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Original motivation

Network of n connected resources to be shared among p users, where:

1 ith user → ni resources (with
∑p

i=1 ni = n);

2 resources in a subnetwork must be able to communicate within it.

n1 = 4

,

n2 = 3

,

n3 = 1

,

⇔ For n-graph G and n1 + ...+ np = n, find V1 ∪ ... ∪ Vp = V (G ) s.t.:

1 |Vi | = ni for i = 1, ..., p;

2 G [Vi ] is connected for i = 1, ..., p.

(V1, ...,Vp) is a realization of (n1, ..., np) in G .
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Main issue

A priori, no idea on p, nor on the ni ’s!

⇒ Will we be able to satisfy the users?

n1 = 2

,

n2 = 2

,

n3 = 2

/

n4 = 2

/

Solution: Require an AP-graph structure.

G arbitrarily partitionable (AP) = All partitions of |V (G )| are realizable in G .
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General thoughts on AP graphs

We have:

AP ⇒ Realization of (2, ..., 2) (or (2, ..., 2, 1)) = (Quasi-) perfect matching.

AP spanning subgraph ⇒ AP. So Hamiltonian chain ⇒ AP.

Hence

Perfect matching ⊂ AP ⊂ Traceable ⊂ Hamiltonian.
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Considered aspects

So far, considered aspects of AP graphs include:

algorithmic aspects;

structural aspects;

more constrained variants (+ same considerations).

Many open questions...
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Algorithmic aspects
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Complexity of partitioning a graph

“Atomic” decision problem:

Realization
Input: A graph G , and a partition π := (n1, ..., np) of |V (G )|.
Question: Is π realizable in G?

Realization is NP-complete, even under many restrictions:
1 on π:

when |sp(π)| = 1 (i.e. π = (k, ..., k) for k ≥ 3) [Dyer, Frieze, 1985];
when |π| = k for any k ≥ 2 [B, 2013].

2 on G :

when G is a tree with ∆(G) = 3 [Barth, Fournier, 2006];
when G is a subdivided star [B., 2014];
when G is regular, a split graph, a cograph, a graph with arbitrary
connectivity, has “many” universal vertices, etc.

So, what about the problem AP = {Graph G : is G AP?}?
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On the complexity of AP

First thoughts: “AP 6∈ NP and AP 6∈ co-NP”!!!!

However, it is clear that AP ∈ Πp
2 (“∀π,∃V1 ∪ ... ∪ V|π| s.t. [...] ?”).

Is AP Πp
2-complete? Or NP-hard?

Well...

Conjecture [Barth, Fournier, 2006]

AP ∈ NP

Verified for a few graph classes:

subdivided stars [Barth, Baudon, Puech, 2002];

split graphs [Broersma, Kratsch, Woeginger, 2009];

complete multipartite graphs, graphs with enough universal vertices,
particular combinations of AP graphs [B., 2016].

⇒ Generally yield checking algorithms.
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On the (suspected) NPness of AP

Should follow from the existence of polynomial kernels of sequences.

Kernel K for G :

G is AP ⇔ All sequences of K are realizable in G .

K polynomial ⇒ The APness of G relies on a polynomial # of sequences only.

Examples of known polynomial kernels

subdivided stars: sequences π with |sp(π)| ≤ 7;

split graphs: sequences π with sp(π) ⊆ {1, 2, 3};
graphs with enough universal vertices: sequences where the largest
element value appears many times.

What for other classes of graphs?

(e.g. general trees, 3-connected near-triangulations, etc.)
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Structural aspects
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On AP trees

AP trees are rather understood:

Theorem [Barth, Fournier, Ravaux, 2009]

AP trees have ∆ ≤ 4;

degrees at least 3 are located on a same path;

degree-4 vertices are adjacent to a leaf.
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Rephrased differently...

Obtained by considering surgraphs that are “easier” w.r.t. the AP property:

K3

K2 K4

not AP ⇐ not AP

So, actually:

Corollary [Barth, Fournier, Ravaux, 2009]

Removing a cut-vertex from an AP graph results in at most 4 components.
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Generalization

Via the same technique:

Theorem [Baudon, Foucaud, Przyby lo, Woźniak, 2014]

For any k ≥ 2, removing a k-cutset from an AP graph:

may result in arbitrarily many components,

whose orders grow exponentially.
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Weakening Hamiltonian results

Recall that traceable ⇒ AP. Hence, APness is a weaker form of Hamiltonicity.

Weaken results for Hamiltonian cycles/paths to AP graphs?

First example:

Theorem [Ore, 1960]

Let G be a graph with order n. If for every two non-adjacent vertices u
and v of G we have d(u) + d(v) ≥ n − 1, then G is traceable.

was weakened to:

Theorem [Marczyk, 2007]

Let G be a graph with order n ≥ 8. If α(G ) ≤ dn/2e and for every two
non-adjacent vertices u and v of G we have d(u) + d(v) ≥ n − 3, then
G is AP.

Brandt claimed a generalization to triples of independent vertices.
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Hamiltonicity via edge density

Second example:

Theorem [Folklore?]

Let G be a connected graph with order n. If |E (G )| >
(
n−2
2

)
+ 2, then G

is traceable.

was weakened to:

Theorem [Kalinowski, Piĺsniak, Schiermeyer, Woźniak, 2016]

Let G be a connected graph with order n ≥ 22. If |E (G )| >
(
n−4
2

)
+ 12,

then G is AP.
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Squares of graphs

Well-known result:

Theorem [Fleischner, 1976]

The square G 2 of every 2-connected graph G is Hamiltonian.

It is not true however that the square of every connected graph is traceable...

... also wrong for AP graphs:

Theorem [B., Li, 2018+]

Realization is NP-complete, even when restricted to squares of bipartite
graphs.
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Forbidding pairs of patterns

Another well-known result:

Theorem [Duffus, Gould, Jacobson, 1982]

Every 2-connected (resp. connected) {K1,3,Z}-free graph is Hamiltonian
(resp. traceable).

For APness, none of the two patterns can be dropped from the equation:

Theorem [B., Li, 2018+]

Realization is NP-complete, even when restricted to claw-free graphs,
or to net-free graphs.
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Further directions

Longest paths go through n − 1 vertices 6⇒ AP (e.g. modified claws).

Does hypotraceability imply APness?

For k ≥ 3, k-connected k-regular are not all traceable...

... what for AP graphs? [Diwan, 2003]

Pick your favourite result on traceability. Does it weaken to AP graphs?
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Minimality

Recall that spanning AP subgraph ⇒ AP.

Is every AP graph spanned by an AP tree?

No!

Minimal AP graph = Graph with no non-trivial spanning AP subgraph.
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Progress so far

Not much known. Main conjecture:

Conjecture [Ravaux, 2009]

Minimal AP graphs have linear size.

Known stuff:

Largest known families: m = 31n
30 [Baudon, Przyby lo, Woźniak, 2012].

If G minimal AP with n ≥ 6, then ∆(G ) ≤ n − 3 [B., 2014].

Questions:

Denser families?

Generalization of the ∆ property.

Clique number?

Families with connectivity k ≥ 2?

etc.
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Perspectives, problems, etc.
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Possible directions...

Exhibit more polynomial kernels. Near-triangulations? Denser classes?

More generally, the complexity of AP.

More Hamiltonian conditions for APness?

Hypotraceable ⇒ AP?

3-connected cubic ⇒ AP?

Properties of minimal AP graphs? Denser classes?

etc.

Thanks for your attention.
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