Sequential Metric Dimension (in trees)

Julien Bensmail, Dorian Mazauric, Fionn Mc Inerney,
Nicolas Nisse, Stéphane Pérennes

Université Nice Coéte d'Azur, France

Indian Statistical Institute, Kolkata, India
February 6, 2019

Introduction to the problem

Metric Dimension (Slater, 1975; Harary, Melter, 1976)

Rules:
e Graph G=(V,E);
@ “Secret” vertex te V;

@ Probing a vertex v = distg(v,t).

Metric Dimension (Slater, 1975; Harary, Melter, 1976)

Rules:
e Graph G=(V,E);
@ “Secret” vertex te V;

@ Probing a vertex v = distg(v,t).

Locate t (at once) by probing a minimum set of vertices?
This minimum = Metric Dimension MD(G) of G.

Metric Dimension (Slater, 1975; Harary, Melter, 1976)

Rules:
e Graph G=(V,E);
@ “Secret” vertex te V;

@ Probing a vertex v = distg(v,t).

Locate t (at once) by probing a minimum set of vertices?
This minimum = Metric Dimension MD(G) of G.

Metric Dimension (Slater, 1975; Harary, Melter, 1976)

Rules:
e Graph G=(V,E);
@ “Secret” vertex te V;

@ Probing a vertex v = distg(v,t).

Locate t (at once) by probing a minimum set of vertices?
This minimum = Metric Dimension MD(G) of G.

© O @ 6 ®
o—eo—0—o—o

MD(P,) =1

Metric Dimension (Slater, 1975; Harary, Melter, 1976)

Rules:
e Graph G=(V,E);
@ “Secret” vertex te V;

@ Probing a vertex v = distg(v,t).

Locate t (at once) by probing a minimum set of vertices?
This minimum = Metric Dimension MD(G) of G.

Metric Dimension (Slater, 1975; Harary, Melter, 1976)

Rules:
e Graph G=(V,E);
@ “Secret” vertex te V;

@ Probing a vertex v = distg(v,t).

Locate t (at once) by probing a minimum set of vertices?
This minimum = Metric Dimension MD(G) of G.

(2.2)

(1,2) (2,1)

(0,1) (1,0)

MD(C,) =2

Metric Dimension (Slater, 1975; Harary, Melter, 1976)

Rules:
e Graph G=(V,E);
@ “Secret” vertex te V;

@ Probing a vertex v = distg(v,t).

Locate t (at once) by probing a minimum set of vertices?
This minimum = Metric Dimension MD(G) of G.

Metric Dimension (Slater, 1975; Harary, Melter, 1976)

Rules:
e Graph G=(V,E);
@ “Secret” vertex te V;

@ Probing a vertex v = distg(v,t).

Locate t (at once) by probing a minimum set of vertices?
This minimum = Metric Dimension MD(G) of G.

(1,1,1,1)

(0,22,2) (2,0,22) (2202) (2,220) (2222)

MD(S,)=n-1

Sequential Locating Game (Seager, 2013)

How faster can we locate the target through multiple probing steps of one vertex?
Min. # of steps = Sequential Location Number SL(G) of G.

Sequential Locating Game (Seager, 2013)

How faster can we locate the target through multiple probing steps of one vertex?
Min. # of steps = Sequential Location Number SL(G) of G.

~ related to a well-known game © ...

Sequential Locating Game (Seager, 2013)

How faster can we locate the target through multiple probing steps of one vertex?
Min. # of steps = Sequential Location Number SL(G) of G.

~ related to a well-known game © ...

Sequential Locating Game and Guess Who?

// \ ~"

Cheveux Boucles Yeux bleus/
|Barbu | |Moustache| Bruns/Noirs Chauve doreilles Chapeau -

Sequential Locating Game and Guess Who?

Yeux bleus/
doreilles | | Chapeau clairs

Sequential Locating Game and Guess Who?

