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Today’s talk

General topic: Distinguishing labellings of graphs

My main goal:

Convince you that this is interesting ,
Focus: 1-2-3 Conjecture and related aspects

Talk’s plan:
Rough introduction to distinguishing labellings and the 1-2-3 Conjecture
Focus on two chosen lines of contributions:

Generalisations of the 1-2-3 Conjecture to digraphs
The importance of label 3 for the 1-2-3 Conjecture

Some mid-term perspectives
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A disclaimer before we go

If you have been through the manuscript...
Modified terminology:

weight, edge-weighting → label, labelling
neighbour-sum-distinguishing → proper

Focus on the 1-2-3 Conjecture → Second part of the manuscript omitted
New results, for a better whole picture

Results of collaborations led during my successive positions, with Barme,
Baudon, Fioravantes, Hocquard, Lyngsie, Mc Inerney, Merker, Nisse,
Przybyło, Senhaji, Sopena, Thomassen, Woźniak, etc.

No offense if your name should be here but is not ,
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From distinguishing labellings to
the 1-2-3 Conjecture
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(Very general) Motivation

“Encode” a proper vertex-colouring through labels assigned by an (edge-)labelling?
or label the edges, so that, “somehow”, adjacent vertices get distinguished

v1

v2

v3

v4

v5

v6

v7

Thing(vi ) := Set of labels “incident” to vi :

Thing(v1)= { } Thing(v2)= { , } Thing(v3)= { , , }
Thing(v4)= { } Thing(v5)= { , , } Thing(v6)= { , } Thing(v7)= { , }

Vertices are properly coloured ⇒ Neighbours can be distinguished!
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From labels to colours

Many parameters behind distinguishing labellings:

Labelled elements? vertices? edges? both?
Label restrictions? set of labels? proper assignment?
Distinguish what? adjacent elements only? any two?
Thing? set of incident labels? multiset?
etc.

⇒ Dozens and dozens variants, with various applications/motivations...

7/36



From labels to colours

Many parameters behind distinguishing labellings:
Labelled elements? vertices? edges? both?
Label restrictions? set of labels? proper assignment?

Distinguish what? adjacent elements only? any two?
Thing? set of incident labels? multiset?
etc.

⇒ Dozens and dozens variants, with various applications/motivations...

7/36



From labels to colours

Many parameters behind distinguishing labellings:
Labelled elements? vertices? edges? both?
Label restrictions? set of labels? proper assignment?
Distinguish what? adjacent elements only? any two?
Thing? set of incident labels? multiset?

etc.

⇒ Dozens and dozens variants, with various applications/motivations...

7/36



From labels to colours

Many parameters behind distinguishing labellings:
Labelled elements? vertices? edges? both?
Label restrictions? set of labels? proper assignment?
Distinguish what? adjacent elements only? any two?
Thing? set of incident labels? multiset?
etc.

⇒ Dozens and dozens variants, with various applications/motivations...

7/36



From labels to colours

Many parameters behind distinguishing labellings:
Labelled elements? vertices? edges? both?
Label restrictions? set of labels? proper assignment?
Distinguish what? adjacent elements only? any two?
Thing? set of incident labels? multiset?
etc.

⇒ Dozens and dozens variants, with various applications/motivations...

7/36



The 1-2-3 Conjecture, in few words

Deals with proper 3-labellings:
Labelled elements ⇒ Edges
Label restrictions ⇒ Labels 1,2,3, assigned improperly
Distinguish what ⇒ Adjacent vertices
Thing ⇒ Sum of incident labels

“Given a graph, can we assign 1,2,3 to its edges, so that
no two adjacent vertices are incident to the same sum of labels?”
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Sample example

v1

v2

v3

v4

v5

v6

v7

1

1

2

1

2

1

1

1

1

2

2

2

2

6

5

4

7

6

4

Sum(v1)= 2 Sum(v2)= 6 Sum(v3)= 5 Sum(v4)= 4
Sum(v5)= 7 Sum(v6)= 6 Sum(v7)= 4
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More formal

