Sequential Metric Dimension (in trees)

<u>Julien Bensmail</u>, Dorian Mazauric, Fionn Mc Inerney, Nicolas Nisse, Stéphane Pérennes

Université Nice Côte d'Azur, France

Indian Statistical Institute, Kolkata, India February 6, 2019

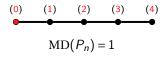
Introduction to the problem

- Graph G = (V, E);
- "Secret" vertex $t \in V$;
- Probing a vertex $v \Rightarrow \operatorname{dist}_G(v, t)$.

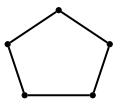
- Graph G = (V, E);
- "Secret" vertex $t \in V$;
- Probing a vertex $v \Rightarrow \operatorname{dist}_G(v, t)$.

- Graph G = (V, E);
- "Secret" vertex $t \in V$;
- Probing a vertex $v \Rightarrow \operatorname{dist}_G(v, t)$.

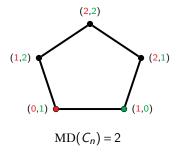
- Graph G = (V, E);
- "Secret" vertex $t \in V$;
- Probing a vertex $v \Rightarrow \operatorname{dist}_G(v, t)$.



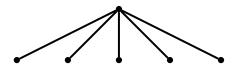
- Graph G = (V, E);
- "Secret" vertex $t \in V$;
- Probing a vertex $v \Rightarrow \operatorname{dist}_G(v, t)$.



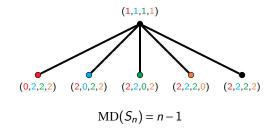
- Graph G = (V, E);
- "Secret" vertex $t \in V$;
- Probing a vertex $v \Rightarrow \operatorname{dist}_G(v, t)$.



- Graph G = (V, E);
- "Secret" vertex $t \in V$;
- Probing a vertex $v \Rightarrow \operatorname{dist}_G(v, t)$.



- Graph G = (V, E);
- "Secret" vertex $t \in V$;
- Probing a vertex $v \Rightarrow \operatorname{dist}_G(v, t)$.

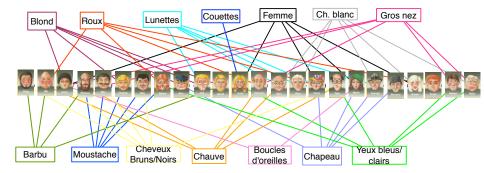


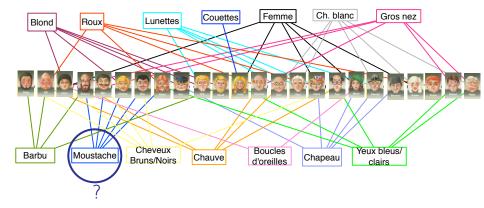
How faster can we locate the target through *multiple* probing steps of *one* vertex? Min. # of steps = Sequential Location Number SL(G) of G. How faster can we locate the target through *multiple* probing steps of *one* vertex? Min. # of steps = Sequential Location Number SL(G) of G.

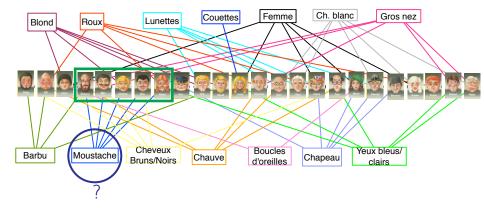
~ related to a well-known game ...

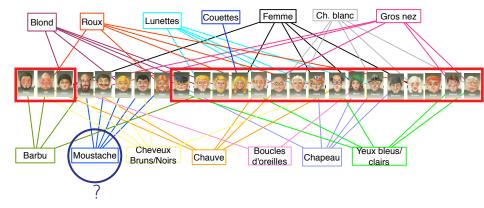
How faster can we locate the target through *multiple* probing steps of *one* vertex? Min. # of steps = Sequential Location Number SL(G) of G.

 \sim related to a well-known game ...









Given G, k, ℓ , is it possible to locate an immobile invisible target in G in at most ℓ steps, by probing at most k vertices each step?