%
Boucles Yeux bleus/
Chauve dloreilles | |Chapeau -

Sequential Locating Game and Guess Who?

Cheveux Boucles Yeux bleus/
Moustache|f g ns/Noirs (Chauve dloreilles | |Chapeau i

Sequential Metric Dimension (B., Mazauric, Mc Inerney, Nisse, Pérennes, 2018+)

Given G, k,?, is it possible to locate an immobile invisible target in G in
at most ¢ steps, by probing at most k vertices each step?

Related:
e ¢ =1 (Metric Dimension);
@ k=1 (Sequential Locating Game);
@ Moving target (Bosek et al., 2017).

Sequential Metric Dimension (B., Mazauric, Mc Inerney, Nisse, Pérennes, 2018+)

Given G, k,?, is it possible to locate an immobile invisible target in G in
at most ¢ steps, by probing at most k vertices each step?

Related:
e ¢ =1 (Metric Dimension);
@ k=1 (Sequential Locating Game);
e Moving target (Bosek et al., 2017).

Note: [MD(G)/k] steps suffice. But can be far from optimal:

Sequential Metric Dimension (B., Mazauric, Mc Inerney, Nisse, Pérennes, 2018+)

Given G, k,?, is it possible to locate an immobile invisible target in G in
at most ¢ steps, by probing at most k vertices each step?

Related:
e ¢ =1 (Metric Dimension);
@ k=1 (Sequential Locating Game);
e Moving target (Bosek et al., 2017).

Note: [MD(G)/k] steps suffice. But can be far from optimal:

All vertices in green probed MD(G) =19

Sequential Metric Dimension (B., Mazauric, Mc Inerney, Nisse, Pérennes, 2018+)

Given G, k,?, is it possible to locate an immobile invisible target in G in
at most ¢ steps, by probing at most k vertices each step?

Related:
e ¢ =1 (Metric Dimension);
@ k=1 (Sequential Locating Game);
e Moving target (Bosek et al., 2017).

Note: [MD(G)/k] steps suffice. But can be far from optimal:

Now sequential probing (k =4)
All vertices in green probed

Location in 2 steps; FIRST step:

Sequential Metric Dimension (B., Mazauric, Mc Inerney, Nisse, Pérennes, 2018+)

Given G, k,?, is it possible to locate an immobile invisible target in G in
at most ¢ steps, by probing at most k vertices each step?

Related:
e ¢ =1 (Metric Dimension);
@ k=1 (Sequential Locating Game);
e Moving target (Bosek et al., 2017).

Note: [MD(G)/k] steps suffice. But can be far from optimal:

Now sequential probing (k =4)
All vertices in green probed Answer: (0,4,4,4)

Location in 2 steps; FIRST step:

Sequential Metric Dimension (B., Mazauric, Mc Inerney, Nisse, Pérennes, 2018+)

Given G, k,?, is it possible to locate an immobile invisible target in G in
at most ¢ steps, by probing at most k vertices each step?

Related:
e ¢ =1 (Metric Dimension);
@ k=1 (Sequential Locating Game);
e Moving target (Bosek et al., 2017).

Note: [MD(G)/k] steps suffice. But can be far from optimal:

Now sequential probing (k =4)
All vertices in green probed Answer: (2,2,2,2)

Location in 2 steps; FIRST step:

Sequential Metric Dimension (B., Mazauric, Mc Inerney, Nisse, Pérennes, 2018+)

Given G, k,?, is it possible to locate an immobile invisible target in G in
at most ¢ steps, by probing at most k vertices each step?

Related:
e ¢ =1 (Metric Dimension);
@ k=1 (Sequential Locating Game);
e Moving target (Bosek et al., 2017).

Note: [MD(G)/k] steps suffice. But can be far from optimal:

Now sequential probing (k =4)
All vertices in green probed Answer: (1,3,3,3)

Location in 2 steps; FIRST step:

Sequential Metric Dimension (B., Mazauric, Mc Inerney, Nisse, Pérennes, 2018+)

Given G, k,?, is it possible to locate an immobile invisible target in G in
at most ¢ steps, by probing at most k vertices each step?