G graph with k-labelling ` :E (G )→ {1, . . . ,k}
c` :V (G )→N∗ incident sums by `
` proper: c` proper ∀uv ∈E (G ), c`(u) 6= c`(v)

χΣ(G ): smallest k ≥ 1 such that proper k-labellings of G exist
Remark: χΣ(K2) undefined... but
... good news: K2 is the only such connected graph!
G nice: no connected component isomorphic to K2 χΣ(G ) defined

1-2-3 Conjecture [Karoński, Łuczak, Thomason, 2004]

For every nice graph G , we have χΣ(G )≤ 3.
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Two interpretations/motivations...

... leading to different questions

Interpretation 1
Encode a proper vertex-colouring

1

12

2

 

3

2

3

4

1-2-3 Conjecture
⇔

Some proper vertex-colouring can be
encoded by a proper 3-labelling

Interpretation 2
Make a graph locally irregular

1

12

2

 

1-2-3 Conjecture
⇔

Make a graph locally irregular by
multiplying every edge by at most 3
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The 1-2-3 Conjecture’s starter pack

For more details, check the survey by Seamone (arXiv:1211.5122)

Verification of the conjecture:
mainly for complete graphs and 3-colourable graphs [KŁT04]
other partial classes...

Complexity aspects:
Deciding if χΣ(G)≤ 2 is NP-hard [DW11], and...
... polytime solvable when G is bipartite [TWZ16]
bipartite graphs G with χΣ(G)= 3 are the so-called odd multi-cacti

Approaching the conjecture:
Best result to date: χΣ(G)≤ 5 for all nice G [KKP10]
Improved result χΣ(G)≤ 4 when G is regular [Prz18+] or 4-chromatic [DLY12]

Side aspects:
Variants: list [BGN09], total [PW10], equitable [BPPSSW17], etc.
Generalisations to hypergraphs [KKP17] and digraphs [BGP12]

... + a few parallel worlds: product version, multiset version, etc.

12/36



The 1-2-3 Conjecture’s starter pack

For more details, check the survey by Seamone (arXiv:1211.5122)

Verification of the conjecture:
mainly for complete graphs and 3-colourable graphs [KŁT04]
other partial classes...

Complexity aspects:
Deciding if χΣ(G)≤ 2 is NP-hard [DW11], and...
... polytime solvable when G is bipartite [TWZ16]
bipartite graphs G with χΣ(G)= 3 are the so-called odd multi-cacti

Approaching the conjecture:
Best result to date: χΣ(G)≤ 5 for all nice G [KKP10]
Improved result χΣ(G)≤ 4 when G is regular [Prz18+] or 4-chromatic [DLY12]

Side aspects:
Variants: list [BGN09], total [PW10], equitable [BPPSSW17], etc.
Generalisations to hypergraphs [KKP17] and digraphs [BGP12]

... + a few parallel worlds: product version, multiset version, etc.

12/36



The 1-2-3 Conjecture’s starter pack

For more details, check the survey by Seamone (arXiv:1211.5122)

Verification of the conjecture:
mainly for complete graphs and 3-colourable graphs [KŁT04]
other partial classes...

Complexity aspects:
Deciding if χΣ(G)≤ 2 is NP-hard [DW11], and...
... polytime solvable when G is bipartite [TWZ16]
bipartite graphs G with χΣ(G)= 3 are the so-called odd multi-cacti

Approaching the conjecture:
Best result to date: χΣ(G)≤ 5 for all nice G [KKP10]
Improved result χΣ(G)≤ 4 when G is regular [Prz18+] or 4-chromatic [DLY12]

Side aspects:
Variants: list [BGN09], total [PW10], equitable [BPPSSW17], etc.
Generalisations to hypergraphs [KKP17] and digraphs [BGP12]

... + a few parallel worlds: product version, multiset version, etc.

