterpillars, subdivided stars, “sparse trees”, etc.

@ A modified version is NP-complete for trees.
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Positive results
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Intuition (= spoilers)

One key idea: Prove that 3 a particular way to reach a max. matching.

Upcoming ideas:

@ In paths, augmenting path overlaps can be avoided.

15/33



Intuition (= spoilers)

One key idea: Prove that 3 a particular way to reach a max. matching.
Upcoming ideas:

@ In paths, augmenting path overlaps can be avoided.
= Go from “left to right” and “match” consecutive exposed vertices.

15/33



Intuition (= spoilers)

One key idea: Prove that 3 a particular way to reach a max. matching.

Upcoming ideas:

@ In paths, augmenting path overlaps can be avoided.
= Go from “left to right” and “match” consecutive exposed vertices.

@ Can it be done in caterpillars?

15/33



Intuition (= spoilers)

One key idea: Prove that 3 a particular way to reach a max. matching.

Upcoming ideas:

@ In paths, augmenting path overlaps can be avoided.
= Go from “left to right” and “match” consecutive exposed vertices.

@ Can it be done in caterpillars?

@ In subdivided stars?

15/33



Intuition (= spoilers)

One key idea: Prove that 3 a particular way to reach a max. matching.

Upcoming ideas:

@ In paths, augmenting path overlaps can be avoided.
= Go from “left to right” and “match” consecutive exposed vertices.

@ Can it be done in caterpillars?

@ In subdivided stars?
=- Augmentations along branches < Path case.
= Can root-augmentations be avoided?

15/33



Intuition (= spoilers)

One key idea: Prove that 3 a particular way to reach a max. matching.

Upcoming ideas:

@ In paths, augmenting path overlaps can be avoided.
= Go from “left to right” and “match” consecutive exposed vertices.

@ Can it be done in caterpillars?

@ In subdivided stars?
= Augmentations along branches < Path case.
= Can root-augmentations be avoided?

@ Trees where the b-vertices are sufficiently far apart?

15/33



Easy case: paths

Theorem [Nisse, Salch, Weber, 2015+]

(< k)-MP is in P for paths.

1st key idea: Consider exposed vertices joined only once by an augmenting path.
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Easy case: paths

Theorem [Nisse, Salch, Weber, 2015+]

(< k)-MP is in P for paths.

1st key idea: Consider exposed vertices joined only once by an augmenting path.

A
\Y%
==

R 4

= Decompose the problem into two sub-problems.

In a path = Assume exposed vertices have one on the left/right at distance < k.
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Easy case: paths

Theorem [Nisse, Salch, Weber, 2015+]

(< k)-MP is in P for paths.

2nd key idea: We can augment paths joining “consecutive” exposed vertices only.

Vi Vo V3 V4 V5 Ve
Oemeccana= Oemeccana= Ommmecana= Oemeccana= Oemeccan= o
—1—> —2—>
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| —1—> —2—> .
) 3 L4

Vi Vo V3 vy Vs Ve
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Easy case: paths

Theorem [Nisse, Salch, Weber, 2015+]

(< k)-MP is in P for paths.

2nd key idea: We can augment paths joining “consecutive” exposed vertices only.

Vi Vo V3 V4 V5 Ve
Oemeccana= Oemeccana= Ommmecana= Oemeccana= Oemeccan= o
| —1—> —2—> .
) 3 L4

Vi Vo V3 vy Vs Ve
Ommmmmm=- Ommmmmm=- Ommmmmmn= Ommmmmm=- Ommmmmmm= o
—1—> —2—> —3—>

yields the same matching.

= In a path, just go from left to right, and augment paths when possible. |
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Caterpillars

Theorem [B., Garnero, Nisse, 2017+]

(< k)-MP is in P for caterpillars.

Remark: Matched leaf edge = Simplification.
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Caterpillars

Theorem [B., Garnero, Nisse, 2017+]

(< k)-MP is in P for caterpillars.

Remark: Matched leaf edge = Simplification.

..... [V

= Being adjacent to two leaves is useless.

Focus on caterpillars with A = 3 (~ paths).
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Caterpillars

Theorem [B., Garnero, Nisse, 2017+]

(< k)-MP is in P for caterpillars.

Again, augmenting paths can be “disentangled”:

Ommmmmsmec@eecmmmcmeeeee@emm===== o
and

[[—1—) 2 —>

------- Omms=mmsmmmmea=Om=======0

= Just as for paths, go from left to right (for a specific ordering), and match. W
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Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(< k)-MP is in P for subdivided stars.

Enhancement: Cope with root-augmentations.

20/33



Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(< k)-MP is in P for subdivided stars.

Enhancement: Cope with root-augmentations.

Key fact: "Looping” root-augmentations can be avoided:




Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(< k)-MP is in P for subdivided stars.

Enhancement: Cope with root-augmentations.

Key fact: "Looping” root-augmentations can be avoided:

equivalent to




Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(< k)-MP is in P for subdivided stars.

Enhancement: Cope with root-augmentations.

