Augmenting matchings in trees, via bounded-length augmentations

Julien Bensmail, Valentin Garnero, Nicolas Nisse

Université Nice-Sophia-Antipolis, France

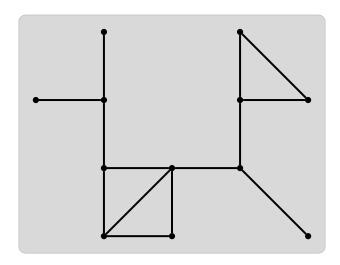
STINT Meeting July 5th, 2017

## Introduction



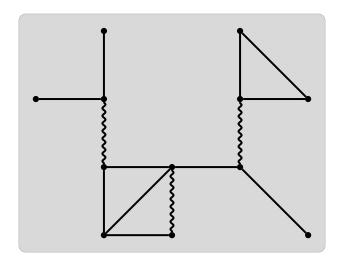
# Cast

Graph



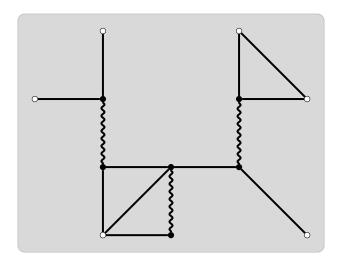


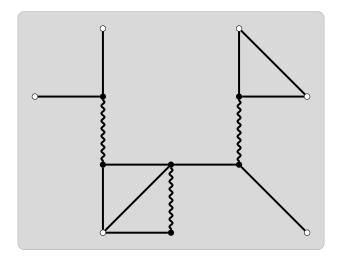
Graph, Matching.

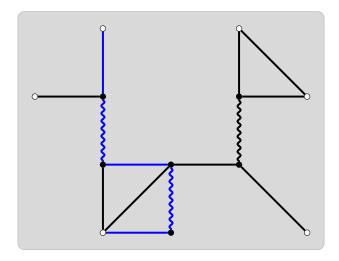


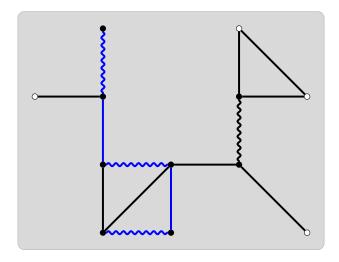
#### Cast

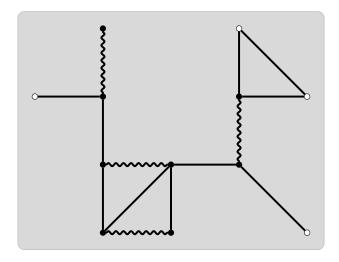
Graph, Matching. Exposed vertex, Covered vertex.

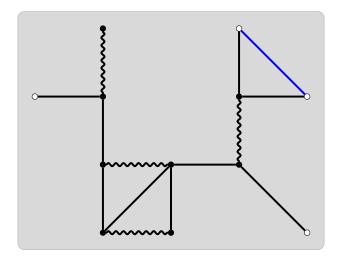


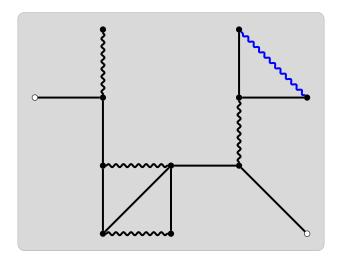


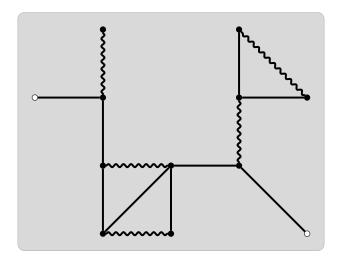




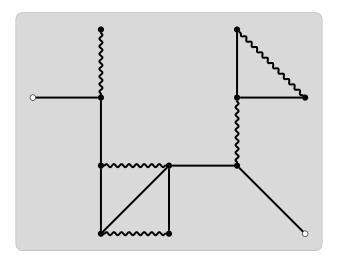








Augmenting path, Augmentation.



Augmentation  $\Rightarrow$  Bigger matching.