12/36



The 1-2-3 Conjecture’s starter pack

For more details, check the survey by Seamone (arXiv:1211.5122)

Verification of the conjecture:
mainly for complete graphs and 3-colourable graphs [KŁT04]
other partial classes...

Complexity aspects:
Deciding if χΣ(G)≤ 2 is NP-hard [DW11], and...
... polytime solvable when G is bipartite [TWZ16]
bipartite graphs G with χΣ(G)= 3 are the so-called odd multi-cacti

Approaching the conjecture:
Best result to date: χΣ(G)≤ 5 for all nice G [KKP10]
Improved result χΣ(G)≤ 4 when G is regular [Prz18+] or 4-chromatic [DLY12]

Side aspects:
Variants: list [BGN09], total [PW10], equitable [BPPSSW17], etc.
Generalisations to hypergraphs [KKP17] and digraphs [BGP12]

... + a few parallel worlds: product version, multiset version, etc.

12/36



The 1-2-3 Conjecture’s starter pack

For more details, check the survey by Seamone (arXiv:1211.5122)

Verification of the conjecture:
mainly for complete graphs and 3-colourable graphs [KŁT04]
other partial classes...

Complexity aspects:
Deciding if χΣ(G)≤ 2 is NP-hard [DW11], and...
... polytime solvable when G is bipartite [TWZ16]
bipartite graphs G with χΣ(G)= 3 are the so-called odd multi-cacti

Approaching the conjecture:
Best result to date: χΣ(G)≤ 5 for all nice G [KKP10]
Improved result χΣ(G)≤ 4 when G is regular [Prz18+] or 4-chromatic [DLY12]

Side aspects:
Variants: list [BGN09], total [PW10], equitable [BPPSSW17], etc.
Generalisations to hypergraphs [KKP17] and digraphs [BGP12]

... + a few parallel worlds: product version, multiset version, etc.

12/36



The 1-2-3 Conjecture’s starter pack

For more details, check the survey by Seamone (arXiv:1211.5122)

Verification of the conjecture:
mainly for complete graphs and 3-colourable graphs [KŁT04]
other partial classes...

Complexity aspects:
Deciding if χΣ(G)≤ 2 is NP-hard [DW11], and...
... polytime solvable when G is bipartite [TWZ16]
bipartite graphs G with χΣ(G)= 3 are the so-called odd multi-cacti

Approaching the conjecture:
Best result to date: χΣ(G)≤ 5 for all nice G [KKP10]
Improved result χΣ(G)≤ 4 when G is regular [Prz18+] or 4-chromatic [DLY12]

Side aspects:
Variants: list [BGN09], total [PW10], equitable [BPPSSW17], etc.
Generalisations to hypergraphs [KKP17] and digraphs [BGP12]

... + a few parallel worlds: product version, multiset version, etc.

12/36



My contribution to the 1-2-3 Conjecture

Results on main aspects:
χΣ(G)≤ 4 for 5-regular graphs G
Thomassen et al.’s bipartite result for pairs a,b of odd labels

New tools and approaches:
Decompositional approach via locally irregular decompositions
General framework in terms of coloured labels

Results on side aspects:
Generalisations of the 1-2-3 Conjecture to digraphs
Understanding the conjecture’s mechanisms (why 3? etc.)
Considering other variants (optimisation, additional constraints, etc.)

(refer to my webpage http://jbensmai.fr, or HAL/arXiv)
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– First focus –

Generalising the 1-2-3 Conjecture to digraphs
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First thoughts

Generalising graph problems to digraphs is natural...
... but the outcomes are uncertain!

Here, can we come up with an interesting digraph problem?

Want something “close” to the original 1-2-3 Conjecture:
Somewhat natural i.e., easy to define
Similar behaviours effects of labelling an edge, etc.
A notion of exception just as K2
Challenging resilient to inductive arguments, etc.

