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w/ S. Thomassé and N. Trotignon, research group MC2
e 2011-2014: PhD student at LaBRI/Université de Bordeaux
w/ O. Baudon and E. Sopena, research group Graphes et Applications

o Scientific interests: graph theory, especially colouring, partitioning,
decomposition problems (structural, algorithmic aspects)
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Convince you that this is interesting ©

@ Focus: 1-2-3 Conjecture and related aspects

Talk’s plan:

o Rough introduction to distinguishing labellings and the 1-2-3 Conjecture
o Focus on two chosen lines of contributions:

o Generalisations of the 1-2-3 Conjecture to digraphs
@ The importance of label 3 for the 1-2-3 Conjecture

e Some mid-term perspectives
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A disclaimer before we go

o If you have been through the manuscript...

o Modified terminology:

o weight, edge-weighting — label, labelling
o neighbour-sum-distinguishing — proper

e Focus on the 1-2-3 Conjecture — Second part of the manuscript omitted
o New results, for a better whole picture

@ Results of collaborations led during my successive positions, with Barme,
Baudon, Fioravantes, Hocquard, Lyngsie, Mc Inerney, Merker, Nisse,
Przybyto, Senhaji, Sopena, Thomassen, Wozniak, etc.

No offense if your name should be here but is not ®
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"Encode” a proper vertex-colouring through labels assigned by an (edge-)labelling?
or label the edges, so that, “somehow”, adjacent vertices get distinguished

°o o %o
V2 . V5
° °
. ® (va) O
°
V3 . VG
o5 oo

Thing(v;) := Set of labels “incident” to v;:

Thing(v;) ={®}  Thing(vy) ={e,@}  Thing(v3) = {e,e,e}
Thing(v4) = {® Thing(vs) = {e,®,0} Thing(vs)={e,® Thing(v;)={e,e}

Vertices are properly coloured = Neighbours can be distinguished!
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From labels to colours

Many parameters behind distinguishing labellings:

o Labelled elements? vertices? edges? both?
o Label restrictions? set of labels? proper assignment?
@ Distinguish what? adjacent elements only? any two?
@ Thing? set of incident labels? multiset?
@ etc.

= Dozens and dozens variants, with various applications/motivations...

A Dynamic Survey of Graph Labeling

Joseph A. Gallian
Department of Mathematics and Statistics
University of Minnesota Duluth
Duluth, Minnesota 53812, U.S.A.

JjgallianCd.umn.edu

Submitted: September 1, 1096; Accepted: November 14, 1997
Twentieth edition, December 22, 2017

Mathematics Subject Classifications: 05078

Abstract

A graph labeling is an assignment of integers to the vertices or edges, or both,
subject to certain conditions. Graph labelings were first introduced in the mid
1960s. In the intervening 30 years over 200 graph labelings techniques have been
studied in over 2500 papers. Finding out what has been done for any particular
kind of labeling and keeping up with new discoveries is diffieult because of the sheer
number of papers and because many of the papers have appeared in journals that
are not widely available, In this survey I have collected everything I could find on
graph labeling. For the convenience of the reader the survey includes a detailed
table of contents and index.
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Deals with proper 3-labellings:
o Labelled elements = Edges
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The 1-2-3 Conjecture, in few words

Deals with proper 3-labellings:
o Labelled elements = Edges
@ Label restrictions = Labels 1,2,3, assigned improperly
@ Distinguish what = Adjacent vertices
@ Thing = Sum of incident labels

“Given a graph, can we assign 1,2,3 to its edges, so that
no two adjacent vertices are incident to the same sum of labels?”

Edge weights and vertex colours

Michat Karoriski and Tomasz Euczak

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznari,
Poland

E-mailz i edu.pl and edu,pl
and
Andrew Thomason

DPMMS, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 OWE,
England
E-mail: a.g.thomason@dpmms.cam.ac.uk

Received 24th September 2002

Can the edges of any non-trivial graph be assigned weights from {1,2,3} so that
adjacent vertices have different sums of incident edge weights?