#### Berge and Edmonds' results

**Maximum matching** = Biggest matching.  $\mu(G)$  = Cardinality of a maximum matching of *G*.

#### Berge and Edmonds' results

**Maximum matching** = Biggest matching.  $\mu(G)$  = Cardinality of a maximum matching of *G*.

#### Theorem [Berge, 1957]

Maximum matching  $\Leftrightarrow$  No augmenting path.

**Maximum matching** = Biggest matching.  $\mu(G)$  = Cardinality of a maximum matching of *G*.

#### Theorem [Berge, 1957]

 $\mathsf{Maximum\ matching\ }\Leftrightarrow\mathsf{No\ augmenting\ path}.$ 

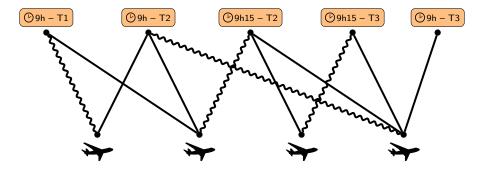
Finding augmenting paths?

Theorem [Edmonds' Blossom Algorithm, 1965]

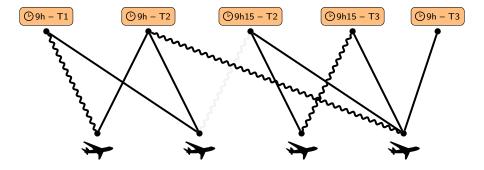
Detection in polynomial time.

Hence,  $\mu(G)$  can be determined in poly-time.

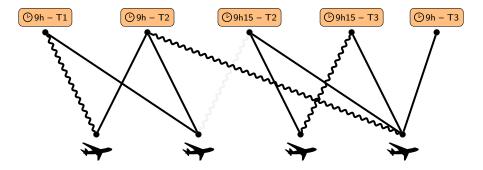
 $\mathsf{Plane} \rightarrow \mathsf{Suitable} \text{ landing slot times/tracks (edges)} + \mathsf{Scheduled one (matching)}.$ 



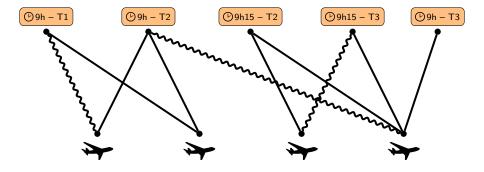
Issue: For some reason, 2nd plane cannot land on Track 2 at 9h15 any more...

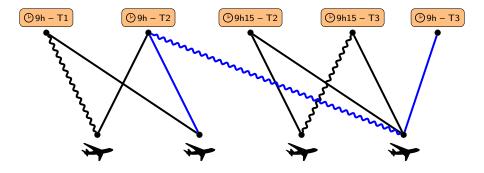


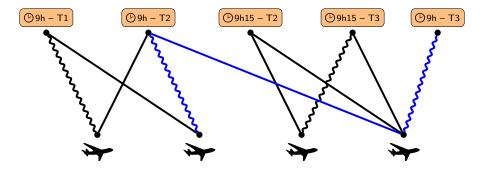
Issue: For some reason, 2nd plane cannot land on Track 2 at 9h15 any more...

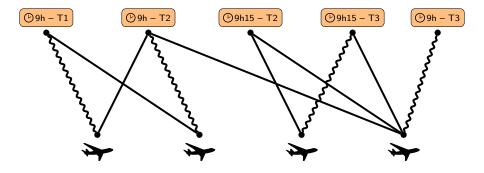


What should we do??







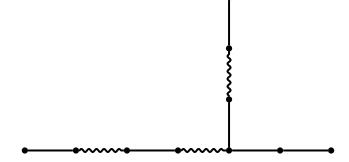


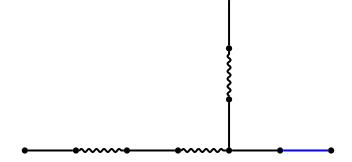
#### Question

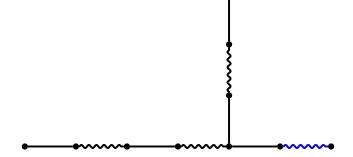
For odd  $k \ge 1$ , attain a largest matching via  $(\le k)$ -augmentations?

