
Strong edge-coloring of (3,∆)-bipartite graphs

Julien Bensmaila, Aurélie Lagouttea and Petru Valicovb

a. LIP – ENS de Lyon – France
b. LIF – Université Aix-Marseille – France

LIRIS
December 12th, 2014

1 / 20

Strong edge-coloring

G : undirected simple graph
c : edge-coloring of G

Definition: strong edge-coloring

We call c strong if every two edges at distance at most 2 in G are assigned
distinct colors by c .

Equivalently:

edge-partition giving induced matchings
proper vertex-coloring of L(G)2

2 / 20

Strong edge-coloring

G : undirected simple graph
c : edge-coloring of G

Definition: strong edge-coloring

We call c strong if every two edges at distance at most 2 in G are assigned
distinct colors by c .

Equivalently:

edge-partition giving induced matchings
proper vertex-coloring of L(G)2

2 / 20

Strong edge-coloring

G : undirected simple graph
c : edge-coloring of G

Definition: strong edge-coloring

We call c strong if every two edges at distance at most 2 in G are assigned
distinct colors by c .

Equivalently:

edge-partition giving induced matchings
proper vertex-coloring of L(G)2

2 / 20

Strong edge-coloring

G : undirected simple graph
c : edge-coloring of G

Definition: strong edge-coloring

We call c strong if every two edges at distance at most 2 in G are assigned
distinct colors by c .

Equivalently:

edge-partition giving induced matchings
proper vertex-coloring of L(G)2

2 / 20

Strong edge-coloring

G : undirected simple graph
c : edge-coloring of G

Definition: strong edge-coloring

We call c strong if every two edges at distance at most 2 in G are assigned
distinct colors by c .

Equivalently:

edge-partition giving induced matchings
proper vertex-coloring of L(G)2

2 / 20

Strong edge-coloring

G : undirected simple graph
c : edge-coloring of G

Definition: strong edge-coloring

We call c strong if every two edges at distance at most 2 in G are assigned
distinct colors by c .

Equivalently:

edge-partition giving induced matchings
proper vertex-coloring of L(G)2

2 / 20

Strong chromatic index

∆: maximum degree of an explicit graph

Definition: strong chromatic index

The least number of colors in a strong edge-coloring of G is the strong
chromatic index of G , denoted χ′s(G).

Brooks-like argument: χ′s(G) ≤ 2∆2 − 2∆ + 1 (≈ 2∆2)

∆− 1

∆− 1

∆− 1

∆

u v

3 / 20

Strong chromatic index

∆: maximum degree of an explicit graph

Definition: strong chromatic index

The least number of colors in a strong edge-coloring of G is the strong
chromatic index of G , denoted χ′s(G).

Brooks-like argument: χ′s(G) ≤ 2∆2 − 2∆ + 1 (≈ 2∆2)

∆− 1

∆− 1

∆− 1

∆

u v

3 / 20

On the Brooks-like upper bound on χ′s

optimality of 2∆2?

Theorem [Molloy, Reed – 1997]

If ∆ is large enough, then χ′s(G) ≤ 1.998∆2.

What would be a “worst graph”? C ∆
5 :

I1

I2

I3

I4 I5

• every Ij is an independent set,

• two “adjacent” Ij ’s are complete to each other,

• if ∆ = 2k , then |Ij | = k,

• if ∆ = 2k + 1, then |I1| = |I2| = |I3| = k ,

and |I4| = |I5| = k + 1.

4 / 20

On the Brooks-like upper bound on χ′s

optimality of 2∆2?

Theorem [Molloy, Reed – 1997]

If ∆ is large enough, then χ′s(G) ≤ 1.998∆2.

What would be a “worst graph”? C ∆
5 :

I1

I2

I3

I4 I5

• every Ij is an independent set,

• two “adjacent” Ij ’s are complete to each other,

• if ∆ = 2k , then |Ij | = k,

• if ∆ = 2k + 1, then |I1| = |I2| = |I3| = k,

and |I4| = |I5| = k + 1.

