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Introduction to the problem
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Metric Dimension (Slater, 1975; Harary, Melter, 1976)

Rules:

Graph G = (V ,E );
“Secret” vertex t ∈V ;
Probing a vertex v ⇒ distG (v ,t).

Locate t (at once) by probing a minimum set of vertices?
This minimum = Metric Dimension MD(G ) of G .
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Metric Dimension (Slater, 1975; Harary, Melter, 1976)

Rules:

Graph G = (V ,E );
“Secret” vertex t ∈V ;
Probing a vertex v ⇒ distG (v ,t).

Locate t (at once) by probing a minimum set of vertices?
This minimum = Metric Dimension MD(G ) of G .
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Sequential Locating Game (Seager, 2013)

How faster can we locate the target through multiple probing steps of one vertex?
Min. # of steps = Sequential Location Number SL(G ) of G .

∼ related to a well-known game , ...
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Sequential Locating Game and Guess Who?

Femme

AlfredAlex AnitaAnne BernardCharlesBill ClaireDavidEric George FransHermanJoe MariaMax PaulPhilip PeterRichard RobertSam Susan

Moustache ChapeauChauve

Blond

Tom

Lunettes

Barbu

Roux
Ch. blanc

Yeux bleus/
clairs

Gros nez

Boucles 
d'oreilles

Cheveux 
Bruns/Noirs

Couettes

?
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Sequential Metric Dimension (B., Mazauric, Mc Inerney, Nisse, Pérennes, 2018+)

Question

Given G ,k ,`, is it possible to locate an immobile invisible target in G in
at most ` steps, by probing at most k vertices each step?

Related:
`= 1 (Metric Dimension);
k = 1 (Sequential Locating Game);
Moving target (Bosek et al., 2017).

Note: dMD(G )/ke steps suffice. But can be far from optimal:

All vertices in green probed MD(G )= 19

Now sequential probing (k = 4)

All vertices in green probed

Location in 2 steps; FIRST step:

Answer: (0,4,4,4)Answer: (2,2,2,2)Answer: (1,3,3,3)

Location in 2 steps; SECOND step:

⇒ MD(G )= 19. And dMD(G )/4e = 5, while 2 steps suffice.
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Sequential Metric Dimension in trees
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Our (algorithmic) results on trees

λk(T ): min. # of steps to locate t in T (probing at most k vertices each step).

Localisation Problem

Given a tree T , can we locate an immobile invisible target in at most `
steps, provided we can probe at most k vertices each step?

Tree case (k fixed, minimize `):
Making the appropriate first probing step is NP-complete / ...
... but deciding how to probe optimally afterwards is polytime doable , .
⇒ Polytime (+1)-approximation algorithm, yielding λk(T ) or λk(T )+1.
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NP-hardness in trees

Theorem

Determining λk(T ) is NP-hard in trees T .

Proof (sketch). Reduction from Hitting Set (given a set B := {b1, ...,bn} and a set
S := {S1, ...,Sm} of subsets of B, find a smallest subset of B hitting all Si ’s).

b1 b2 b3 b4 b5 b6 b7

S1 S2 S3 S4 S5 S6

Main ideas:
Have many big stars in the tree, so that the target has to hide in one such.

Spend a few steps identifying the hosting big star, and then “peel” its leaves.
⇒ Identifying the big star early ⇔ Hitting set. ■
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Reduction, illustrated
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↑ Probing

Immediate star
identification.

7
More identification turns,
but one eliminated star.

↑ Probing ↑ Probing

More identification turns,
with no eliminated star.

Want: First turn such that all Si ’s are hit... ⇒ Hitting set.
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Locating a target in a tree: Influence of the first step

First step: Probe any one vertex r ...

⇒ for next steps, reduces instance to:
a tree T ′ rooted in r ;
all leaves are at same distance from r ;
target is on a leaf.

r

(because playing outside T ′ is pointless)
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Dealing with such instances

Tv : subtree rooted in v of T ′ rooted in r (v is a child of r).

r

v1 v2
Tv1

Key fact: Probing any vertex of Tv ⇒ Know whether Tv hosts the target!

Crucial question

When playing in Tv for the first time, how many vertices should be probed?

Example: What if Tv1 is a big star, while Tv2 , ...,Tv1000 are much smaller stars?
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OK delays

⇒ Trade-off between inspecting many of the Tv ’s, and inspecting efficiently.

Two main parameters for each Tv (assuming target on a leaf):
1 λk(Ti ): min. # of steps needed, probing at most k vertex each step;
2 πk(Ti ): min. # of vertices that can be probed during the first step in a

strategy taking λk(Ti ) steps.
∼ what initial delay does not compromise a quick localisation?

λ3(T )= 3 π3(T )= 2
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Full example

In next example, λ3(T
′)= 5.

r

v1 v2 v3 v4 v5 v6

(5,2) (3,2) (3,2) (3,2) (3,2) (3,2)

(λ3(Tvi ),π3(Tvi ))

15 9 9 9 9 9
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Overview of the procedure

1 Probe any vertex r during first step.

Full “power” of k not used, but...
... the other k −1 information might be useless anyway.

2 Next, in the “convenient” context (when having T ′):
Compute the pair (λk (Tv ),πk (Tv )) for each Tv inductively.
Deduce that of T ′.

⇒ Optimal from here + Polytime algorithm.

Also:
For each pair (λk(Tv ),πk(Tv )), can retrieve corresponding strategies.(n
k

)
possible first steps; polynomial when k is a constant.
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Conclusion and perspectives
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Future work and questions

Sequential metric dimension of more classes of graphs?

Centroidal dimension of paths?
All questions for sequential centroidal dimension.

Thank you for your attention!
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Locating via relative distances

From probed vertices, get relative distances to the target instead.

Target

v1 v2 v3 v4 v5 v6 v7 v8 v9

Each vi → Vector of relative distances to the probed vertices:

v1 → ({v1}, {v4}, {v7}, {v8}) v2 → ({v1}, {v4}, {v7}, {v8}) v3 → ({v4}, {v1}, {v7}, {v8})
v4 → ({v4}, {v1,v7}, {v8}) v5 → ({v5}, {v7}, {v8}, {v1}) v6 → ({v7}, {v4,v8}, {v1})

v7 → ({v7}, {v8}, {v4}, {v1}) v8 → ({v8}, {v7}, {v4}, {v1})

Arising notions of:
Centroidal set (Foucaud, Klasing, Slater, 2014);
Centroidal dimension (Foucaud, Klasing, Slater, 2014);
Sequential centroidal dimension (us, 2018+).

Decision problems related to the last notion are NP-complete...
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