‘We give a positive answer when the graph is 3-colourable, or when & finite number of
real weights is allowed,
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v2 Vs

By
12]

Vi

{1}
11
v3 Ve

Sum(vi)=2  Sum(wp)=6  Sum(vz)=5  Sum(vq)=4
Sum(vs)=7  Sum(vg)=6  Sum(vy)=4
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{1f

Sum(vi)=2  Sum(wp)=6  Sum(vz)=5  Sum(vq)=4
Sum(vs)=7  Sum(vg)=6  Sum(vy)=4
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More formal

G graph with k-labelling ¢: E(G) —{1,...,k}
cr: V(G)—N* incident sums by ¢
¢ proper: ¢y proper Vuve E(G), co(u) #ce(v)

x=(G): smallest k=1 such that proper k-labellings of G exist

Remark: ys(K2) undefined... but

... good news: K> is the only such connected graph!

G nice: no connected component isomorphic to K> ¥=(G) defined

1-2-3 Conjecture [Karonski, tuczak, Thomason, 2004]

For every nice graph G, we have y5(G) < 3.
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Two interpretations/motivations...

... leading to different questions

Interpretation 1
Encode a proper vertex-colouring

1-2-3 Conjecture
<>
Some proper vertex-colouring can be
encoded by a proper 3-labelling

Interpretation 2
Make a graph locally irregular

1-2-3 Conjecture
o
Make a graph locally irregular by
multiplying every edge by at most 3

11/36



The 1-2-3 Conjecture’s starter pack

For more details, check the survey by Seamone (arXiv:1211.5122)

12/36



The 1-2-3 Conjecture’s starter pack

For more details, check the survey by Seamone (arXiv:1211.5122)

o Verification of the conjecture:

e mainly for complete graphs and 3-colourable graphs [K£T04]
e other partial classes...

12/36



The 1-2-3 Conjecture’s starter pack

For more details, check the survey by Seamone (arXiv:1211.5122)

o Verification of the conjecture:
e mainly for complete graphs and 3-colourable graphs [K£T04]
e other partial classes...
o Complexity aspects:
o Deciding if y(G) <2 is NP-hard [DW11], and...
e ... polytime solvable when G is bipartite [TWZ16]
e bipartite graphs G with yy(G) =3 are the so-called odd multi-cacti

12/36



The 1-2-3 Conjecture’s starter pack

For more details, check the survey by Seamone (arXiv:1211.5122)

o Verification of the conjecture:

e mainly for complete graphs and 3-colourable graphs [K£T04]

o other partial classes...
o Complexity aspects:

o Deciding if y3(G) <2 is NP-hard [DW11], and...

e ... polytime solvable when G is bipartite [TWZ16]

e bipartite graphs G with yy(G) =3 are the so-called odd multi-cacti
@ Approaching the conjecture:

o Best result to date: y3(G) <5 for all nice G [KKP10]
o Improved result y5(G) <4 when G is regular [Prz18+] or 4-chromatic [DLY12]

12/36



The 1-2-3 Conjecture’s starter pack

For more details, check the survey by Seamone (arXiv:1211.5122)

o Verification of the conjecture:

e mainly for complete graphs and 3-colourable graphs [K£T04]

o other partial classes...
o Complexity aspects:

o Deciding if y3(G) <2 is NP-hard [DW11], and...

e ... polytime solvable when G is bipartite [TWZ16]

e bipartite graphs G with yx(G) =3 are the so-called odd multi-cacti
@ Approaching the conjecture:

o Best result to date: y3(G) <5 for all nice G [KKP10]

o Improved result y5(G) <4 when G is regular [Prz18+] or 4-chromatic [DLY12]
o Side aspects:

e Variants: list [BGNOQ9], total [PW10], equitable [BPPSSW17], etc.
o Generalisations to hypergraphs [KKP17] and digraphs [BGP12]

