Augmenting matchings in trees, via bounded-length augmentations

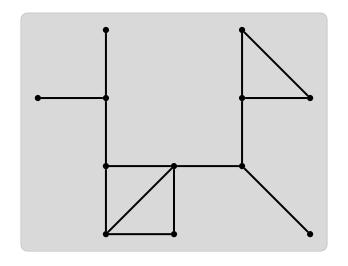
Julien Bensmail, Valentin Garnero, Nicolas Nisse

Université Nice-Sophia-Antipolis, France

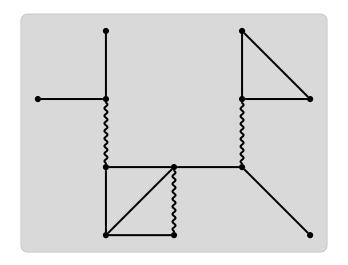
Qinghai Normal University, Xining, China April 25, 2018

Introduction

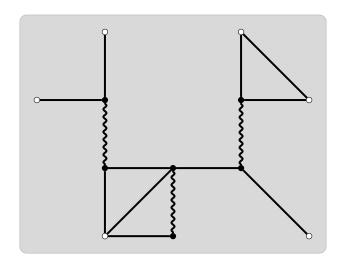
Graph

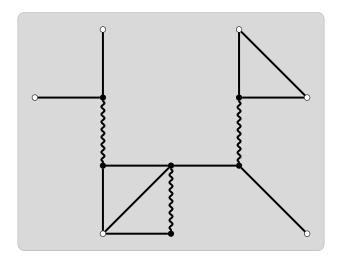


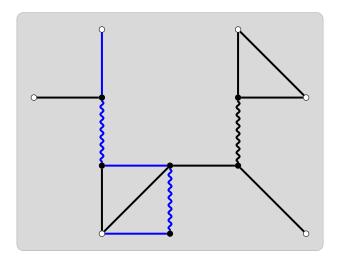
Graph, Matching.

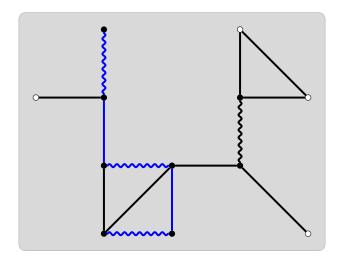


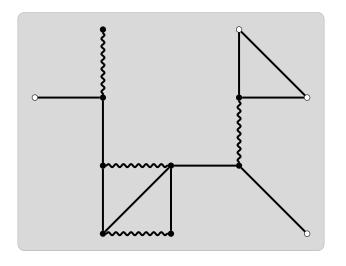
Graph, Matching. Exposed vertex, Covered vertex.

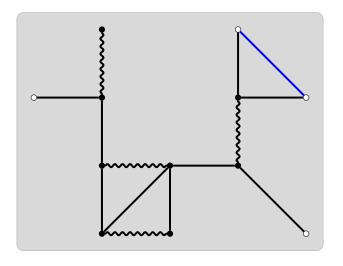


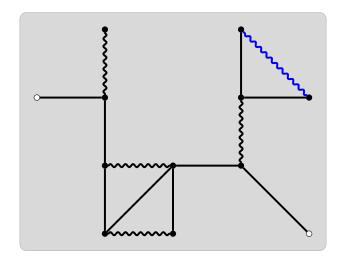


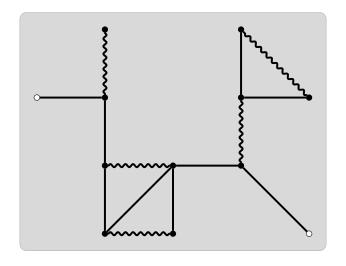




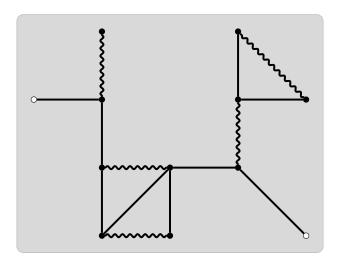








Augmenting path, Augmentation.