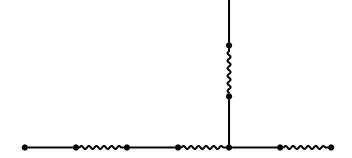
 $\mu_{\leq k}(G, M)$ : Its cardinality for G equipped with M.

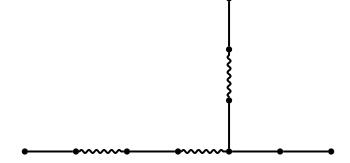
**Note:**  $\mu_{\leq 1}(G, \emptyset) = \mu(G)$ .

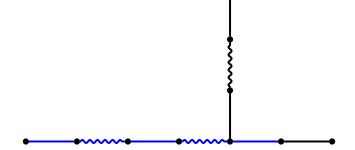


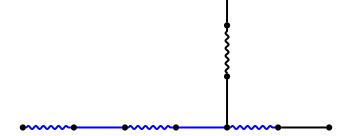




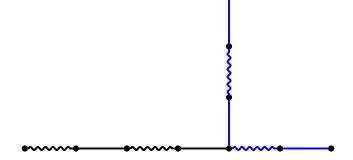


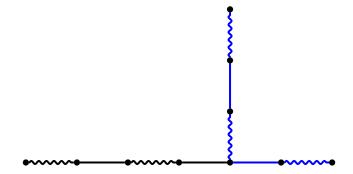


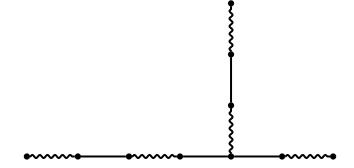












# First dichotomy

 $(\leq k)$ -MATCHING PROBLEM –  $(\leq k)$ -MP **Input:** A graph *G*, and a matching *M* of *G*. **Question:** What is the value of  $\mu_{\leq k}(G, M)$ ?

# First dichotomy

 $(\leq k)$ -MATCHING PROBLEM –  $(\leq k)$ -MP Input: A graph *G*, and a matching *M* of *G*. Question: What is the value of  $\mu_{\leq k}(G, M)$ ?

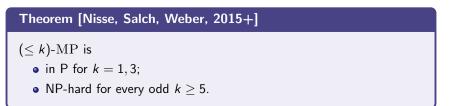
**Reminder:**  $(\leq \infty)$ -MP is in P, by Berge and Edmonds' results.

# First dichotomy

 $(\leq k)$ -MATCHING PROBLEM –  $(\leq k)$ -MP **Input:** A graph *G*, and a matching *M* of *G*. **Question:** What is the value of  $\mu_{< k}(G, M)$ ?

**Reminder:**  $(\leq \infty)$ -MP is in P, by Berge and Edmonds' results.

For fixed k's, a dichotomy:



Latter statement true for planar bipartite graphs with  $\Delta \leq 3$  and arb. large girth.

- For k = 1, 3, the problem is settled.
- For odd  $k \ge 5$ , NP-hard for graphs close to trees.

- For k = 1, 3, the problem is settled.
- For odd  $k \ge 5$ , NP-hard for graphs close to trees.

Complexity of  $(\leq k)$ -MP for trees?

- For k = 1, 3, the problem is settled.
- For odd  $k \ge 5$ , NP-hard for graphs close to trees.

Complexity of  $(\leq k)$ -MP for trees?

#### Today's talk:

•  $(\leq k)$ -MP is in P for caterpillars, subdivided stars, "sparse trees", etc.

- For k = 1, 3, the problem is settled.
- For odd  $k \ge 5$ , NP-hard for graphs close to trees.

Complexity of  $(\leq k)$ -MP for trees?

#### Today's talk:

- $(\leq k)$ -MP is in P for caterpillars, subdivided stars, "sparse trees", etc.
- A modified version is NP-complete for trees.

# **Positive results**

Upcoming ideas:

• In paths, augmenting path overlaps can be avoided.