Related:

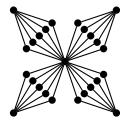
- $\ell = 1$ (Metric Dimension);
- k = 1 (Sequential Locating Game);
- Moving target (Bosek et al., 2017).

Given G, k, ℓ , is it possible to locate an immobile invisible target in G in at most ℓ steps, by probing at most k vertices each step?

Related:

- $\ell = 1$ (Metric Dimension);
- k = 1 (Sequential Locating Game);
- Moving target (Bosek et al., 2017).

Note: [MD(G)/k] steps suffice. But can be far from optimal:

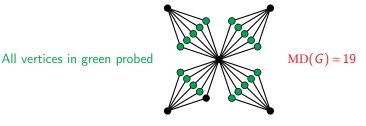


Given G, k, ℓ , is it possible to locate an immobile invisible target in G in at most ℓ steps, by probing at most k vertices each step?

Related:

- $\ell = 1$ (Metric Dimension);
- k = 1 (Sequential Locating Game);
- Moving target (Bosek et al., 2017).

Note: [MD(G)/k] steps suffice. But can be far from optimal:



Given G, k, ℓ , is it possible to locate an immobile invisible target in G in at most ℓ steps, by probing at most k vertices each step?

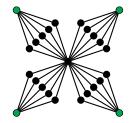
Related:

- $\ell = 1$ (Metric Dimension);
- k = 1 (Sequential Locating Game);
- Moving target (Bosek et al., 2017).

Note: [MD(G)/k] steps suffice. But can be far from optimal:

Now sequential probing (k = 4)

All vertices in green probed



Given G, k, ℓ , is it possible to locate an immobile invisible target in G in at most ℓ steps, by probing at most k vertices each step?

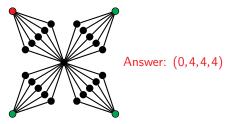
Related:

- $\ell = 1$ (Metric Dimension);
- k = 1 (Sequential Locating Game);
- Moving target (Bosek et al., 2017).

Note: [MD(G)/k] steps suffice. But can be far from optimal:

Now sequential probing (k = 4)

All vertices in green probed



Given G, k, ℓ , is it possible to locate an immobile invisible target in G in at most ℓ steps, by probing at most k vertices each step?

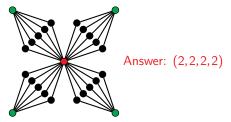
Related:

- $\ell = 1$ (Metric Dimension);
- k = 1 (Sequential Locating Game);
- Moving target (Bosek et al., 2017).

Note: [MD(G)/k] steps suffice. But can be far from optimal:

Now sequential probing (k = 4)

All vertices in green probed



Given G, k, ℓ , is it possible to locate an immobile invisible target in G in at most ℓ steps, by probing at most k vertices each step?

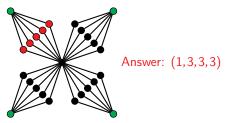
Related:

- $\ell = 1$ (Metric Dimension);
- k = 1 (Sequential Locating Game);
- Moving target (Bosek et al., 2017).

Note: [MD(G)/k] steps suffice. But can be far from optimal:

Now sequential probing (k = 4)

All vertices in green probed



Given G, k, ℓ , is it possible to locate an immobile invisible target in G in at most ℓ steps, by probing at most k vertices each step?

Related:

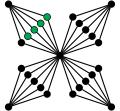
- $\ell = 1$ (Metric Dimension);
- k = 1 (Sequential Locating Game);
- Moving target (Bosek et al., 2017).

Note: [MD(G)/k] steps suffice. But can be far from optimal:

Now sequential probing (k = 4)

All vertices in green probed

Location in 2 steps; SECOND step:



Given G, k, ℓ , is it possible to locate an immobile invisible target in G in at most ℓ steps, by probing at most k vertices each step?

Related:

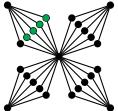
- $\ell = 1$ (Metric Dimension);
- k = 1 (Sequential Locating Game);
- Moving target (Bosek et al., 2017).