 $\mathsf{Augmentation} \Rightarrow \mathsf{Bigger} \ \mathsf{matching}.$

Berge and Edmonds' results

Maximum matching = Biggest matching. $\mu(G)$ = Cardinality of a maximum matching of G.

Berge and Edmonds' results

Maximum matching = Biggest matching. $\mu(G) = \text{Cardinality of a maximum matching of } G$.

Theorem [Berge, 1957]

 ${\sf Maximum\ matching} \Leftrightarrow {\sf No\ augmenting\ path}.$

Berge and Edmonds' results

Maximum matching = Biggest matching. $\mu(G) = \text{Cardinality of a maximum matching of } G$.

Theorem [Berge, 1957]

 ${\sf Maximum\ matching} \Leftrightarrow {\sf No\ augmenting\ path}.$

Finding augmenting paths?

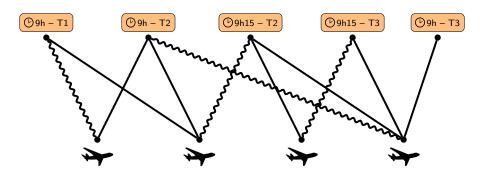
Theorem [Edmonds' Blossom Algorithm, 1965]

Detection in polynomial time.

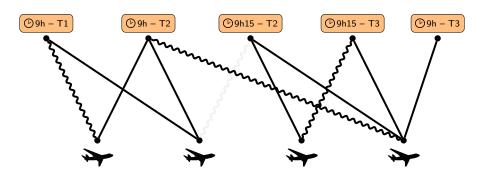
Hence, $\mu(G)$ can be determined in poly-time.

Today's motivation (let's pretend ©)

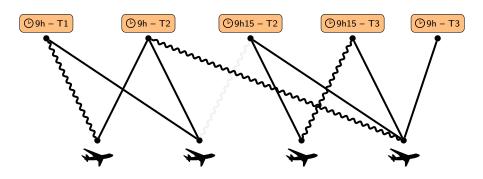
 $Plane \rightarrow Suitable \ landing \ slot \ times/tracks \ (edges) + Scheduled \ one \ (matching).$



Issue: For some reason, 2nd plane cannot land on Track 2 at 9h15 any more...

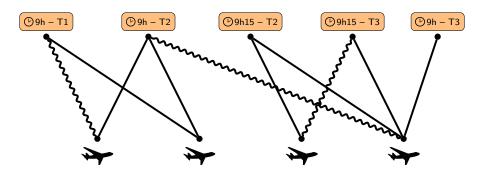


Issue: For some reason, 2nd plane cannot land on Track 2 at 9h15 any more...

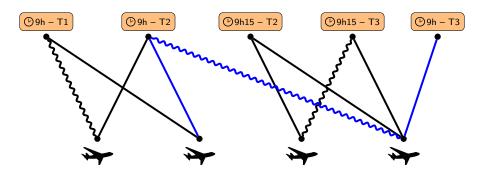


What should we do??

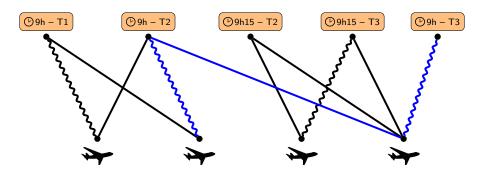
Re-scheduling a lot is not acceptable! ⇒ Cannot start over from scratch.



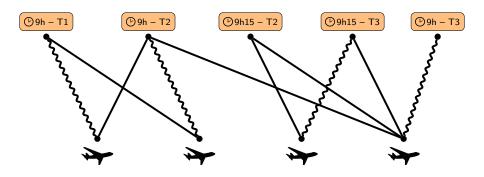
Re-scheduling a lot is not acceptable! ⇒ Cannot start over from scratch.



Re-scheduling a lot is not acceptable! ⇒ Cannot start over from scratch.



Re-scheduling a lot is not acceptable! ⇒ Cannot start over from scratch.