Upcoming ideas:

In paths, augmenting path overlaps can be avoided.
 ⇒ Go from "left to right" and "match" consecutive exposed vertices.

- In paths, augmenting path overlaps can be avoided.
  ⇒ Go from "left to right" and "match" consecutive exposed vertices.
- Can it be done in caterpillars?

- In paths, augmenting path overlaps can be avoided.
  ⇒ Go from "left to right" and "match" consecutive exposed vertices.
- Can it be done in caterpillars?
- In subdivided stars?

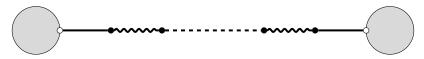
- In paths, augmenting path overlaps can be avoided.
  ⇒ Go from "left to right" and "match" consecutive exposed vertices.
- Can it be done in caterpillars?
- In subdivided stars?
  - $\Rightarrow$  Augmentations along branches  $\Leftrightarrow$  Path case.
  - $\Rightarrow$  Can root-augmentations be avoided?

- In paths, augmenting path overlaps can be avoided.
  ⇒ Go from "left to right" and "match" consecutive exposed vertices.
- Can it be done in caterpillars?
- In subdivided stars?
  - $\Rightarrow$  Augmentations along branches  $\Leftrightarrow$  Path case.
  - $\Rightarrow$  Can root-augmentations be avoided?
- Trees where the *b*-vertices are sufficiently far apart?

Theorem [Nisse, Salch, Weber, 2015+]

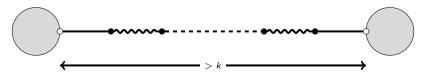
 $(\leq k)$ -MP is in P for paths.

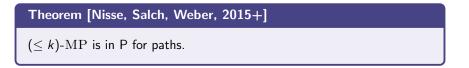
1st key idea: Consider exposed vertices joined only once by an augmenting path.



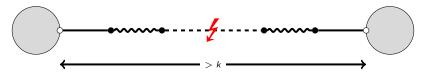


1st key idea: Consider exposed vertices joined only once by an augmenting path.



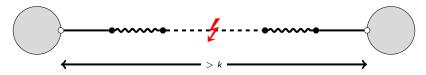


1st key idea: Consider exposed vertices joined only once by an augmenting path.





1st key idea: Consider exposed vertices joined only once by an augmenting path.



 $\Rightarrow$  Decompose the problem into two sub-problems.

In a path  $\Rightarrow$  Assume exposed vertices have one on the left/right at distance  $\leq k$ .



2nd key idea: We can augment paths joining "consecutive" exposed vertices only.



Theorem [Nisse, Salch, Weber, 2015+]  $(\leq k)$ -MP is in P for paths.

2nd key idea: We can augment paths joining "consecutive" exposed vertices only.



3  $\Rightarrow$  The paths  $v_1...v_2$ ,  $v_3...v_4$  and  $v_5...v_6$  have length  $\leq k$  and alternate. So



yields the same matching.



2nd key idea: We can augment paths joining "consecutive" exposed vertices only.



3  $\Rightarrow$  The paths  $v_1...v_2$ ,  $v_3...v_4$  and  $v_5...v_6$  have length  $\leq k$  and alternate. So



yields the same matching.

 $\Rightarrow$  In a path, just go from left to right, and augment paths when possible.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

**Remark:** Matched leaf edge  $\Rightarrow$  Simplification.



Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

**Remark:** Matched leaf edge  $\Rightarrow$  Simplification.



Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

**Remark:** Matched leaf edge  $\Rightarrow$  Simplification.



 $\Rightarrow$  Being adjacent to two leaves is useless.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

**Remark:** Matched leaf edge  $\Rightarrow$  Simplification.



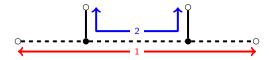
 $\Rightarrow$  Being adjacent to two leaves is useless.

Focus on caterpillars with  $\Delta = 3$  ( $\sim$  paths).