Related:
e ¢ =1 (Metric Dimension);
@ k=1 (Sequential Locating Game);
e Moving target (Bosek et al., 2017).

Note: [MD(G)/k] steps suffice. But can be far from optimal:

Now sequential probing (k =4)
All vertices in green probed

Location in 2 steps; SECOND step:

Sequential Metric Dimension (B., Mazauric, Mc Inerney, Nisse, Pérennes, 2018+)

Given G, k,?, is it possible to locate an immobile invisible target in G in
at most ¢ steps, by probing at most k vertices each step?

Related:
e ¢ =1 (Metric Dimension);
@ k=1 (Sequential Locating Game);
e Moving target (Bosek et al., 2017).

Note: [MD(G)/k] steps suffice. But can be far from optimal:

Now sequential probing (k =4)
All vertices in green probed

Location in 2 steps; SECOND step:

= MD(G)=19. And [MD(G)/41 =5, while 2 steps suffice.

Sequential Metric Dimension in trees

Our (algorithmic) results on trees

Ak(T): min. # of steps to locate t in T (probing at most k vertices each step).

Localisation Problem

Given a tree T, can we locate an immobile invisible target in at most ¢
steps, provided we can probe at most k vertices each step?

Our (algorithmic) results on trees

Ak(T): min. # of steps to locate t in T (probing at most k vertices each step).

Localisation Problem

Given a tree T, can we locate an immobile invisible target in at most ¢
steps, provided we can probe at most k vertices each step?

Tree case (k fixed, minimize ¢):
@ Making the appropriate first probing step is NP-complete ® ...
@ ... but deciding how to probe optimally afterwards is polytime doable © .
e = Polytime (+1)-approximation algorithm, yielding A,(T) or Ax(T)+1.

NP-hardness in trees

Determining Ax(T) is NP-hard in trees T.

Proof (sketch). Reduction from Hitting Set (given a set B :={by, ..., bp} and a set
& :=1{51,..., Sm} of subsets of B, find a smallest subset of B hitting all S;'s).

b b2 b3 by bs bg by

51 S 53 Sa 55 56

NP-hardness in trees

Determining Ax(T) is NP-hard in trees T.

Proof (sketch). Reduction from Hitting Set (given a set B:={by,..., by} and a set
& :=1{51,..., Sm} of subsets of B, find a smallest subset of B hitting all S;'s).

b b2 b3 by bs bg by

NP-hardness in trees

Determining Ax(T) is NP-hard in trees T.

Proof (sketch). Reduction from Hitting Set (given a set B :={by, ..., bp} and a set
& :=1{51,..., Sm} of subsets of B, find a smallest subset of B hitting all S;'s).

b b2 b3 by bs bg by

51 S 53 Sa 55 56

Main ideas:
@ Have many big stars in the tree, so that the target has to hide in one such.
@ Spend a few steps identifying the hosting big star, and then “peel” its leaves.

NP-hardness in trees

Determining Ax(T) is NP-hard in trees T.

Proof (sketch). Reduction from Hitting Set (given a set B :={by, ..., bp} and a set
& :=1{51,..., Sm} of subsets of B, find a smallest subset of B hitting all S;'s).

b1 b2 b3 by bs bg by

51 S 53 Sa 55 56

Main ideas:

@ Have many big stars in the tree, so that the target has to hide in one such.

