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Metric Dimension (Slater, 1975; Harary, Melter, 1976)

Rules:
e Graph G=(V,E);
@ “Secret” vertex te V;

@ Probing a vertex v = distg(v,t).

Locate t (at once) by probing a minimum set of vertices?
This minimum = Metric Dimension MD(G) of G.
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Min. # of steps = Sequential Location Number SL(G) of G.



Sequential Locating Game (Seager, 2013)

How faster can we locate the target through multiple probing steps of one vertex?
Min. # of steps = Sequential Location Number SL(G) of G.

~ related to a well-known game © ...



Sequential Locating Game (Seager, 2013)

How faster can we locate the target through multiple probing steps of one vertex?
Min. # of steps = Sequential Location Number SL(G) of G.

~ related to a well-known game © ...




Sequential Locating Game and Guess Who?

// \ ~"

Cheveux Boucles Yeux bleus/
|Barbu | |Moustache| Bruns/Noirs Chauve doreilles Chapeau -




Sequential Locating Game and Guess Who?

Yeux bleus/
doreilles | | Chapeau clairs




Sequential Locating Game and Guess Who?

%
Boucles Yeux bleus/
Chauve dloreilles | |Chapeau -




Sequential Locating Game and Guess Who?

Cheveux Boucles Yeux bleus/
Moustache|f g ns/Noirs  (Chauve dloreilles | |Chapeau i




Sequential Metric Dimension (B., Mazauric, Mc Inerney, Nisse, Pérennes, 2018+)

Given G, k,?, is it possible to locate an immobile invisible target in G in
at most ¢ steps, by probing at most k vertices each step?

Related:
e ¢ =1 (Metric Dimension);
@ k=1 (Sequential Locating Game);
@ Moving target (Bosek et al., 2017).
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Sequential Metric Dimension (B., Mazauric, Mc Inerney, Nisse, Pérennes, 2018+)

Given G, k,?, is it possible to locate an immobile invisible target in G in
at most ¢ steps, by probing at most k vertices each step?

Related:
e ¢ =1 (Metric Dimension);
@ k=1 (Sequential Locating Game);
e Moving target (Bosek et al., 2017).

Note: [MD(G)/k] steps suffice. But can be far from optimal:

Now sequential probing (k =4)
All vertices in green probed

Location in 2 steps; SECOND step:

= MD(G)=19. And [MD(G)/41 =5, while 2 steps suffice.
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Localisation Problem

Given a tree T, can we locate an immobile invisible target in at most ¢
steps, provided we can probe at most k vertices each step?
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Localisation Problem

Given a tree T, can we locate an immobile invisible target in at most ¢
steps, provided we can probe at most k vertices each step?

Tree case (k fixed, minimize ¢):
@ Making the appropriate first probing step is NP-complete ® ...
@ ... but deciding how to probe optimally afterwards is polytime doable © .
e = Polytime (+1)-approximation algorithm, yielding A,(T) or Ax(T)+1.
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NP-hardness in trees

Determining Ax(T) is NP-hard in trees T.

Proof (sketch). Reduction from Hitting Set (given a set B :={by, ..., bp} and a set
& :=1{51,..., Sm} of subsets of B, find a smallest subset of B hitting all S;'s).

b1 b2 b3 by bs bg by

51 S 53 Sa 55 56

Main ideas:

@ Have many big stars in the tree, so that the target has to hide in one such.

@ Spend a few steps identifying the hosting big star, and then “peel” its leaves.
= ldentifying the big star early & Hitting set. [ ]
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Reduction, illustrated

% More identification turns,

with no eliminated star.
b! 1
b; b,
b 0}
3
T b! bi
T 2 2

@;mﬂ i2m+1
Probing Probing

Want: First turn such that all S;'s are hit... = Hitting set.
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Locating a target in a tree: Influence of the first step

First step: Probe any one vertex r...
= for next steps, reduces instance to:

@ atree T' rooted in r;
@ all leaves are at same distance from r;

@ target is on a leaf.

(because playing outside T’ is pointless)
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Dealing with such instances

T,: subtree rooted in v of T’ rooted in r (v is a child of r).

r

Vi 2]

Key fact: Probing any vertex of T, = Know whether T, hosts the target!

Crucial question

When playing in T, for the first time, how many vertices should be probed?

Example: What if T, is a big star, while Ty,,..., Ty;00, are much smaller stars?
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Overview of the procedure

© Probe any vertex r during first step.

e Full "power” of k not used, but...
e ... the other k—1 information might be useless anyway.

@ Next, in the "convenient” context (when having T'):

o Compute the pair (Ax(Ty),m,(Ty)) for each T, inductively.
o Deduce that of T'.

= Optimal from here + Polytime algorithm.
Also:
@ For each pair (Ax(T,),mk(T,)), can retrieve corresponding strategies.

@ (}) possible first steps; polynomial when k is a constant.



Conclusion and perspectives
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Future work and questions

@ Sequential metric dimension of more classes of graphs?
@ Centroidal dimension of paths?

@ All questions for sequential centroidal dimension.

Thank you for your attention!



Locating via relative distances

From probed vertices, get relative distances to the target instead.

Target
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Each v; — Vector of relative distances to the probed vertices:

vi — (fvih {vab {ved {ve})  vo — ({vah {val, {ved ivel) v — ({val, {vi} {ved, {vs})
va — ({vah {vi, vih ive})  vs — (fwsh {veh iveh {vi}) v — ({vrl, {va, vgl, {v1})
vz — ({vzh iveh fval {ivi})  vg — ({vg}, (v}, {val, {v1})



Locating via relative distances

From probed vertices, get relative distances to the target instead.

Target
@ L L @ L @ @ @ ®
%1 Vo V3 Vg Vg Ve V7 Vg Vo

Each v; — Vector of relative distances to the probed vertices:

vi — (fvih {vab {ved {ve})  vo — ({vah {val, {ved ivel) v — ({val, {vi} {ved, {vs})
va — ({vah {vi, vih ive})  vs — (fwsh {veh iveh {vi}) v — ({vrl, {va, vgl, {v1})
vz — ({vzh iveh fval {ivi})  vg — ({vg}, (v}, {val, {v1})

Arising notions of:
o Centroidal set (Foucaud, Klasing, Slater, 2014);
o Centroidal dimension (Foucaud, Klasing, Slater, 2014);
@ Sequential centroidal dimension (us, 2018+).

Decision problems related to the last notion are NP-complete...