4 / 20

On the Brooks-like upper bound on χ′s

optimality of 2∆2?

Theorem [Molloy, Reed – 1997]

If ∆ is large enough, then χ′s(G) ≤ 1.998∆2.

What would be a “worst graph”? C ∆
5 :

I1

I2

I3

I4 I5

• every Ij is an independent set,

• two “adjacent” Ij ’s are complete to each other,

• if ∆ = 2k , then |Ij | = k ,

• if ∆ = 2k + 1, then |I1| = |I2| = |I3| = k,

and |I4| = |I5| = k + 1.

4 / 20

Erdős and Nešeťril’s conjecture

Conjecture [Erdős, Nešeťril – 1985]

We have χ′s(G) ≤
{

5
4 ∆2 for ∆ even, and
1
4 (5∆2 − 2∆ + 1) otherwise.

Facts:

reached for C ∆
5 ’s only [Chung, Gyárfás, Tuza, Trotter – 1990]

verified for ∆ = 3 [Andersen – 1992]

for ∆ = 4, we know χ′s(G) ≤ 22 [Cranston – 2006]

5 / 20

Erdős and Nešeťril’s conjecture

Conjecture [Erdős, Nešeťril – 1985]

We have χ′s(G) ≤
{

5
4 ∆2 for ∆ even, and
1
4 (5∆2 − 2∆ + 1) otherwise.

Facts:

reached for C ∆
5 ’s only [Chung, Gyárfás, Tuza, Trotter – 1990]

verified for ∆ = 3 [Andersen – 1992]

for ∆ = 4, we know χ′s(G) ≤ 22 [Cranston – 2006]

5 / 20

Erdős and Nešeťril’s conjecture

Conjecture [Erdős, Nešeťril – 1985]

We have χ′s(G) ≤
{

5
4 ∆2 for ∆ even, and
1
4 (5∆2 − 2∆ + 1) otherwise.

Facts:

reached for C ∆
5 ’s only [Chung, Gyárfás, Tuza, Trotter – 1990]

verified for ∆ = 3 [Andersen – 1992]

for ∆ = 4, we know χ′s(G) ≤ 22 [Cranston – 2006]

5 / 20

Erdős and Nešeťril’s conjecture

Conjecture [Erdős, Nešeťril – 1985]

We have χ′s(G) ≤
{

5
4 ∆2 for ∆ even, and
1
4 (5∆2 − 2∆ + 1) otherwise.

Facts:

reached for C ∆
5 ’s only [Chung, Gyárfás, Tuza, Trotter – 1990]

verified for ∆ = 3 [Andersen – 1992]

for ∆ = 4, we know χ′s(G) ≤ 22 [Cranston – 2006]

5 / 20

Beyond Erdős and Nešeťril’s construction

Less dependencies for graphs with no small cycles

Theorem [Mahdian – 2000]

If G is C4-free, then χ′s(G) ≤ (2 + o(1)) ∆2

ln ∆ .

What for C3- and C5-free graphs?

6 / 20

Beyond Erdős and Nešeťril’s construction

Less dependencies for graphs with no small cycles

Theorem [Mahdian – 2000]

If G is C4-free, then χ′s(G) ≤ (2 + o(1)) ∆2

ln ∆ .

What for C3- and C5-free graphs?

6 / 20

Beyond Erdős and Nešeťril’s construction

Less dependencies for graphs with no small cycles

Theorem [Mahdian – 2000]

If G is C4-free, then χ′s(G) ≤ (2 + o(1)) ∆2

ln ∆ .

What for C3- and C5-free graphs?

6 / 20

What for bipartite graphs?

Bipartite graphs are C3 and C5-free...

Conjecture [Faudree, Gyárfás, Schelp, Tuza – 1990]

If G is bipartite, then χ′s(G) ≤ ∆2.