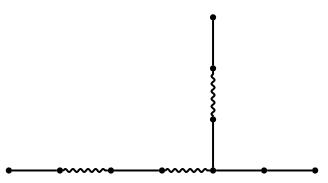
General question

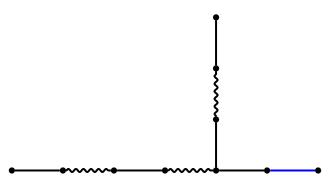
Question

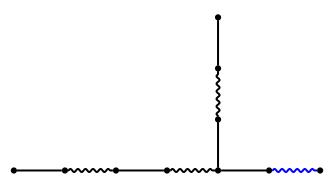
For odd $k \ge 1$, attain a largest matching via $(\le k)$ -augmentations?

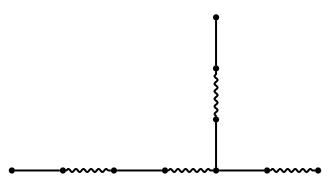
 $\mu_{\leq k}(G, M)$: Its cardinality for G equipped with M.

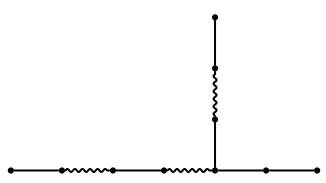
Note: $\mu \leq 1(G, \emptyset) = \mu(G)$.

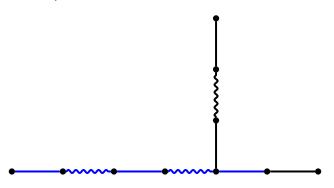


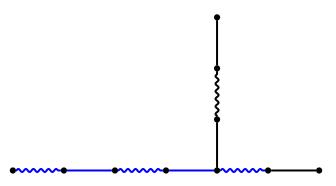


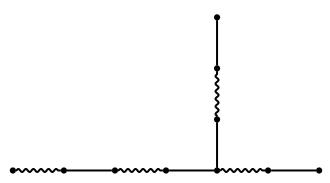


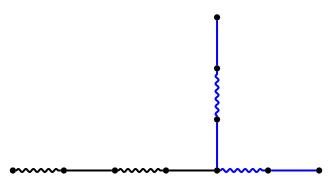


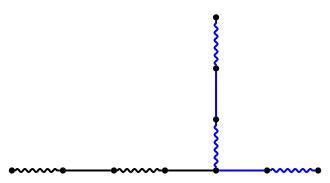


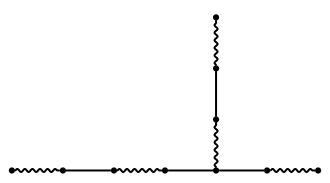












First dichotomy

 $(\leq k)$ -MATCHING PROBLEM – $(\leq k)$ -MP **Input:** A graph G, and a matching M of G. **Question:** What is the value of $\mu_{\leq k}(G, M)$?

First dichotomy

```
(\leq k)-MATCHING PROBLEM – (\leq k)-MP Input: A graph G, and a matching M of G. Question: What is the value of \mu_{\leq k}(G, M)?
```

Reminder: $(\leq \infty)$ -MP is in P, by Berge and Edmonds' results.

First dichotomy

```
(\le k)-MATCHING PROBLEM – (\le k)-MP Input: A graph G, and a matching M of G. Question: What is the value of \mu_{\le k}(G, M)?
```

Reminder: $(\leq \infty)$ -MP is in P, by Berge and Edmonds' results.

For fixed k's, a dichotomy:

Theorem [Nisse, Salch, Weber, 2015+]

$$(\leq k)$$
-MP is

- in P for k = 1, 3;
- NP-hard for every odd $k \ge 5$.

Latter statement true for planar bipartite graphs with $\Delta \leq 3$ and arb. large girth.

Summary:

- For k = 1, 3, the problem is settled.
- For odd $k \ge 5$, NP-hard for graphs close to trees.

Summary:

- For k = 1, 3, the problem is settled.
- For odd $k \ge 5$, NP-hard for graphs close to trees.

Complexity of $(\leq k)$ -MP for trees?