Remark: Labelling a digraph yields two vertex-colourings c−
`
and c+

`
:

v

1

1

2

2

2

c`(v)
− c`(v)

+

⇒ Many generalisation possibilities , !
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Previous works and general terminology

One earlier variant by Borowiecki et al.: distinguish via |c+
`
−c−

`
| (relative sum)

Distinguish via single parameters?

General terminology:
− associated to c−

`
, + associated to c+

`

for α,β ∈ {−,+}, notions of (α,β)-proper labellings and (α,β)-nice digraphs
also, χ(α,β)(D) for a digraph D

⇒ Results in four “natural” variants

16/36



Previous works and general terminology

One earlier variant by Borowiecki et al.: distinguish via |c+
`
−c−

`
| (relative sum)

Distinguish via single parameters?

General terminology:
− associated to c−

`
, + associated to c+

`

for α,β ∈ {−,+}, notions of (α,β)-proper labellings and (α,β)-nice digraphs
also, χ(α,β)(D) for a digraph D

⇒ Results in four “natural” variants

16/36



Previous works and general terminology

One earlier variant by Borowiecki et al.: distinguish via |c+
`
−c−

`
| (relative sum)

Distinguish via single parameters?

General terminology:
− associated to c−

`
, + associated to c+

`

for α,β ∈ {−,+}, notions of (α,β)-proper labellings and (α,β)-nice digraphs
also, χ(α,β)(D) for a digraph D

⇒ Results in four “natural” variants

16/36



Previous works and general terminology

One earlier variant by Borowiecki et al.: distinguish via |c+
`
−c−

`
| (relative sum)

Distinguish via single parameters?

General terminology:
− associated to c−

`
, + associated to c+

`

for α,β ∈ {−,+}, notions of (α,β)-proper labellings and (α,β)-nice digraphs
also, χ(α,β)(D) for a digraph D

⇒ Results in four “natural” variants

16/36



Results on the four “natural” directed variants

Remark: The (+,+) and (−,−) variants are equivalent (up to reversing arcs)

(+,+) variant

moderate label influence
no exception
χ(+,+) ≤ 3

almost trivial induction
deciding ≤ 2 is NP-complete

(−,−) variant

moderate label influence
no exception
χ(−,−) ≤ 3

almost trivial induction
deciding ≤ 2 is NP-complete

(+,−) variant

strong label influence
lonely arcs ~uv (d+(u)= d−(v)= 1)

χ(+,−) ≤ 3
known case of the 1-2-3 Conjecture
deciding ≤ 2 is polytime solvable

(−,+) variant

no label influence
ss-arcs ~uv (d−(u)= d+(v)= 0)

χ(−,+) ≤ 3 (if no l.a.)
very peculiar variant of the 1-2-3 Conjecture

deciding ≤ 2 is NP-complete

Equivalent to (+,+)
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Labelling digraphs vs. Labelling bipartite graphs

Digraph D → Bipartite graph B(D)

v1

v2

v3

v4 v5

 

v+1 v−1

v+2 v−2

v+3 v−3

v+4 v−4

v+5 v−5

Remarks:
B(D) nice iff D has no lonely arc
For a labelling ` of D and the derived one `′ of B(D):

c+
`
(v)= c`′(v

+) and c−
`
(v)= c`′(v

−)
for every v ∈V (D)
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Implications on the (+,−) and (−,+) variants

This solves the (+,−) variant , !

D (+,−)-nice iff B(D) nice
c+
`
(u) 6= c−

`
(v) iff c`′(u

+) 6= c`′(v
−)...

... thus ` (+,−)-proper iff `′ proper...

... and thus χ(+,−)(D)≤ 3 iff χΣ(B(D))≤ 3, while B(D) is bipartite

Theorem [Barme, B., Przybyło, Woźniak, 2017]

For every (+,−)-nice digraph D, we have χ(+,−)(D)≤ 3.