12/36



The 1-2-3 Conjecture’s starter pack
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o Verification of the conjecture:
e mainly for complete graphs and 3-colourable graphs [K£T04]
o other partial classes...
o Complexity aspects:
o Deciding if y3(G) <2 is NP-hard [DW11], and...
e ... polytime solvable when G is bipartite [TWZ16]
e bipartite graphs G with yy(G) =3 are the so-called odd multi-cacti

@ Approaching the conjecture:

o Best result to date: y3(G) <5 for all nice G [KKP10]
o Improved result y5(G) <4 when G is regular [Prz18+] or 4-chromatic [DLY12]

o Side aspects:

e Variants: list [BGNOQ9], total [PW10], equitable [BPPSSW17], etc.
o Generalisations to hypergraphs [KKP17] and digraphs [BGP12]

... + a few parallel worlds: product version, multiset version, etc.
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— First focus —

Generalising the 1-2-3 Conjecture to digraphs
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Here, can we come up with an interesting digraph problem?

Want something “close” to the original 1-2-3 Conjecture:

@ Somewhat natural i.e., easy to define
@ Similar behaviours effects of labelling an edge, etc.
@ A notion of exception just as Ko
o Challenging resilient to inductive arguments, etc.

Remark: Labelling a digraph yields two vertex-colourings ¢, and ¢,

= Many generalisation possibilities © !
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Results on the four “natural” directed variants

Remark: The (+,+) and (—,—) variants are equivalent (up to reversing arcs)

(+,+) variant
moderate label influence
no exception
X(+,+) = 3
almost trivial induction

deciding <2 is NP-complete

(+,-) variant (-, +) variant
strong label influence no label influence
lonely arcs av (d*(u)=d~(v)=1) ss-arcs v (d™(u)=d*(v)=0)
X(+,-)S3 X(-+)=3 (ifnola)
known case of the 1-2-3 Conjecture very peculiar variant of the 1-2-3 Conjecture
deciding <2 is polytime solvable deciding <2 is NP-complete

17/36



Labelling digraphs vs. Labelling bipartite graphs

Digraph D — Bipartite graph B(D)

vi

v3

18/36



Labelling digraphs vs. Labelling bipartite graphs

Digraph D — Bipartite graph B(D)

vi

v3

18/36



Labelling digraphs vs. Labelling bipartite graphs

Digraph D — Bipartite graph B(D)

vi

v3

@ vy

e vy

@ V3

o vy

18/36



Labelling digraphs vs. Labelling bipartite graphs

Digraph D — Bipartite graph B(D)

vf @ vy
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v;' Y vy

\Z V5
V2 ) > v; ) e V3
+
v, @ oV,
v3
T
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Labelling digraphs vs. Labelling bipartite graphs

Digraph D — Bipartite graph B(D)

vi

v3

Remarks:
@ B(D) nice iff D has no lonely arc
@ For a labelling ¢ of D and the derived one ¢’ of B(D):
¢, (v)=cp(v®)and ¢, (v)=cp(v7)
for every ve V(D)
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Implications on the (+,-) and (-, +) variants

o This solves the (+,-) variant ©® !

D (+,-)-nice iff B(D) nice

cj(u)#c, (v)iff cp(u)#cp(vT)...

... thus € (+,-)-proper iff ¢’ proper...

.. and thus X(+_7)(D) <3 iff yz(B(D)) =3, while B(D) is bipartite
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... thus € (+,-)-proper iff ¢’ proper...

.. and thus X(+_7)(D) <3 iff yz(B(D)) =3, while B(D) is bipartite

Theorem [Barme, B., Przybyto, Wozniak, 2017]

For every (+,—)-nice digraph D, we have y(, (D) =<3.

o We actually get more:

o 1+, )(D) = xz(B(D))...

e ... thus digraphs D with X(+‘_)(D) =3 exist...