Key fact: "Looping” root-augmentations can be avoided:

a Ie)
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(because 1, 2, 3 and 4 are augmenting (< k)-paths.)
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(< k)-MP is in P for subdivided stars.

So why performing root-augmentations?

From the p.o.v. of an inner-branch, an equivalent augmentation can be performed
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.. and it retains the parity of the number of exposed vertices along that branch.
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Theorem [B., Garnero, Nisse, 2017+]

(< k)-MP is in P for subdivided stars.

So why performing root-augmentations?

From the p.o.v. of an inner-branch, an equivalent augmentation can be performed

;'IZlT'—> """""" o
2 - Q4
. V1
& &¥

.. and it retains the parity of the number of exposed vertices along that branch.

= Root-augmentation — Alters the parity of the two end-branches only.

21/33



Subdivided stars
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(< k)-MP is in P for subdivided stars.

Remind that for a branch with « exp. vertices, |« /2] augmentations.
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Theorem [B., Garnero, Nisse, 2017+]

(< k)-MP is in P for subdivided stars.

Remind that for a branch with « exp. vertices, |« /2] augmentations.
= No point starting/ending with an even branch.
So, we can reach a maximum matching by essentially:

@ Performing root-augmentations to match vertices from =% odd branches;
@ Then finishing off along the branches.

To check if 1. doable, run a BFS in an auxiliary “reachability digraph”:
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So, we can reach a maximum matching by essentially:

@ Performing root-augmentations to match vertices from =% odd branches;
@ Then finishing off along the branches.

To check if 1. doable, run a BFS in an auxiliary “reachability digraph”:
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Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(< k)-MP is in P for subdivided stars.

To summarize:
@ If necessary, do an augmentation involving the root.
@ If possible, join two odd branches via root-augmentations.
© Finally, match the remaining exposed vertices along the branches.

= Polynomial-time algorithm. |
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Going to sparse trees

k-sparse tree: Vertices with degree > 3 are at distance > k.

mmmE S mmm--

o----é----o
o----?----o
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(< k)-MP for k-sparse trees

Theorem [B., Garnero, Nisse, 2017+]

(< k)-MP is in P for k-sparse trees.

Idea: Consider subdivided stars, and build a solution from bottom to top. ]

Jreenneeve
.------.?.------..
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Negative results
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For (< k)-MP in trees, sounds hard because of the “< k" requirement ®.

27 /33



Original intention

NP-hardness proof: Need some forcing mechanisms.
For (< k)-MP in trees, sounds hard because of the “< k" requirement ®.

= What if we augment k-paths only?

27 /33



Original intention

NP-hardness proof: Need some forcing mechanisms.
For (< k)-MP in trees, sounds hard because of the “< k" requirement ®.

= What if we augment k-paths only?

(= k)-MATCHING PROBLEM — (= k)-MP
Input: A graph G, and a matching M of G.
Question: What is the value of u_x(G, M)?

27 /33



Original intention

NP-hardness proof: Need some forcing mechanisms.
For (< k)-MP in trees, sounds hard because of the “< k" requirement ®.

= What if we augment k-paths only?

(= k)-MATCHING PROBLEM — (= k)-MP
Input: A graph G, and a matching M of G.
Question: What is the value of u_x(G, M)?

Good news: Some properties of (< k)-MP derive to (= k)-MP:
@ NP-hardness for odd k > 5;

@ all polynomial-time algorithms for classes of trees.
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(= k)-MP in trees for non-fixed k

Modified version:

(=)-MATCHING PROBLEM - (=)-MP
Input: A graph G, a matching M of G, and an odd k > 1.
Question: What is the value of u_x(G, M)?
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(= k)-MP in trees for non-fixed k

Modified version:

(=)-MATCHING PROBLEM - (=)-MP
Input: A graph G, a matching M of G, and an odd k > 1.
Question: What is the value of u_x(G, M)?

Negative result for trees:

Theorem [B., Garnero, Nisse, 2017+]

(=)-MP is NP-hard for trees.

Proof (sketch): Reduction from 3-SAT.
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(=)-MP in trees

G(x1) G(x2) G(G) G(G)
forth  back forth back forth  back forth back
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A 4 A 4 A 4 A 4
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(=)-MP in trees

Theorem [B., Garnero, Nisse, 2017+]

(=)-MP is NP-hard for trees.

Lengths of the dashed paths chosen so that:
o for each x;, open either the true or false gate;

o for each C;, reach only the arrival points.
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(=)-MP in trees

Theorem [B., Garnero, Nisse, 2017+]

(=)-MP is NP-hard for trees.

Lengths of the dashed paths chosen so that:
o for each x;, open either the true or false gate;
o for each C;, reach only the arrival points.
= Needed k depends on #clauses and #variables. |
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After a few months suffering ©® ...
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Conclusion
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Conclusion and perspectives

Status of (< k)-MP still unclear for trees.
What about:

o trees with A <37
e subdivided combs?
e etc.

@ Dynamic programming yields algorithms.

What about (= k)-MP in trees?
Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!
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