Reached e.g. for any complete bipartite graph Ka,a

G = (A,B,E): bipartite graph with bipartition A and B
(∆A,∆B)-bipartite graph: A and B have maximum degree ∆A and ∆B , resp.

Conjecture [Brualdi, Quinn Massey – 1993]

If G is (∆A,∆B)-bipartite, then χ′s(G) ≤ ∆A∆B .

7 / 20

What for bipartite graphs?

Bipartite graphs are C3 and C5-free...

Conjecture [Faudree, Gyárfás, Schelp, Tuza – 1990]

If G is bipartite, then χ′s(G) ≤ ∆2.

Reached e.g. for any complete bipartite graph Ka,a

G = (A,B,E): bipartite graph with bipartition A and B
(∆A,∆B)-bipartite graph: A and B have maximum degree ∆A and ∆B , resp.

Conjecture [Brualdi, Quinn Massey – 1993]

If G is (∆A,∆B)-bipartite, then χ′s(G) ≤ ∆A∆B .

7 / 20

Refined conjecture for bipartite graphs

Conjecture [Brualdi, Quinn Massey – 1993]

If G is (∆A,∆B)-bipartite, then χ′s(G) ≤ ∆A∆B .

Verified when:

∆A = ∆B = 3 [Steger and Yu – 1993]

∆A = 2 [Nakprasit – 2008]

We confirm the conjecture when ∆A = 3 and ∆B ≥ 4

Theorem [B., Lagoutte, Valicov – 2014+]

If G is (3,∆B)-bipartite, then χ′s(G) ≤ 4∆B .

8 / 20

Refined conjecture for bipartite graphs

Conjecture [Brualdi, Quinn Massey – 1993]

If G is (∆A,∆B)-bipartite, then χ′s(G) ≤ ∆A∆B .

Verified when:

∆A = ∆B = 3 [Steger and Yu – 1993]

∆A = 2 [Nakprasit – 2008]

We confirm the conjecture when ∆A = 3 and ∆B ≥ 4

Theorem [B., Lagoutte, Valicov – 2014+]

If G is (3,∆B)-bipartite, then χ′s(G) ≤ 4∆B .

8 / 20

(3,∆B)-bipartite graphs – a proof

Theorem [B., Lagoutte, Valicov – 2014+]

If G is (3,∆B)-bipartite, then χ′s(G) ≤ 4∆B .

Proof. G = (A,B,E), where all vertices in A have degree 3

Idea: we produce a strong 4∆B edge-coloring c of G by combining an incidence
coloring cA of the incidences involving A and one cB of the incidences involving B

a1

a2

a3

b1

b2

b3

(1, 2)

(1, 3)

(2, 1)

(1, 1)

(2, 2)

9 / 20

(3,∆B)-bipartite graphs – a proof

Theorem [B., Lagoutte, Valicov – 2014+]

If G is (3,∆B)-bipartite, then χ′s(G) ≤ 4∆B .

Proof. G = (A,B,E), where all vertices in A have degree 3

Idea: we produce a strong 4∆B edge-coloring c of G by combining an incidence
coloring cA of the incidences involving A and one cB of the incidences involving B

a1

a2

a3

b1

b2

b3

(1, 2)

(1, 3)

(2, 1)

(1, 1)

(2, 2)

9 / 20

(3,∆B)-bipartite graphs – a proof

Theorem [B., Lagoutte, Valicov – 2014+]

If G is (3,∆B)-bipartite, then χ′s(G) ≤ 4∆B .

Proof. G = (A,B,E), where all vertices in A have degree 3

Idea: we produce a strong 4∆B edge-coloring c of G by combining an incidence
coloring cA of the incidences involving A and one cB of the incidences involving B

a1

a2

a3

b1

b2

b3

(1, 2)

(1, 3)

(2, 1)

(1, 1)

(2, 2)

9 / 20

(3,∆B)-bipartite graphs – a proof

Theorem [B., Lagoutte, Valicov – 2014+]

If G is (3,∆B)-bipartite, then χ′s(G) ≤ 4∆B .