@ Spend a few steps identifying the hosting big star, and then “peel” its leaves.
= ldentifying the big star early & Hitting set. []

Reduction, illustrated

Reduction, illustrated

Reduction, illustrated

l bl] i’ b/"’ l bn

B! } by’
b} i by’
b} by’

—e o H1—

o

ot}

2m+1

bn

2m+1

Reduction, illustrated

Probing

Reduction, illustrated

Reduction, illustrated

Immediate star

identification. b1'
° bz e b'2
l b; b:,,

i i n
by | b3 b
]
i’ n
b2m+1 m+1 b2m+1

Reduction, illustrated

Reduction, illustrated

Reduction, illustrated

% More identification turns,

but one eliminated star.
b! 1
b b,
» b; b

lb1 :

2m+1 2m+1

Reduction, illustrated

b! 1
b b,
\ by ? b
[
‘b b
T 2j 2j

@;mﬂ i2m+1
Probing Probing

Reduction, illustrated

% More identification turns,

with no eliminated star.
b! 1
b; b,
b 0}
3
T b! bi
T 2 2

@;mﬂ i2m+1
Probing Probing

Want: First turn such that all S;'s are hit... = Hitting set.

Locating a target in a tree: Influence of the first step

First step: Probe any one vertex r...

Locating a target in a tree: Influence of the first step

First step: Probe any one vertex r...

Locating a target in a tree: Influence of the first step

First step: Probe any one vertex r...
= for next steps, reduces instance to:

@ atree T’ rooted in r;
@ all leaves are at same distance from r;

@ target is on a leaf.

Locating a target in a tree: Influence of the first step

First step: Probe any one vertex r...
= for next steps, reduces instance to:

@ atree T' rooted in r;
@ all leaves are at same distance from r;

@ target is on a leaf.

Locating a target in a tree: Influence of the first step

First step: Probe any one vertex r...
= for next steps, reduces instance to:

@ atree T' rooted in r;
@ all leaves are at same distance from r;

@ target is on a leaf.

(because playing outside T’ is pointless)

Dealing with such instances

T,: subtree rooted in v of T’ rooted in r (v is a child of r).

r

Vi 2]

Dealing with such instances

T,: subtree rooted in v of T’ rooted in r (v is a child of r).

r

Vi 2]

Key fact: Probing any vertex of T, = Know whether T, hosts the target!

Dealing with such instances

T,: subtree rooted in v of T’ rooted in r (v is a child of r).

r

Vi 2]

Key fact: Probing any vertex of T, = Know whether T, hosts the target!

Crucial question

When playing in T, for the first time, how many vertices should be probed?

Example: What if T, is a big star, while Ty,,..., Ty;00, are much smaller stars?

= Trade-off between inspecting many of the T,'s, and inspecting efficiently.

OK delays

= Trade-off between inspecting many of the T,'s, and inspecting efficiently.

Two main parameters for each T, (assuming target on a leaf):
Q Ax(T;): min. # of steps needed, probing at most k vertex each step;

@ 7,(T;): min. # of vertices that can be probed during the first step in a
strategy taking A, (T;) steps.

OK delays

= Trade-off between inspecting many of the T,'s, and inspecting efficiently.

Two main parameters for each T, (assuming target on a leaf):
Q Ax(T;): min. # of steps needed, probing at most k vertex each step;

@ 7,(T;): min. # of vertices that can be probed during the first step in a
strategy taking A, (T;) steps.

OK delays

= Trade-off between inspecting many of the T,'s, and inspecting efficiently.

Two main parameters for each T, (assuming target on a leaf):
Q Ax(T;): min. # of steps needed, probing at most k vertex each step;

@ 7,(T;): min. # of vertices that can be probed during the first step in a
strategy taking A, (T;) steps.

OK delays

= Trade-off between inspecting many of the T,'s, and inspecting efficiently.

Two main parameters for each T, (assuming target on a leaf):
Q Ax(T;): min. # of steps needed, probing at most k vertex each step;

@ 7,(T;): min. # of vertices that can be probed during the first step in a
strategy taking A, (T;) steps.

|||||||||||

In next example, A3(T')=5.

////A\\/?'A\/(//A\\

(5,2) (3,2) (3,2) (3,2) (3,2) (3,2)

|||||||||||

In next example, A3(T')=5.