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

Again, augmenting paths can be "disentangled":



Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

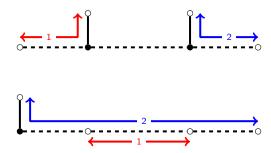
Again, augmenting paths can be "disentangled":



Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

Again, augmenting paths can be "disentangled":

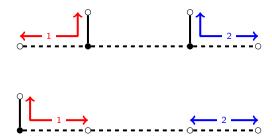


and

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

Again, augmenting paths can be "disentangled":



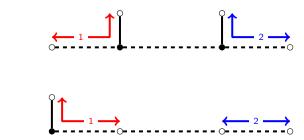
and

and

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

Again, augmenting paths can be "disentangled":



 $\Rightarrow$  Just as for paths, go from left to right (for a specific ordering), and match.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

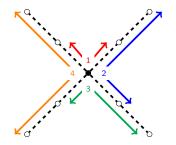
Enhancement: Cope with root-augmentations.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

#### Enhancement: Cope with root-augmentations.

Key fact: "Looping" root-augmentations can be avoided:

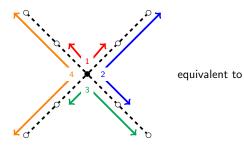


Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

#### Enhancement: Cope with root-augmentations.

Key fact: "Looping" root-augmentations can be avoided:

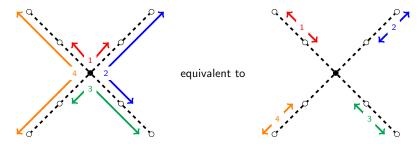


Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

#### Enhancement: Cope with root-augmentations.

Key fact: "Looping" root-augmentations can be avoided:



(because 1, 2, 3 and 4 are augmenting ( $\leq k$ )-paths.)

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

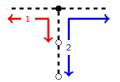
So why performing root-augmentations?

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

#### So why performing root-augmentations?

From the p.o.v. of an inner-branch, an equivalent augmentation can be performed

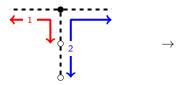


Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

#### So why performing root-augmentations?

From the p.o.v. of an inner-branch, an equivalent augmentation can be performed



Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

#### So why performing root-augmentations?

From the p.o.v. of an inner-branch, an equivalent augmentation can be performed



... and it retains the **parity** of the number of exposed vertices along that branch.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

#### So why performing root-augmentations?

From the p.o.v. of an inner-branch, an equivalent augmentation can be performed



... and it retains the **parity** of the number of exposed vertices along that branch.  $\Rightarrow$  Root-augmentation  $\rightarrow$  Alters the parity of the two end-branches only.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

Remind that for a branch with  $\alpha$  exp. vertices,  $\lfloor \alpha/2 \rfloor$  augmentations.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

Remind that for a branch with  $\alpha$  exp. vertices,  $\lfloor \alpha/2 \rfloor$  augmentations.  $\Rightarrow$  No point starting/ending with an even branch.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

Remind that for a branch with  $\alpha$  exp. vertices,  $\lfloor \alpha/2 \rfloor$  augmentations.  $\Rightarrow$  No point starting/ending with an even branch.

So, we can reach a maximum matching by essentially:

**9** Performing root-augmentations to match vertices from  $\neq$  **odd** branches;

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

Remind that for a branch with  $\alpha$  exp. vertices,  $\lfloor \alpha/2 \rfloor$  augmentations.  $\Rightarrow$  No point starting/ending with an even branch.

So, we can reach a maximum matching by essentially:

- **9** Performing root-augmentations to match vertices from  $\neq$  **odd** branches;
- Intermediate Provide the Area of the Ar

Theorem [B., Garnero, Nisse, 2017+]

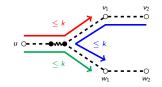
 $(\leq k)$ -MP is in P for subdivided stars.

Remind that for a branch with  $\alpha$  exp. vertices,  $\lfloor \alpha/2 \rfloor$  augmentations.  $\Rightarrow$  No point starting/ending with an even branch.

So, we can reach a maximum matching by essentially:

- **()** Performing root-augmentations to match vertices from  $\neq$  **odd** branches;
- 2 Then finishing off along the branches.

To check if 1. doable, run a BFS in an auxiliary "reachability digraph":



Theorem [B., Garnero, Nisse, 2017+]

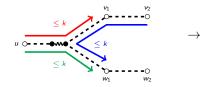
 $(\leq k)$ -MP is in P for subdivided stars.