We actually get more:
χ(+,−)(D)=χΣ(B(D))...
... thus digraphs D with χ(+,−)(D)= 3 exist...
... but they can be recognised easily! B(D)’s being odd multi-cacti
For every odd multi-cactus C , there is D such that B(D)=C
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Implications on the (+,−) and (−,+) variants (cont’d)

Not as immediate for the (−,+) variant / ...

We do have c+
`
(v)= c`′(v

+) and c−
`
(v)= c`′(v

−)...
... but u+v− forces c`′(u+) 6= c`′(v

−) while we want c−
`
(u) 6= c+

`
(v)!

Actually, u− and v+ are likely to be not adjacent in B(D)...

B(D) is equivalent to D in terms of obtained colours, not in terms of constraints!

Solution:
Label B(D) so that c`′(u−) ∈U and c`′(v

+) ∈ V , for some non-intersecting
sets U ,V , regardless of whether u−v+ is an edge
Back in D, makes c−

`
take values in U , and c+

`
in V

20/36
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`

take values in U , and c+
`

in V
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Implications on the (+,−) and (−,+) variants (cont’d)

Not as immediate for the (−,+) variant / ...
We do have c+
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Solving the (−,+) variant

Theorem [B., Lyngsie, 2020]

Every nice connected bipartite graph G with bipartition U ∪V has a proper
3-labelling ` where:

for every u ∈U, we have c`(u) ∈U and

for every v ∈V , we have c`(v) ∈ V ,

for

U = {0,3}∪ {3k +1 : k ≥ 1} and

V = {0,1,2}∪ {3k −1,3k : k ≥ 2}.

Remarks:

U = {0,3,4,7,10,13,16, . . . } and V = {0,1,2,5,6,8,9,11,12,14,15, . . . }

0 ∈U ∩V to catch isolated vertices

U and V are quite restrictive for low-degree vertices

Proved through a bottom-to-top approach, considering a layer decomposition
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Conclusion

A set of four interesting and nice problems , , requiring different approaches,
with different inherent behaviours...

sets of exceptions
resilience to inductive arguments
algorithmic complexity

... BUT, a bit deceiving from the challenge point of view / ...
(+,+) variant solved via a basic induction
(+,−) and (−,+) variants as hard as the 1-2-3 Conjecture in bipartite graphs

Is the “quest” over?

What about playing with functions of c−
`
and c+

`
?

Other parameters?
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– Second focus –

The role of 3’s for the 1-2-3 Conjecture

23/36



Two “natural” questions

Interpretation 1
Encode a proper vertex-colouring

1

12

2

 

3

2

3

4

1-2-3 Conjecture
⇔

Some proper vertex-colouring can be
encoded by a proper 3-labelling

Interpretation 2
Make a graph locally irregular

1

12

2

 

1-2-3 Conjecture
⇔

Make a graph locally irregular by
multiplying every edge by at most 3

How “close” from an “optimal” proper
vertex-colouring, i.e., with about
χ(G ) distinct colours, can we get?

How “small”, i.e., in terms of number
of edges, is the smallest locally

irregular multigraph overlaid by G?
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Three optimisation problems over the 1-2-3 Conjecture

Note: We are not restricted to assigning labels 1,2,3 only

Min. distinct colours mC

lower, upper bounds for classes
complexity results

etc.

“Presumption”: mS(G )≤ 2∆(G )

Min. sum of labels mL

lower, upper bounds for classes
complexity results

etc.

“Presumption”: mL(G )≤ 2|E (G )|

Supporting arguments:
True whenever χΣ(G )≤ 2

For graphs with χΣ(G )= 3, 1’s can “compensate” for 3’s
⇒ We do not need “ lots” of 3’s

Also observed in earlier works (1-2 Conjecture, Equitable 1-2-3 Conjecture, etc.)