Note: [MD(G)/k] steps suffice. But can be far from optimal:

Now sequential probing (k = 4)

All vertices in green probed

Location in 2 steps; SECOND step:



 \Rightarrow MD(G) = 19. And [MD(G)/4] = 5, while 2 steps suffice.

Sequential Metric Dimension in trees

 $\lambda_k(T)$: min. # of steps to locate t in T (probing at most k vertices each step).

Localisation Problem

Given a tree T, can we locate an immobile invisible target in at most ℓ steps, provided we can probe at most k vertices each step?

 $\lambda_k(T)$: min. # of steps to locate t in T (probing at most k vertices each step).

Localisation Problem

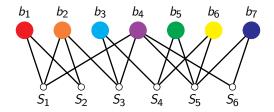
Given a tree T, can we locate an immobile invisible target in at most ℓ steps, provided we can probe at most k vertices each step?

Tree case (k fixed, minimize ℓ):

- \bullet Making the appropriate first probing step is NP-complete \circledast ...
- $\bullet\,$... but deciding how to probe optimally afterwards is polytime doable \circledast .
- \Rightarrow Polytime (+1)-approximation algorithm, yielding $\lambda_k(T)$ or $\lambda_k(T)+1$.

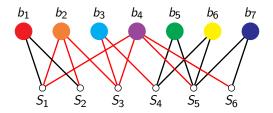
Determining $\lambda_k(T)$ is NP-hard in trees T.

Proof (sketch). Reduction from Hitting Set (given a set $B := \{b_1, ..., b_n\}$ and a set $\mathscr{S} := \{S_1, ..., S_m\}$ of subsets of B, find a smallest subset of B hitting all S_i 's).



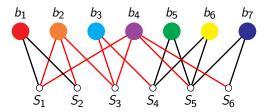
Determining $\lambda_k(T)$ is NP-hard in trees T.

Proof (sketch). Reduction from Hitting Set (given a set $B := \{b_1, ..., b_n\}$ and a set $\mathscr{S} := \{S_1, ..., S_m\}$ of subsets of B, find a smallest subset of B hitting all S_i 's).



Determining $\lambda_k(T)$ is NP-hard in trees T.

Proof (sketch). Reduction from Hitting Set (given a set $B := \{b_1, ..., b_n\}$ and a set $\mathscr{S} := \{S_1, ..., S_m\}$ of subsets of B, find a smallest subset of B hitting all S_i 's).

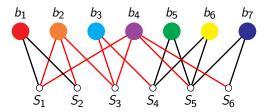


Main ideas:

- Have many big stars in the tree, so that the target has to hide in one such.
- Spend a few steps identifying the hosting big star, and then "peel" its leaves.

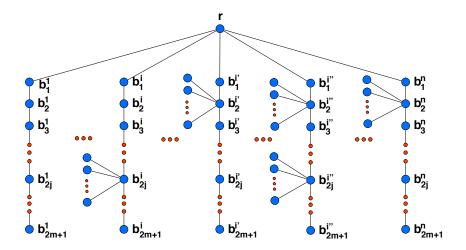
Determining $\lambda_k(T)$ is NP-hard in trees T.

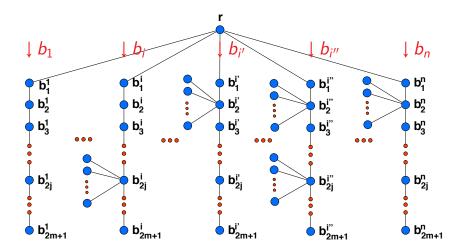
Proof (sketch). Reduction from Hitting Set (given a set $B := \{b_1, ..., b_n\}$ and a set $\mathscr{S} := \{S_1, ..., S_m\}$ of subsets of B, find a smallest subset of B hitting all S_i 's).