Summary:

- For k = 1, 3, the problem is settled.
- For odd $k \ge 5$, NP-hard for graphs close to trees.

Complexity of $(\leq k)$ -MP for trees?

Today's talk:

• $(\leq k)$ -MP is in P for caterpillars, subdivided stars, "sparse trees", etc.

Summary:

- For k = 1, 3, the problem is settled.
- For odd $k \ge 5$, NP-hard for graphs close to trees.

Complexity of $(\leq k)$ -MP for trees?

Today's talk:

- $(\leq k)$ -MP is in P for caterpillars, subdivided stars, "sparse trees", etc.
- A modified version is NP-complete for trees.

Positive results

One key idea: Prove that \exists a particular way to reach a max. matching.

Upcoming ideas:

• In paths, augmenting path overlaps can be avoided.

One key idea: Prove that \exists a particular way to reach a max. matching.

- In paths, augmenting path overlaps can be avoided.
 - ⇒ Go from "left to right" and "match" consecutive exposed vertices.

One key idea: Prove that \exists a particular way to reach a max. matching.

- In paths, augmenting path overlaps can be avoided.
 - \Rightarrow Go from "left to right" and "match" consecutive exposed vertices.
- Can it be done in caterpillars?

One key idea: Prove that \exists a particular way to reach a max. matching.

- In paths, augmenting path overlaps can be avoided.
 - \Rightarrow Go from "left to right" and "match" consecutive exposed vertices.
- Can it be done in caterpillars?
- In subdivided stars?

One key idea: Prove that \exists a particular way to reach a max. matching.

- In paths, augmenting path overlaps can be avoided.
 - \Rightarrow Go from "left to right" and "match" consecutive exposed vertices.
- Can it be done in caterpillars?
- In subdivided stars?
 - \Rightarrow Augmentations along branches \Leftrightarrow Path case.
 - ⇒ Can root-augmentations be avoided?

One key idea: Prove that \exists a particular way to reach a max. matching.

- In paths, augmenting path overlaps can be avoided.
 - \Rightarrow Go from "left to right" and "match" consecutive exposed vertices.
- Can it be done in caterpillars?
- In subdivided stars?
 - \Rightarrow Augmentations along branches \Leftrightarrow Path case.
 - ⇒ Can root-augmentations be avoided?
- Trees where the *b*-vertices are sufficiently far apart?

Theorem [Nisse, Salch, Weber, 2015+]

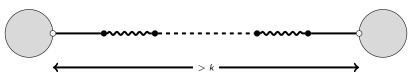
 $(\leq k)$ -MP is in P for paths.

 ${\bf 1st} \ \ {\bf key} \ \ {\bf idea:} \ \ {\bf Consider} \ \ {\bf exposed} \ \ {\bf vertices} \ \ {\bf joined} \ \ {\bf only} \ \ {\bf once} \ \ {\bf by} \ \ {\bf an} \ \ {\bf augmenting} \ \ {\bf path}.$

Theorem [Nisse, Salch, Weber, 2015+]

 $(\leq k)$ -MP is in P for paths.

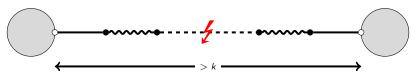
1st key idea: Consider exposed vertices joined **only once** by an augmenting path.



Theorem [Nisse, Salch, Weber, 2015+]

 $(\leq k)$ -MP is in P for paths.

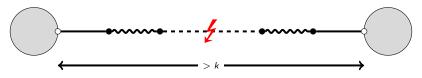
1st key idea: Consider exposed vertices joined **only once** by an augmenting path.



Theorem [Nisse, Salch, Weber, 2015+]

 $(\leq k)$ -MP is in P for paths.

1st key idea: Consider exposed vertices joined **only once** by an augmenting path.



 \Rightarrow Decompose the problem into two sub-problems.

In a path \Rightarrow Assume exposed vertices have one on the left/right at distance $\leq k$.

Theorem [Nisse, Salch, Weber, 2015+]

 $(\leq k)$ -MP is in P for paths.