Remind that for a branch with  $\alpha$  exp. vertices,  $\lfloor \alpha/2 \rfloor$  augmentations.  $\Rightarrow$  No point starting/ending with an even branch.

So, we can reach a maximum matching by essentially:

- **()** Performing root-augmentations to match vertices from  $\neq$  **odd** branches;
- 2 Then finishing off along the branches.

To check if 1. doable, run a BFS in an auxiliary "reachability digraph":



Theorem [B., Garnero, Nisse, 2017+]

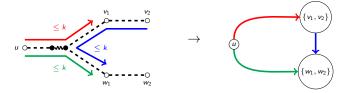
 $(\leq k)$ -MP is in P for subdivided stars.

Remind that for a branch with  $\alpha$  exp. vertices,  $\lfloor \alpha/2 \rfloor$  augmentations.  $\Rightarrow$  No point starting/ending with an even branch.

So, we can reach a maximum matching by essentially:

- **(**) Performing root-augmentations to match vertices from  $\neq$  **odd** branches;
- 2 Then finishing off along the branches.

To check if 1. doable, run a BFS in an auxiliary "reachability digraph":



### Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

To summarize:

If necessary, do an augmentation involving the root.

#### Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

To summarize:

- If necessary, do an augmentation involving the root.
- **2** If possible, join two odd branches via root-augmentations.

### Theorem [B., Garnero, Nisse, 2017+]

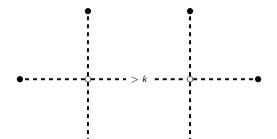
 $(\leq k)$ -MP is in P for subdivided stars.

To summarize:

- If necessary, do an augmentation involving the root.
- **②** If possible, join two odd branches via root-augmentations.
- S Finally, match the remaining exposed vertices along the branches.

 $\Rightarrow$  Polynomial-time algorithm.

*k*-sparse tree: Vertices with degree  $\geq$  3 are at distance > k.

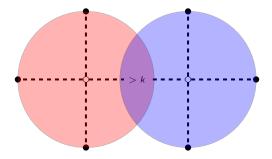


## $(\leq k)$ -MP for k-sparse trees



 $(\leq k)$ -MP is in P for k-sparse trees.

Idea: Consider subdivided stars, and build a solution from bottom to top.



## **Negative results**

For  $(\leq k)$ -MP in trees, sounds hard because of the " $\leq k$ " requirement  $\odot$ .

For  $(\leq k)$ -MP in trees, sounds hard because of the " $\leq k$ " requirement  $\odot$ .

 $\Rightarrow$  What if we augment *k*-paths only?

For  $(\leq k)$ -MP in trees, sounds hard because of the " $\leq k$ " requirement  $\odot$ .

 $\Rightarrow$  What if we augment *k*-paths only?

(= k)-MATCHING PROBLEM – (= k)-MP **Input:** A graph G, and a matching M of G. **Question:** What is the value of  $\mu_{=k}(G, M)$ ?

For  $(\leq k)$ -MP in trees, sounds hard because of the " $\leq k$ " requirement  $\odot$ .

 $\Rightarrow$  What if we augment *k*-paths only?

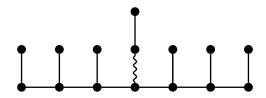
(= k)-MATCHING PROBLEM – (= k)-MP **Input:** A graph G, and a matching M of G. **Question:** What is the value of  $\mu_{=k}(G, M)$ ?

**Good news:** Some properties of  $(\leq k)$ -MP derive to (= k)-MP:

- NP-hardness for odd  $k \ge 5$ ;
- all polynomial-time algorithms for classes of trees.

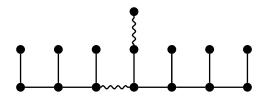
Recall that ( $\leq$  3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+] (= 3)-MP is NP-hard.



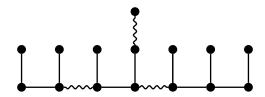
Recall that ( $\leq$  3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+] (= 3)-MP is NP-hard.