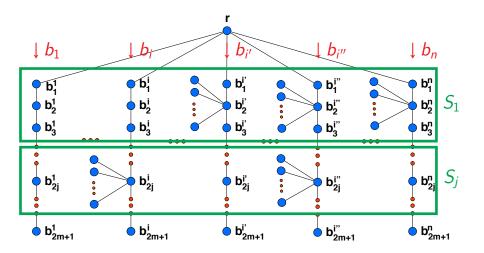


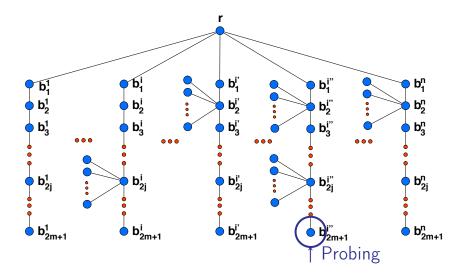
Main ideas:

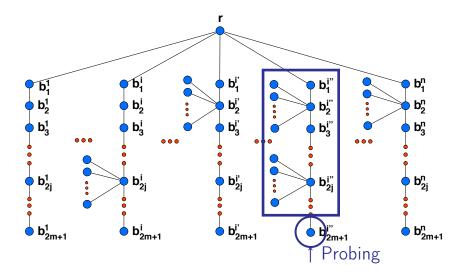
- Have many big stars in the tree, so that the target has to hide in one such.
- $\bullet\,$ Spend a few steps identifying the hosting big star, and then "peel" its leaves.
- \Rightarrow Identifying the big star early \Leftrightarrow Hitting set.

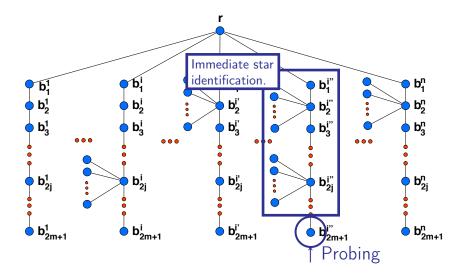


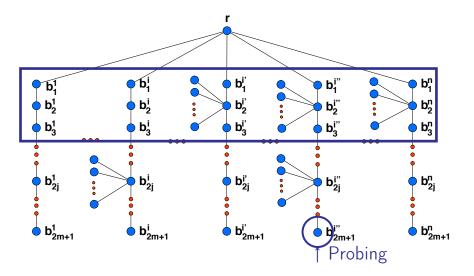


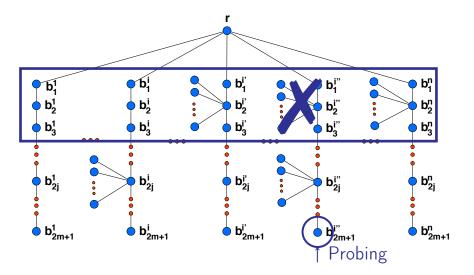


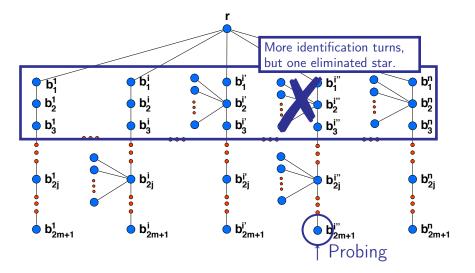


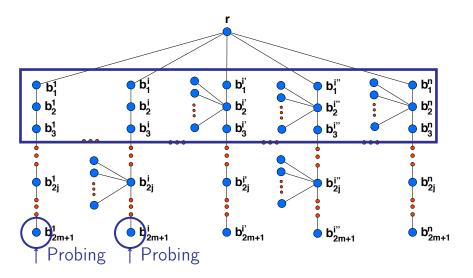


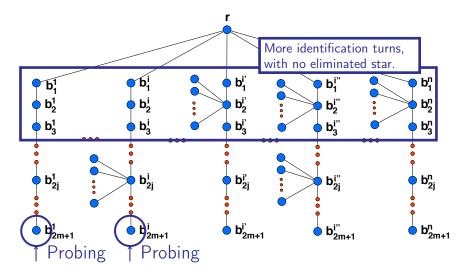






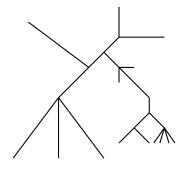




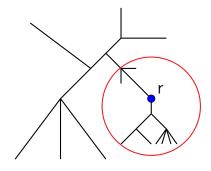


Want: First turn such that all S_i 's are hit... \Rightarrow Hitting set.