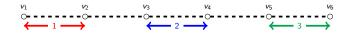
2nd key idea: We can augment paths joining "consecutive" exposed vertices only.

Theorem [Nisse, Salch, Weber, 2015+]

 $(\leq k)$ -MP is in P for paths.

2nd key idea: We can augment paths joining "consecutive" exposed vertices only.

 $3 \Rightarrow$ The paths $v_1...v_2$, $v_3...v_4$ and $v_5...v_6$ have length $\leq k$ and alternate. So



yields the same matching.

Theorem [Nisse, Salch, Weber, 2015+]

 $(\leq k)$ -MP is in P for paths.

2nd key idea: We can augment paths joining "consecutive" exposed vertices only.

 $3 \Rightarrow$ The paths $v_1...v_2$, $v_3...v_4$ and $v_5...v_6$ have length $\leq k$ and alternate. So

yields the same matching.

 \Rightarrow In a path, just go from left to right, and augment paths when possible.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

Remark: Matched leaf edge \Rightarrow Simplification.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

Remark: Matched leaf edge \Rightarrow Simplification.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

Remark: Matched leaf edge ⇒ Simplification.

 \Rightarrow Being adjacent to two leaves is useless.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

Remark: Matched leaf edge ⇒ Simplification.

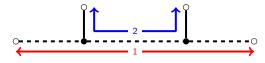
⇒ Being adjacent to two leaves is useless.

Focus on caterpillars with $\Delta=3$ (\sim paths).

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

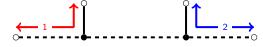
Again, augmenting paths can be "disentangled":



Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

Again, augmenting paths can be "disentangled":

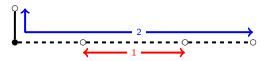


Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

Again, augmenting paths can be "disentangled":

and



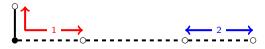
Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

Again, augmenting paths can be "disentangled":



and



Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

Again, augmenting paths can be "disentangled":

and

⇒ Just as for paths, go from left to right (for a specific ordering), and match.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

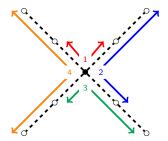
Enhancement: Cope with root-augmentations.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

Enhancement: Cope with root-augmentations.

Key fact: "Looping" root-augmentations can be avoided:

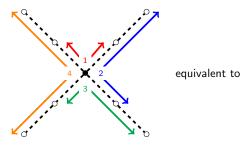


Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

Enhancement: Cope with root-augmentations.

Key fact: "Looping" root-augmentations can be avoided:

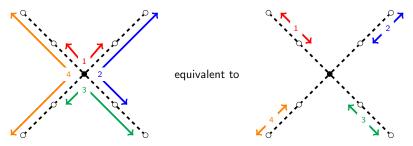


Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

Enhancement: Cope with root-augmentations.

Key fact: "Looping" root-augmentations can be avoided:



(because 1, 2, 3 and 4 are augmenting ($\leq k$)-paths.)

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

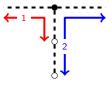
So why performing root-augmentations?

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

So why performing root-augmentations?

From the p.o.v. of an inner-branch, an equivalent augmentation can be performed

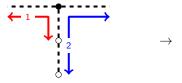


Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

So why performing root-augmentations?

From the p.o.v. of an inner-branch, an equivalent augmentation can be performed



Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

So why performing root-augmentations?

From the p.o.v. of an inner-branch, an equivalent augmentation can be performed

... and it retains the **parity** of the number of exposed vertices along that branch.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

So why performing root-augmentations?

From the p.o.v. of an inner-branch, an equivalent augmentation can be performed

- ... and it retains the **parity** of the number of exposed vertices along that branch.
- \Rightarrow Root-augmentation \rightarrow Alters the parity of the two end-branches only.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

Remind that for a branch with α exp. vertices, $\lfloor \alpha/2 \rfloor$ augmentations.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

Remind that for a branch with α exp. vertices, $\lfloor \alpha/2 \rfloor$ augmentations.

 \Rightarrow No point starting/ending with an even branch.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

Remind that for a branch with α exp. vertices, $|\alpha/2|$ augmentations.