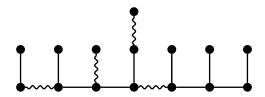
Recall that ( $\leq$  3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+] (= 3)-MP is NP-hard.



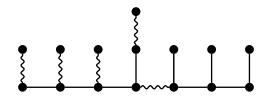
Recall that ( $\leq$  3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+] (= 3)-MP is NP-hard.



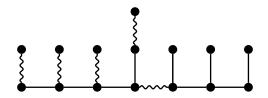
Recall that ( $\leq$  3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+] (= 3)-MP is NP-hard.



Recall that ( $\leq$  3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+] (= 3)-MP is NP-hard.

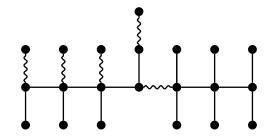


Longest sequence = "Push" the matching to the spikes of a single side.

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Attach a leaf to the base of every spike. Previous remark still applies.



#### Theorem [B., Garnero, Nisse, 2017+]

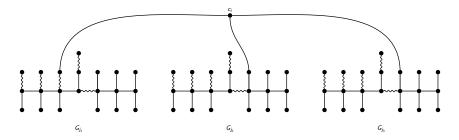
(= 3)-MP is NP-hard.

Add a variable gadget  $G_i$  for each  $x_i$ . Pushing left=*true*. Pushing right=*false*.

#### Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

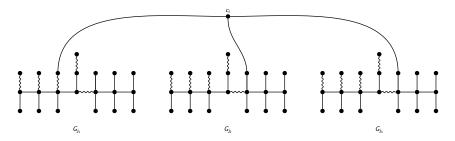
Add a variable gadget  $G_i$  for each  $x_i$ . Pushing left=*true*. Pushing right=*false*. Next add a clause vertex  $c_i$  for every clause  $C_i$ , and, for every distinct literal  $\ell_j$  it contains, join  $c_i$  and one non-used spike of  $G_i$  (left if positive, right otherwise).



#### Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Add a variable gadget  $G_i$  for each  $x_i$ . Pushing left=*true*. Pushing right=*false*. Next add a clause vertex  $c_i$  for every clause  $C_i$ , and, for every distinct literal  $\ell_j$  it contains, join  $c_i$  and one non-used spike of  $G_i$  (left if positive, right otherwise).



 $\Rightarrow$  One additional augmentation covering  $c_i$  can be done.

#### Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Maximum # of 3-augmentations is:

- For every  $G_i$ , push the matching to the left  $(x_i \text{ true})$  or to the right  $(x_i \text{ false})$ .
- Solution For every  $c_i$ , do an additional augmentation (if made *true* by a literal).

#### Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Maximum # of 3-augmentations is:

- For every  $G_i$ , push the matching to the left  $(x_i \text{ true})$  or to the right  $(x_i \text{ false})$ .
- **②** For every  $c_i$ , do an additional augmentation (if made *true* by a literal).
- $\Rightarrow$  Maximum  $\mu_{=3}$  achievable is

(#variables  $\cdot$  (#variable spikes + 1)) + #clauses,

which is attainable iff F is satisfiable.

We have  $\Delta \leq 4$  in the reduction.

We have  $\Delta \leq 4$  in the reduction. Furthermore:

• If F planar, then the reduced graph is planar.

We have  $\Delta \leq 4$  in the reduction. Furthermore:

- If F planar, then the reduced graph is planar.
- All cycles go through c<sub>i</sub>'s and variables gadgets:

We have  $\Delta \leq$  4 in the reduction. Furthermore:

- If F planar, then the reduced graph is planar.
- All cycles go through c<sub>i</sub>'s and variables gadgets:
  - Conveniently choose the joined spikes  $\Rightarrow$  Bipartite.
  - Same  $\Rightarrow$  Arbitrarily large girth.

We have  $\Delta \leq$  4 in the reduction. Furthermore:

- If F planar, then the reduced graph is planar.
- All cycles go through c<sub>i</sub>'s and variables gadgets:
  - Conveniently choose the joined spikes  $\Rightarrow$  Bipartite.
  - Same  $\Rightarrow$  Arbitrarily large girth.