First step: Probe any one vertex r...

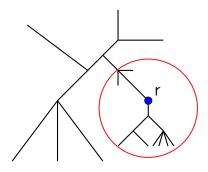


First step: Probe any one vertex r...



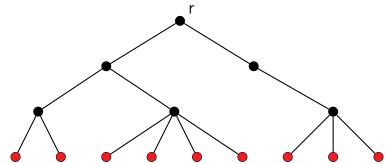
First step: Probe any one vertex *r*...

- \Rightarrow for next steps, reduces instance to:
 - a tree T' rooted in r;
 - all leaves are at same distance from r;
 - target is on a leaf.



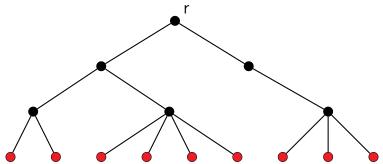
First step: Probe any one vertex r... \Rightarrow for next steps, reduces instance to:

- a tree T' rooted in r;
- all leaves are at same distance from r;
- target is on a leaf.



First step: Probe any one vertex r... \Rightarrow for next steps, reduces instance to:

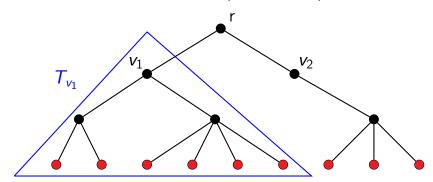
- a tree T' rooted in r;
- all leaves are at same distance from r;
- target is on a leaf.



(because playing outside T' is pointless)

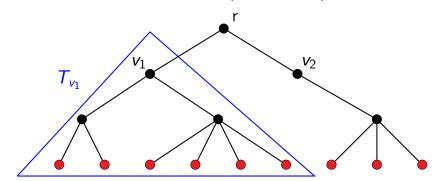
Dealing with such instances

 T_v : subtree rooted in v of T' rooted in r (v is a child of r).



Dealing with such instances

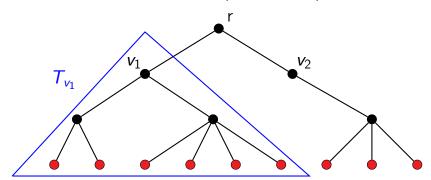
 T_v : subtree rooted in v of T' rooted in r (v is a child of r).



Key fact: Probing any vertex of $T_v \Rightarrow$ Know whether T_v hosts the target!

Dealing with such instances

 T_v : subtree rooted in v of T' rooted in r (v is a child of r).



Key fact: Probing any vertex of $T_v \Rightarrow$ Know whether T_v hosts the target!

Crucial question

When playing in T_v for the first time, how many vertices should be probed?

Example: What if T_{v_1} is a big star, while $T_{v_2}, ..., T_{v_{1000}}$ are much smaller stars?

 \Rightarrow Trade-off between inspecting **many** of the T_v 's, and inspecting **efficiently**.

\Rightarrow Trade-off between inspecting **many** of the T_v 's, and inspecting **efficiently**.

Two main parameters for each T_v (assuming target on a leaf):

- $\lambda_k(T_i)$: min. # of steps needed, probing at most k vertex each step;
- π_k(T_i): min. # of vertices that can be probed during the first step in a strategy taking λ_k(T_i) steps.

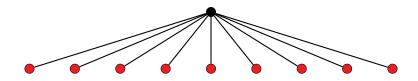
 \sim what initial delay does not compromise a quick localisation?

\Rightarrow Trade-off between inspecting **many** of the T_{v} 's, and inspecting **efficiently**.

Two main parameters for each T_v (assuming target on a leaf):

- $\lambda_k(T_i)$: min. # of steps needed, probing at most k vertex each step;
- π_k(T_i): min. # of vertices that can be probed during the first step in a strategy taking λ_k(T_i) steps.