@ ... but they can be recognised easily! B(D)'s being odd multi-cacti
o For every odd multi-cactus C, there is D such that B(D)=C
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Implications on the (+,—) and (—,+) variants (cont'd)

e Not as immediate for the (—,+) variant ® ...
o We do have ¢, (v)=cp(v") and ¢, (v) =cp(v7)...
. but uTv™ forces cpr(ut) # cpr(v™) while we want ¢

u) # ¢z (V)!

o (u
o Actually, u~ and v are likely to be not adjacent in B(D)...
B(D) is equivalent to D in terms of obtained colours, not in terms of constraints!

o Solution:
o Label B(D) so that c//(u~) €% and cp(v*) e, for some non-intersecting
sets %,V , regardless of whether u~v* is an edge

o Back in D, makes c, take values in %, and c in7
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Solving the (—,+) variant

Theorem [B., Lyngsie, 2020]

Every nice connected bipartite graph G with bipartition Uu V' has a proper
3-labelling ¢ where:

@ for every ue U, we have cy(u) €% and
@ for every ve V/, we have cy(v)e”,
for
@ % ={0,3luBk+1:k=1} and
@ 7/ ={0,1,2U{3k—-1,3k: k=2}.
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3-labelling ¢ where:
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@ for every ve V/, we have cy(v)e”,
for
@ % ={0,3luBk+1:k=1} and
@ 7/ ={0,1,2U{3k—-1,3k: k=2}.

Remarks:
e % =1{0,3,4,7,10,13,16,...} and 7 =1{0,1,2,5,6,8,9,11,12,14,15,...}
@ 0e«n7 to catch isolated vertices
@ % and 7 are quite restrictive for low-degree vertices

Proved through a bottom-to-top approach, considering a layer decomposition
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Conclusion

@ A set of four interesting and nice problems © , requiring different approaches,
with different inherent behaviours...
e sets of exceptions
o resilience to inductive arguments
e algorithmic complexity
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Conclusion

@ A set of four interesting and nice problems © , requiring different approaches,
with different inherent behaviours...

e sets of exceptions
o resilience to inductive arguments
e algorithmic complexity

e ... BUT, a bit deceiving from the challenge point of view ® ...

o (+,+) variant solved via a basic induction
o (+,-) and (-, +) variants as hard as the 1-2-3 Conjecture in bipartite graphs

Is the “quest” over?

o What about playing with functions of ¢, and ¢; 7
@ Other parameters?
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— Second focus —

The role of 3’s for the 1-2-3 Conjecture
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Two “natural” questions

Interpretation 1
Encode a proper vertex-colouring

1-2-3 Conjecture
©
Some proper vertex-colouring can be
encoded by a proper 3-labelling

Interpretation 2
Make a graph locally irregular

1-2-3 Conjecture
<
Make a graph locally irregular by
multiplying every edge by at most 3
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1-2-3 Conjecture
©
Some proper vertex-colouring can be
encoded by a proper 3-labelling

Interpretation 2
Make a graph locally irregular

1-2-3 Conjecture
<
Make a graph locally irregular by
multiplying every edge by at most 3

How “close” from an “optimal” proper
vertex-colouring, i.e., with about
x(G) distinct colours, can we get?

How “small”, i.e., in terms of number
of edges, is the smallest locally
irregular multigraph overlaid by G?
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Three optimisation problems over the 1-2-3 Conjecture

Note: We are not restricted to assigning labels 1,2,3 only

Min. distinct colours mC Min. sum of labels mL
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Note: We are not restricted to assigning labels 1,2,3 only

Min. maximum colour mS

lower, upper bounds for classes
complexity results
etc.

“Presumption” mS(G) <2A(G)

Supporting arguments:
o True whenever yz(G) <2

Min. sum of labels mL

lower, upper bounds for classes
complexity results
etc.