 \Rightarrow No point starting/ending with an even branch.

So, we can reach a maximum matching by essentially:

1 Performing root-augmentations to match vertices from \neq **odd** branches;

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

Remind that for a branch with α exp. vertices, $|\alpha/2|$ augmentations.

 \Rightarrow No point starting/ending with an even branch.

So, we can reach a maximum matching by essentially:

- **1** Performing root-augmentations to match vertices from \neq **odd** branches;
- Then finishing off along the branches.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

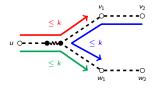
Remind that for a branch with α exp. vertices, $\lfloor \alpha/2 \rfloor$ augmentations.

⇒ No point starting/ending with an even branch.

So, we can reach a maximum matching by essentially:

- Performing root-augmentations to match vertices from \neq **odd** branches;
- Then finishing off along the branches.

To check if 1. doable, run a BFS in an auxiliary "reachability digraph":



Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

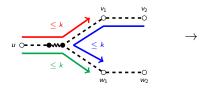
Remind that for a branch with α exp. vertices, $|\alpha/2|$ augmentations.

⇒ No point starting/ending with an even branch.

So, we can reach a maximum matching by essentially:

- Performing root-augmentations to match vertices from \neq **odd** branches;
- Then finishing off along the branches.

To check if 1. doable, run a BFS in an auxiliary "reachability digraph":



Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

Remind that for a branch with α exp. vertices, $|\alpha/2|$ augmentations.

⇒ No point starting/ending with an even branch.

So, we can reach a maximum matching by essentially:

- **1** Performing root-augmentations to match vertices from \neq **odd** branches;
- Then finishing off along the branches.

To check if 1. doable, run a BFS in an auxiliary "reachability digraph":



Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

To summarize:

• If necessary, do an augmentation involving the root.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

To summarize:

- If necessary, do an augmentation involving the root.
- If possible, join two odd branches via root-augmentations.

Theorem [B., Garnero, Nisse, 2017+]

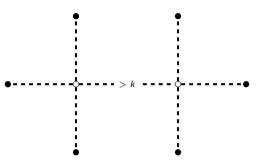
 $(\leq k)$ -MP is in P for subdivided stars.

To summarize:

- 1 If necessary, do an augmentation involving the root.
- ② If possible, join two odd branches via root-augmentations.
- Finally, match the remaining exposed vertices along the branches.
- \Rightarrow Polynomial-time algorithm.

Going to sparse trees

k-sparse tree: Vertices with degree ≥ 3 are at distance > k.

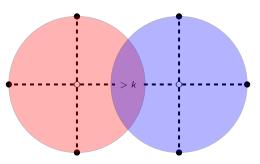


$(\leq k)$ -MP for k-sparse trees

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for k-sparse trees.

Idea: Consider subdivided stars, and build a solution from bottom to top.



Negative results

NP-hardness proof: Need some forcing mechanisms.

For $(\leq k)$ -MP in trees, sounds hard because of the " $\leq k$ " requirement \odot .

NP-hardness proof: Need some forcing mechanisms.

For $(\leq k)$ -MP in trees, sounds hard because of the " $\leq k$ " requirement \odot .

 \Rightarrow What if we augment k-paths only?

NP-hardness proof: Need some forcing mechanisms.

For $(\leq k)$ -MP in trees, sounds hard because of the " $\leq k$ " requirement \odot .

 \Rightarrow What if we augment k-paths only?

(= k)-MATCHING PROBLEM – (= k)-MP **Input:** A graph G, and a matching M of G. **Question:** What is the value of $\mu_{=k}(G, M)$?

NP-hardness proof: Need some forcing mechanisms.

For $(\leq k)$ -MP in trees, sounds hard because of the " $\leq k$ " requirement \odot .

 \Rightarrow What if we augment k-paths only?

(=k)-MATCHING PROBLEM – (=k)-MP

Input: A graph G, and a matching M of G.

Question: What is the value of $\mu_{=k}(G, M)$?