Min. maximum colour mS
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A last problem

Terminology:
mT(G ): Minimum number of 3’s in a proper 3-labelling of G
Gp: Graphs G with mT(G )= p p ≥ 0
G≤p: G0∪·· ·∪Gp

ρ(G ): mT(G )/|E (G )|
ρ(F ): max{ρ(G ) :G ∈F } F class of graphs

“Conjecture” [B., Fioravantes, Mc Inerney, 2020+]

For every nice connected graph G , we have ρ(G )≤ 1/3.

Rather hard to study, due to the number of proper 3-labellings

Questions:
Given F , is there p ≥ 0 such that F ⊂G≤p?
If not, how can we bound ρ(F ) above?
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Obtained results

Relevance of the problem:
Every Gp is well populated... ∀H, ∃G : H ≤i G and G ∈Gp

... even, membership to any Gp is NP-complete

Classes needing a constant number of 3’s:
Bipartite graphs are in G≤2...
... but, beyond, many easy (3-chromatic) classes are unbounded: cubic, cacti,
outerplanar, planar with arbitrarily large girth g , etc.

Bounds on the number of needed 3’s:
ρ(F )≥ 1/c for the unbounded F ’s above (c = 10,12,10,g2+g , resp.)...
ρ(F )≤ 1/c ′ (in particular, c ′ = 3 for cubic, cacti, outerplanar)
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Establishing lower bounds

Two basic ideas:
When can labelling properties be inferred to supergraphs?
Are there small graphs with interesting labelling properties?

H1

H2

H3

G

Want: mT(G )≥ mT(H1)+mT(H2)+mT(H3)
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Weakly induced subgraphs

Observation [B., Fioravantes, Mc Inerney, 2020+]

Let H be a graph, and G be a supergraph of H where dH(v)= dG (v) for
every v ∈V (H) with dH(v)> 1. Then, mT(G )≥ mT(H).

Reason: Proper labelling of G ⇒ Proper labelling of H

Consequence: If H with δ(H)= 1 and ρ(H)= 1/c , then we can construct
arbitrarily large graphs G with ρ(G )≥ 1/c

Such graphs H exist, with low ratio ρ(H) (1/10)!
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Example application

mT(G )≥ mT(H)+mT(H)+mT(H)+mT(H)≥ 4mT(H)= 4

ρ(G )≥ 4/50

Use “nice” pieces, combined cleverly, to get more general properties
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Establishing upper bounds for 3-chromatic graphs

Standard approach: Proper 3-labellings with distinct colours modulo 3
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Establishing upper bounds for 3-chromatic graphs

Want: 0 mod 3 - 1 mod 3 - 2 mod 3
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α′s ∈ {1,2,3}, β′s = 2
Thus, ρ(G )≤ |V (G )|/|E (G )|
⇒ If G is dense enough, ρ(G )≤ 1/3
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For any regular spanning subgraph, at most 1/3 edges labelled 3

Avoid edges outside the original unicyclic subgraph?
Can be repeated on several spanning subgraphs!
⇒ perfect matchings, cycle covers (Hamiltonian cycles), etc.
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Conclusion

Nice interesting problems , , all sort of related to each other...

... but rather hard to study in general /

Limits due to restricted knowledge of the 1-2-3 Conjecture
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Some conclusions and perspectives
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Concluding words

Distinguishing labelling problems (including the 1-2-3 Conjecture) are
fascinating ones, with many aspects of interest...

... but still far from being completely understood

Possible research directions for the future:
Improve the best general bound χΣ ≤ 5

Understand better Kalkowski’s Algorithm
Develop the polynomial method

Verify the 1-2-3 Conjecture for more graphs
Planar graphs, 4-chromatic graphs, regular graphs
Etc.

Investigate the many variants of the 1-2-3 Conjecture
Optimisation variants mentioned earlier
Product variant, total variant, list variant, equitable variant, etc.

Consider the parameterised complexity of the optimisation variants
Differences between the variants?
Etc.

Thank you for your attention!
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Deliberations in progress...
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