Proof. G = (A,B,E), where all vertices in A have degree 3

Idea: we produce a strong 4∆B edge-coloring c of G by combining an incidence
coloring cA of the incidences involving A and one cB of the incidences involving B

a1

a2

a3

b1

b2

b3

(1, 2)

(1, 3)

(2, 1)

(1, 1)

(2, 2)

9 / 20

(3,∆B)-bipartite graphs – a proof

Theorem [B., Lagoutte, Valicov – 2014+]

If G is (3,∆B)-bipartite, then χ′s(G) ≤ 4∆B .

Proof. G = (A,B,E), where all vertices in A have degree 3

Idea: we produce a strong 4∆B edge-coloring c of G by combining an incidence
coloring cA of the incidences involving A and one cB of the incidences involving B

a1

a2

a3

b1

b2

b3

(1, 2)

(1, 3)

(2, 1)

(1, 1)

(2, 2)

9 / 20

Mixing cA and cB to get c

Three steps:

1. choose cB as a specific ∆B -incidence coloring

2. according to cB , define cA using at most 4 colors

3. mix cA and cB , i.e. set c(e) = (cA(e), cB(e)) for every e ∈ E

Remark: we have c(e) 6= c(f) as soon as cA(e) 6= cA(f) or cB(e) 6= cB(f)

As cB , just consider a proper ∆B -incidence coloring

b1

(?, 1)

(?, 2)

(?, 3)

(adjacent incidences are of the form (b1, e) and (b1, f))

10 / 20

Mixing cA and cB to get c

Three steps:

1. choose cB as a specific ∆B -incidence coloring

2. according to cB , define cA using at most 4 colors

3. mix cA and cB , i.e. set c(e) = (cA(e), cB(e)) for every e ∈ E

Remark: we have c(e) 6= c(f) as soon as cA(e) 6= cA(f) or cB(e) 6= cB(f)

As cB , just consider a proper ∆B -incidence coloring

b1

(?, 1)

(?, 2)

(?, 3)

(adjacent incidences are of the form (b1, e) and (b1, f))

10 / 20

Mixing cA and cB to get c

Three steps:

1. choose cB as a specific ∆B -incidence coloring

2. according to cB , define cA using at most 4 colors

3. mix cA and cB , i.e. set c(e) = (cA(e), cB(e)) for every e ∈ E

Remark: we have c(e) 6= c(f) as soon as cA(e) 6= cA(f) or cB(e) 6= cB(f)

As cB , just consider a proper ∆B -incidence coloring

b1

(?, 1)

(?, 2)

(?, 3)

(adjacent incidences are of the form (b1, e) and (b1, f))

10 / 20

Mixing cA and cB to get c

Three steps:

1. choose cB as a specific ∆B -incidence coloring

2. according to cB , define cA using at most 4 colors

3. mix cA and cB , i.e. set c(e) = (cA(e), cB(e)) for every e ∈ E

Remark: we have c(e) 6= c(f) as soon as cA(e) 6= cA(f) or cB(e) 6= cB(f)

As cB , just consider a proper ∆B -incidence coloring

b1

(?, 1)

(?, 2)

(?, 3)

(adjacent incidences are of the form (b1, e) and (b1, f))

10 / 20

Mixing cA and cB to get c

Three steps:

1. choose cB as a specific ∆B -incidence coloring

2. according to cB , define cA using at most 4 colors

3. mix cA and cB , i.e. set c(e) = (cA(e), cB(e)) for every e ∈ E

Remark: we have c(e) 6= c(f) as soon as cA(e) 6= cA(f) or cB(e) 6= cB(f)

As cB , just consider a proper ∆B -incidence coloring

b1

(?, 1)

(?, 2)

(?, 3)

(adjacent incidences are of the form (b1, e) and (b1, f))

10 / 20

Mixing cA and cB to get c

Three steps:

1. choose cB as a specific ∆B -incidence coloring

2. according to cB , define cA using at most 4 colors

3. mix cA and cB , i.e. set c(e) = (cA(e), cB(e)) for every e ∈ E

Remark: we have c(e) 6= c(f) as soon as cA(e) 6= cA(f) or cB(e) 6= cB(f)

As cB , just consider a proper ∆B -incidence coloring

b1

(?, 1)

(?, 2)

(?, 3)

(adjacent incidences are of the form (b1, e) and (b1, f))

10 / 20

Coloring procedure

cB yields a characterization of the vertices in A as follows:

Type 1: all three incident edges have the same color by cB

Type 2: two incident edges (= paired) have the same color by cB , which is
different from the color of the third one (= lonely)

Type 3: all three incident edges have distinct colors by cB

As cB , choose the one maximizing the number of Type 1 vertices, and then
maximizing the number of Type 2 vertices

For every edge e, we assign a color to cA(e) in such a way that no conflict appears

Coloring procedure:
Step 1: color the edges incident to Type 1 vertices
Step 2: color the paired edges incident to Type 2
Step 3: color the edges incident to Type 3 vertices
Step 4: color the lonely edges incident to Type 2 vertices

11 / 20

Coloring procedure

cB yields a characterization of the vertices in A as follows:

Type 1: all three incident edges have the same color by cB

Type 2: two incident edges (= paired) have the same color by cB , which is
different from the color of the third one (= lonely)

Type 3: all three incident edges have distinct colors by cB

As cB , choose the one maximizing the number of Type 1 vertices, and then
maximizing the number of Type 2 vertices

For every edge e, we assign a color to cA(e) in such a way that no conflict appears

Coloring procedure:
Step 1: color the edges incident to Type 1 vertices
Step 2: color the paired edges incident to Type 2
Step 3: color the edges incident to Type 3 vertices
Step 4: color the lonely edges incident to Type 2 vertices

11 / 20

Coloring procedure

cB yields a characterization of the vertices in A as follows:

Type 1: all three incident edges have the same color by cB

Type 2: two incident edges (= paired) have the same color by cB , which is
different from the color of the third one (= lonely)

Type 3: all three incident edges have distinct colors by cB

As cB , choose the one maximizing the number of Type 1 vertices, and then
maximizing the number of Type 2 vertices

For every edge e, we assign a color to cA(e) in such a way that no conflict appears

Coloring procedure:
Step 1: color the edges incident to Type 1 vertices
Step 2: color the paired edges incident to Type 2
Step 3: color the edges incident to Type 3 vertices
Step 4: color the lonely edges incident to Type 2 vertices

11 / 20

Coloring procedure

cB yields a characterization of the vertices in A as follows:

Type 1: all three incident edges have the same color by cB

Type 2: two incident edges (= paired) have the same color by cB , which is
different from the color of the third one (= lonely)

Type 3: all three incident edges have distinct colors by cB

As cB , choose the one maximizing the number of Type 1 vertices, and then
maximizing the number of Type 2 vertices

For every edge e, we assign a color to cA(e) in such a way that no conflict appears

Coloring procedure:
Step 1: color the edges incident to Type 1 vertices
Step 2: color the paired edges incident to Type 2
Step 3: color the edges incident to Type 3 vertices
Step 4: color the lonely edges incident to Type 2 vertices

11 / 20

Coloring procedure

cB yields a characterization of the vertices in A as follows:

Type 1: all three incident edges have the same color by cB

Type 2: two incident edges (= paired) have the same color by cB , which is
different from the color of the third one (= lonely)

Type 3: all three incident edges have distinct colors by cB

As cB , choose the one maximizing the number of Type 1 vertices, and then
maximizing the number of Type 2 vertices

For every edge e, we assign a color to cA(e) in such a way that no conflict appears

Coloring procedure:
Step 1: color the edges incident to Type 1 vertices
Step 2: color the paired edges incident to Type 2
Step 3: color the edges incident to Type 3 vertices
Step 4: color the lonely edges incident to Type 2 vertices