Good news: Some properties of $(\leq k)$ -MP derive to (= k)-MP:

- NP-hardness for odd $k \ge 5$;
- all polynomial-time algorithms for classes of trees.

(= k)-MP in trees for non-fixed k

Modified version:

```
(=)-MATCHING PROBLEM - (=)-MP
```

Input: A graph G, a matching M of G, and an odd $k \geq 1$.

Question: What is the value of $\mu_{=k}(G, M)$?

(= k)-MP in trees for non-fixed k

Modified version:

(=)-MATCHING PROBLEM - (=)-MP

Input: A graph G, a matching M of G, and an odd $k \ge 1$.

Question: What is the value of $\mu_{=k}(G, M)$?

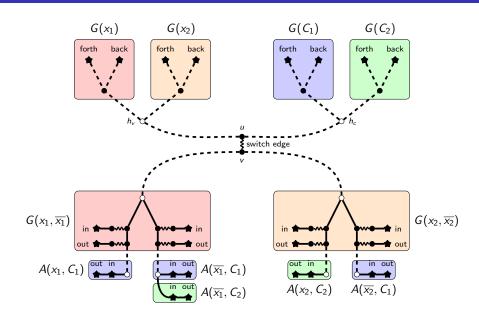
Negative result for trees:

Theorem [B., Garnero, Nisse, 2017+]

(=)-MP is NP-hard for trees.

Proof (sketch): Reduction from 3-SAT.

(=)-MP in trees



(=)-MP in trees

Theorem [B., Garnero, Nisse, 2017+]

(=)-MP is NP-hard for trees.

Lengths of the dashed paths chosen so that:

- for each x_i , open either the *true* or *false* gate;
- for each C_i , reach only the arrival points.

(=)-MP in trees

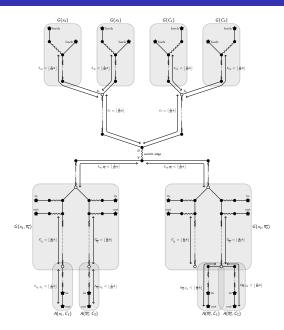
Theorem [B., Garnero, Nisse, 2017+]

(=)-MP is NP-hard for trees.

Lengths of the dashed paths chosen so that:

- for each x_i , open either the *true* or *false* gate;
- for each C_i , reach only the arrival points.
- \Rightarrow Needed k depends on #clauses and #variables.

After a few months suffering ©© ...



Conclusion

• Status of $(\leq k)$ -MP still unclear for trees.

- Status of $(\leq k)$ -MP still unclear for trees.
- What about:
 - trees with $\Delta \leq 3$?

- Status of $(\leq k)$ -MP still unclear for trees.
- What about:
 - trees with $\Delta < 3$?
 - subdivided combs?

- Status of $(\leq k)$ -MP still unclear for trees.
- What about:
 - trees with $\Delta \leq 3$?
 - subdivided combs?
 - etc.

- Status of $(\leq k)$ -MP still unclear for trees.
- What about:
 - trees with $\Delta < 3$?
 - subdivided combs?
 - etc.
- Dynamic programming yields algorithms.

- Status of $(\leq k)$ -MP still unclear for trees.
- What about:
 - trees with $\Delta < 3$?
 - subdivided combs?
 - etc.
- Dynamic programming yields algorithms.
- What about (= k)-MP in trees?
- Appealing case: k = 3.

- Status of $(\leq k)$ -MP still unclear for trees.
- What about:
 - trees with $\Delta < 3$?
 - subdivided combs?
 - etc.
- Dynamic programming yields algorithms.
- What about (= k)-MP in trees?
- Appealing case: k = 3.
- Other classes of graphs?
- e.g. interval graphs, other sparse classes, etc.

- Status of $(\leq k)$ -MP still unclear for trees.
- What about:
 - trees with $\Delta < 3$?
 - subdivided combs?
 - etc.
- Dynamic programming yields algorithms.
- What about (= k)-MP in trees?
- Appealing case: k = 3.
- Other classes of graphs?
- e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!