////A\\/?'A\/(//A\\

(5,2) (3,2) (3,2) (3,2) (3,2) (3,2)

|||||||||||

In next example, A3(T')=5.

////A\\/?'A\/(//A\\

(5,2) (3,2) (3,2) (3,2) (3,2) (3,2)

|||||||||||

In next example, A3(T')=5.

////A\\/?'A\/(//A\\

(5,2) (3,2) (3,2) (3,2) (3,2) (3,2)

|||||||||||

In next example, A3(T')=5.

////A\\/?'A\/(//A\\

(5,2) (3,2) (3,2) (3,2) (3,2) (3,2)

|||||||||||

In next example, A3(T')=5.

////A\\/?'A\/(//A\\

(5,2) (3,2) (3,2) (3,2) (3,2) (3,2)

Overview of the procedure

© Probe any vertex r during first step.

Overview of the procedure

© Probe any vertex r during first step.

e Full "power” of k not used, but...
e ... the other k—1 information might be useless anyway.

Overview of the procedure

© Probe any vertex r during first step.

e Full "power” of k not used, but...
e ... the other k—1 information might be useless anyway.

@ Next, in the “convenient” context (when having T'):

o Compute the pair (Ax(Ty),m,(Ty)) for each T, inductively.
o Deduce that of T'.

= Optimal from here + Polytime algorithm.

Overview of the procedure

© Probe any vertex r during first step.

e Full "power” of k not used, but...
e ... the other k—1 information might be useless anyway.

@ Next, in the "convenient” context (when having T'):

o Compute the pair (Ax(Ty),m,(Ty)) for each T, inductively.
o Deduce that of T'.

= Optimal from here + Polytime algorithm.
Also:
@ For each pair (Ax(T,),mk(T,)), can retrieve corresponding strategies.

@ (}) possible first steps; polynomial when k is a constant.

Conclusion and perspectives

Future work and questions

@ Sequential metric dimension of more classes of graphs?

Future work and questions

@ Sequential metric dimension of more classes of graphs?
@ Centroidal dimension of paths?

Future work and questions

@ Sequential metric dimension of more classes of graphs?
@ Centroidal dimension of paths?

@ All questions for sequential centroidal dimension.

Future work and questions

@ Sequential metric dimension of more classes of graphs?
@ Centroidal dimension of paths?

@ All questions for sequential centroidal dimension.

Thank you for your attention!

Locating via relative distances

From probed vertices, get relative distances to the target instead.

Target
@ L L @ L @ @ @ ®
%1 Vo V3 Vg Vg Ve V7 Vg Vo

Each v; — Vector of relative distances to the probed vertices:

vi — (fvih {vab {ved {ve}) vo — ({vah {val, {ved ivel) v — ({val, {vi} {ved, {vs})
va — ({vah {vi, vih ive}) vs — (fwsh {veh iveh {vi}) v — ({vrl, {va, vgl, {v1})
vz — ({vzh iveh fval {ivi}) vg — ({vg}, (v}, {val, {v1})

Locating via relative distances

From probed vertices, get relative distances to the target instead.

Target
@ L L @ L @ @ @ ®
%1 Vo V3 Vg Vg Ve V7 Vg Vo

Each v; — Vector of relative distances to the probed vertices:

vi — (fvih {vab {ved {ve}) vo — ({vah {val, {ved ivel) v — ({val, {vi} {ved, {vs})
va — ({vah {vi, vih ive}) vs — (fwsh {veh iveh {vi}) v — ({vrl, {va, vgl, {v1})
vz — ({vzh iveh fval {ivi}) vg — ({vg}, (v}, {val, {v1})

Arising notions of:
o Centroidal set (Foucaud, Klasing, Slater, 2014);
o Centroidal dimension (Foucaud, Klasing, Slater, 2014);
@ Sequential centroidal dimension (us, 2018+).

Decision problems related to the last notion are NP-complete...