~ what initial delay does not compromise a quick localisation?

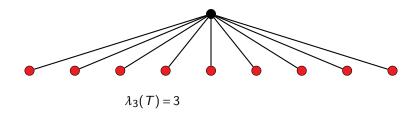


\Rightarrow Trade-off between inspecting **many** of the T_v 's, and inspecting **efficiently**.

Two main parameters for each T_v (assuming target on a leaf):

- $\lambda_k(T_i)$: min. # of steps needed, probing at most k vertex each step;
- π_k(T_i): min. # of vertices that can be probed during the first step in a strategy taking λ_k(T_i) steps.

~ what initial delay does not compromise a quick localisation?

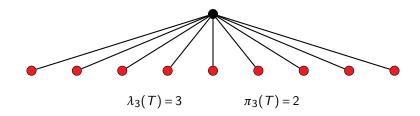


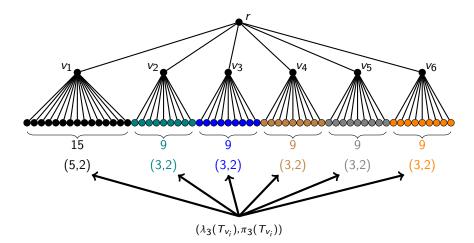
\Rightarrow Trade-off between inspecting **many** of the T_{v} 's, and inspecting **efficiently**.

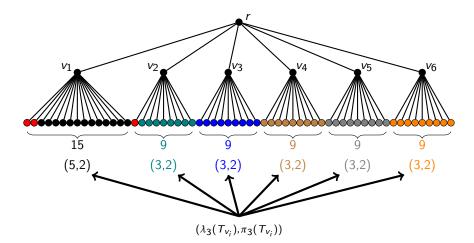
Two main parameters for each T_v (assuming target on a leaf):

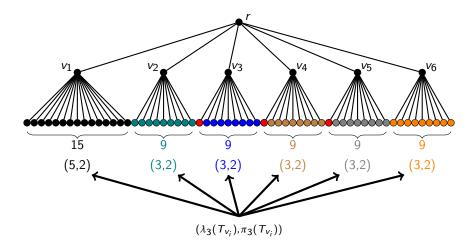
- $\lambda_k(T_i)$: min. # of steps needed, probing at most k vertex each step;
- π_k(T_i): min. # of vertices that can be probed during the first step in a strategy taking λ_k(T_i) steps.

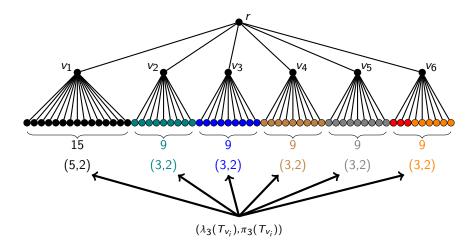
~ what initial delay does not compromise a quick localisation?

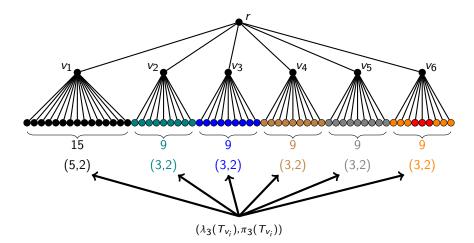


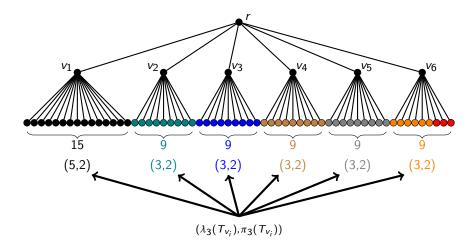












9 Probe *any* vertex *r* during first step.

O Probe *any* vertex *r* during first step.

- Full "power" of k not used, but...
- ... the other k-1 information might be useless anyway.

O Probe *any* vertex *r* during first step.

- Full "power" of k not used, but...
- ... the other k-1 information might be useless anyway.