+ by slight modifications, we can also guarantee  $\Delta \leq$  3.

# (= k)-MP in trees for non-fixed k

Modified version:

(=)-MATCHING PROBLEM – (=)-MP **Input:** A graph G, a matching M of G, and an odd  $k \ge 1$ . **Question:** What is the value of  $\mu_{=k}(G, M)$ ?

# (= k)-MP in trees for non-fixed k

Modified version:

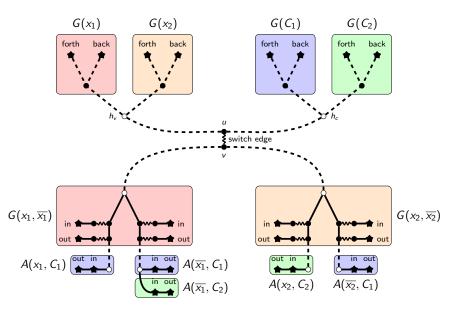
(=)-MATCHING PROBLEM – (=)-MP **Input:** A graph G, a matching M of G, and an odd  $k \ge 1$ . **Question:** What is the value of  $\mu_{=k}(G, M)$ ?

Negative result for trees:

Theorem [B., Garnero, Nisse, 2017+] (=)-MP is NP-hard for trees.

**Proof (sketch):** Reduction from 3-SAT.

# (=)-MP in trees



#### Theorem [B., Garnero, Nisse, 2017+]

(=)-MP is NP-hard for trees.

Lengths of the dashed paths chosen so that:

- for each x<sub>i</sub>, open either the *true* or *false* gate;
- for each  $C_i$ , reach only the arrival points.

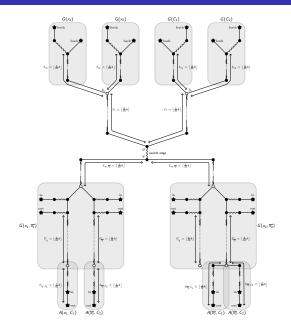
#### Theorem [B., Garnero, Nisse, 2017+]

(=)-MP is NP-hard for trees.

Lengths of the dashed paths chosen so that:

- for each x<sub>i</sub>, open either the *true* or *false* gate;
- for each  $C_i$ , reach only the arrival points.
- $\Rightarrow$  Needed k depends on #clauses and #variables.

#### After a few months suffering $\odot$ $\odot$ ...



### Conclusion

• Status of  $(\leq k)$ -MP still unclear for trees.

- Status of  $(\leq k)$ -MP still unclear for trees.
- What about:
  - trees with  $\Delta \leq 3?$

- Status of  $(\leq k)$ -MP still unclear for trees.
- What about:
  - trees with  $\Delta \leq 3?$
  - subdivided combs?

- Status of  $(\leq k)$ -MP still unclear for trees.
- What about:
  - trees with  $\Delta \leq 3?$
  - subdivided combs?
  - etc.

- Status of  $(\leq k)$ -MP still unclear for trees.
- What about:
  - trees with  $\Delta \leq 3?$
  - subdivided combs?
  - etc.
- Dynamic programming yields algorithms.

- Status of  $(\leq k)$ -MP still unclear for trees.
- What about:
  - trees with  $\Delta \leq 3?$
  - subdivided combs?
  - etc.
- Dynamic programming yields algorithms.
- What about (= k)-MP in trees?
- Appealing case: k = 3.

#### • Status of $(\leq k)$ -MP still unclear for trees.

- What about:
  - trees with  $\Delta \leq 3?$
  - subdivided combs?
  - etc.
- Dynamic programming yields algorithms.
- What about (= k)-MP in trees?
- Appealing case: k = 3.
- Other classes of graphs?
- e.g. interval graphs, other sparse classes, etc.

#### • Status of $(\leq k)$ -MP still unclear for trees.

- What about:
  - trees with  $\Delta \leq 3?$
  - subdivided combs?
  - etc.
- Dynamic programming yields algorithms.
- What about (= k)-MP in trees?
- Appealing case: k = 3.
- Other classes of graphs?
- e.g. interval graphs, other sparse classes, etc.

# Thank you for your attention!