“Presumption”™ mL(G)<2|E(G)|

@ For graphs with ys(G) =3, 1's can “compensate” for 3's

= We do not need “lots” of 3's

Also observed in earlier works (1-2 Conjecture, Equitable 1-2-3 Conjecture, etc.)
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A last problem

Terminology:
e mT(G): Minimum number of 3's in a proper 3-labelling of G
e 4, Graphs G with mT(G)=p p=0
@ Yop: GouU---UY,
o p(G): mT(G)/IE(G)
o o(Z): max{p(G): Ge F} & class of graphs
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e mT(G): Minimum number of 3's in a proper 3-labelling of G
e 4, Graphs G with mT(G)=p p=0
@ Yop: GouU---UY,
o p(G): mT(G)/IE(G)
o o(Z): max{p(G): Ge F} & class of graphs

“Conjecture” [B., Fioravantes, Mc Inerney, 2020+]

For every nice connected graph G, we have p(G)<1/3.

Rather hard to study, due to the number of proper 3-labellings

Questions:
@ Given &, is there p=0 such that & c%9-,?
o If not, how can we bound p(%) above?
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Obtained results

@ Relevance of the problem:

o Every ¥, is well populated... VH,3G: H<; G and Ge¥%p
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Establishing lower bounds

Two basic ideas:
@ When can labelling properties be inferred to supergraphs?
@ Are there small graphs with interesting labelling properties?

o) sl

Want: mT(G)=mT(H1)+mT(Ha)+mT(H3)
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Weakly induced subgraphs

Observation [B., Fioravantes, Mc Inerney, 2020+]

Let H be a graph, and G be a supergraph of H where dy(v)=dg(v) for
every v e V(H) with dy(v)>1. Then, mT(G)=mT(H).

Reason: Proper labelling of G = Proper labelling of H
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Observation [B., Fioravantes, Mc Inerney, 2020+]

Let H be a graph, and G be a supergraph of H where dy(v)=dg(v) for
every v e V(H) with dy(v)>1. Then, mT(G)=mT(H).

Reason: Proper labelling of G = Proper labelling of H

Consequence: If H with §(H)=1 and p(H)=1/c, then we can construct
arbitrarily large graphs G with p(G)=1/c

Such graphs H exist, with low ratio p(H) (1/10)!

<] [
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Example application

~P>=]

>

mT(G)zmT(H)+mT(H)+mT(H)+mT(H)=4mT(H) =4
p(G)=4/50

Use “nice” pieces, combined cleverly, to get more general properties
30/36



Establishing upper bounds for 3-chromatic graphs

Standard approach: Proper 3-labellings with distinct colours modulo 3
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Establishing upper bounds for 3-chromatic graphs

Remarks:
@ a'sef{l,2,3}, fls=2
@ Thus, p(G) < IV(G)I/IE(G)|
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Establishing upper bounds for 3-chromatic graphs

Remarks:
@ a'sef{l,2,3}, fls=2
@ Thus, p(G) =IV(G)I/IE(G)I
e = If G is dense enough, p(G)=<1/3
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@ For any regular spanning subgraph, at most 1/3 edges labelled 3
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@ For any regular spanning subgraph, at most 1/3 edges labelled 3
@ Avoid edges outside the original unicyclic subgraph?

@ Can be repeated on several spanning subgraphs!

e = perfect matchings, cycle covers (Hamiltonian cycles), etc.
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Conclusion

@ Nice interesting problems © , all sort of related to each other...
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Conclusion

@ Nice interesting problems © , all sort of related to each other...
@ ... but rather hard to study in general ®

o Limits due to restricted knowledge of the 1-2-3 Conjecture
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Some conclusions and perspectives
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Concluding words

@ Distinguishing labelling problems (including the 1-2-3 Conjecture) are
fascinating ones, with many aspects of interest...

o ... but still far from being completely understood

@ Possible research directions for the future:

o Improve the best general bound ys <5

@ Understand better Kalkowski's Algorithm
@ Develop the polynomial method
o Verify the 1-2-3 Conjecture for more graphs
o Planar graphs, 4-chromatic graphs, regular graphs
o Etc.
o Investigate the many variants of the 1-2-3 Conjecture
o Optimisation variants mentioned earlier
@ Product variant, total variant, list variant, equitable variant, etc.
o Consider the parameterised complexity of the optimisation variants
o Differences between the variants?
o Etc.

Thank you for your attention!

36/36



Deliberations in progress...
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