2 Next, in the "convenient" context (when having T'):

- Compute the pair $(\lambda_k(T_v), \pi_k(T_v))$ for each T_v inductively.
- Deduce that of T'.
- \Rightarrow Optimal from here + Polytime algorithm.

Probe any vertex r during first step.

- Full "power" of k not used, but...
- ... the other k-1 information might be useless anyway.
- **②** Next, in the "convenient" context (when having T'):
 - Compute the pair $(\lambda_k(T_v), \pi_k(T_v))$ for each T_v inductively.
 - Deduce that of T'.
 - \Rightarrow Optimal from here + Polytime algorithm.

Also:

- For each pair $(\lambda_k(T_v), \pi_k(T_v))$, can retrieve corresponding strategies.
- $\binom{n}{k}$ possible first steps; polynomial when k is a constant.

Conclusion and perspectives

• Sequential metric dimension of more classes of graphs?

- Sequential metric dimension of more classes of graphs?
- Centroidal dimension of paths?

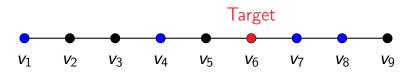
- Sequential metric dimension of more classes of graphs?
- Centroidal dimension of paths?
- All questions for sequential centroidal dimension.

- Sequential metric dimension of more classes of graphs?
- Centroidal dimension of paths?
- All questions for sequential centroidal dimension.

Thank you for your attention!

Locating via relative distances

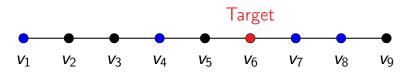
From probed vertices, get relative distances to the target instead.



Each $v_i \rightarrow$ Vector of relative distances to the probed vertices:

$$\begin{array}{l} v_1 \to (\{v_1\}, \{v_4\}, \{v_7\}, \{v_8\}) & v_2 \to (\{v_1\}, \{v_4\}, \{v_7\}, \{v_8\}) & v_3 \to (\{v_4\}, \{v_1\}, \{v_7\}, \{v_8\}) \\ v_4 \to (\{v_4\}, \{v_1, v_7\}, \{v_8\}) & v_5 \to (\{v_5\}, \{v_7\}, \{v_8\}, \{v_1\}) & v_6 \to (\{v_7\}, \{v_4, v_8\}, \{v_1\}) \\ v_7 \to (\{v_7\}, \{v_8\}, \{v_4\}, \{v_1\}) & v_8 \to (\{v_8\}, \{v_7\}, \{v_4\}, \{v_1\}) \end{array}$$

From probed vertices, get relative distances to the target instead.



Each $v_i \rightarrow$ Vector of relative distances to the probed vertices:

$$\begin{array}{l} v_{1} \rightarrow \left(\{v_{1}\}, \{v_{4}\}, \{v_{7}\}, \{v_{8}\}\right) & v_{2} \rightarrow \left(\{v_{1}\}, \{v_{4}\}, \{v_{7}\}, \{v_{8}\}\right) & v_{3} \rightarrow \left(\{v_{4}\}, \{v_{1}\}, \{v_{7}\}, \{v_{8}\}\right) \\ v_{4} \rightarrow \left(\{v_{4}\}, \{v_{1}, v_{7}\}, \{v_{8}\}\right) & v_{5} \rightarrow \left(\{v_{5}\}, \{v_{7}\}, \{v_{8}\}, \{v_{1}\}\right) & v_{6} \rightarrow \left(\{v_{7}\}, \{v_{4}, v_{8}\}, \{v_{1}\}\right) \\ v_{7} \rightarrow \left(\{v_{7}\}, \{v_{8}\}, \{v_{4}\}, \{v_{1}\}\right) & v_{8} \rightarrow \left(\{v_{8}\}, \{v_{7}\}, \{v_{4}\}, \{v_{1}\}\right) \end{array}$$

Arising notions of:

- Centroidal set (Foucaud, Klasing, Slater, 2014);
- Centroidal dimension (Foucaud, Klasing, Slater, 2014);
- Sequential centroidal dimension (us, 2018+).

Decision problems related to the last notion are NP-complete...