11 / 20

Coloring procedure

cB yields a characterization of the vertices in A as follows:

Type 1: all three incident edges have the same color by cB

Type 2: two incident edges (= paired) have the same color by cB , which is
different from the color of the third one (= lonely)

Type 3: all three incident edges have distinct colors by cB

As cB , choose the one maximizing the number of Type 1 vertices, and then
maximizing the number of Type 2 vertices

For every edge e, we assign a color to cA(e) in such a way that no conflict appears

Coloring procedure:
Step 1: color the edges incident to Type 1 vertices
Step 2: color the paired edges incident to Type 2
Step 3: color the edges incident to Type 3 vertices
Step 4: color the lonely edges incident to Type 2 vertices

11 / 20

Coloring procedure

cB yields a characterization of the vertices in A as follows:

Type 1: all three incident edges have the same color by cB

Type 2: two incident edges (= paired) have the same color by cB , which is
different from the color of the third one (= lonely)

Type 3: all three incident edges have distinct colors by cB

As cB , choose the one maximizing the number of Type 1 vertices, and then
maximizing the number of Type 2 vertices

For every edge e, we assign a color to cA(e) in such a way that no conflict appears

Coloring procedure:
Step 1: color the edges incident to Type 1 vertices
Step 2: color the paired edges incident to Type 2
Step 3: color the edges incident to Type 3 vertices
Step 4: color the lonely edges incident to Type 2 vertices

11 / 20

Step 1: color the edges incident to Type 1 vertices

Just assign the colors among {1, 2, 3} greedily

Lemma

There is at least one available color for every edge to color.

Proof. Follows from the properness of cB

a1

a2

b

(−, j′)

(−, j′)

(−, j′)

(?, j)

(?, j)

(?, j)

12 / 20

Step 1: color the edges incident to Type 1 vertices

Just assign the colors among {1, 2, 3} greedily

Lemma

There is at least one available color for every edge to color.

Proof. Follows from the properness of cB

a1

a2

b

(−, j′)

(−, j′)

(−, j′)

(?, j)

(?, j)

(?, j)

12 / 20

Step 1: color the edges incident to Type 1 vertices

Just assign the colors among {1, 2, 3} greedily

Lemma

There is at least one available color for every edge to color.

Proof. Follows from the properness of cB �

a1

a2

b

(−, j′)

(−, j′)

(−, j′)

(1, j)

(2, j)

(3, j)

12 / 20

Step 2: color the paired edges incident to Type 2 vertices

Just assign the colors among {1, 2, 3} greedily

Lemma

There is at least one available color for every edge to color.

Proof. There may be a forbidden color (−, j) adjacent to the bottom-most edge
– this is the only one since cB is proper and “maximum”

a1

a2

b

(−, `)

(−, `)

(−, `)

(?, j)

(?, j)

(−, k)

if a1 is Type 1, then the colors are different

13 / 20

Step 2: color the paired edges incident to Type 2 vertices

Just assign the colors among {1, 2, 3} greedily

Lemma

There is at least one available color for every edge to color.

Proof. There may be a forbidden color (−, j) adjacent to the bottom-most edge
– this is the only one since cB is proper and “maximum”

a1

a2

b

(−, `)

(−, `)

(−, `)

(?, j)

(?, j)

(−, k)

if a1 is Type 1, then the colors are different

13 / 20

Step 2: color the paired edges incident to Type 2 vertices

Just assign the colors among {1, 2, 3} greedily

Lemma

There is at least one available color for every edge to color.

Proof. There may be a forbidden color (−, j) adjacent to the bottom-most edge
– this is the only one since cB is proper and “maximum”

a1

a2

b

(1, j)

(2, j)

(−, `)

(?, j)

(?, j)

(−, k)

if a1 is Type 2...

13 / 20

Step 2: color the paired edges incident to Type 2 vertices

Just assign the colors among {1, 2, 3} greedily

Lemma

There is at least one available color for every edge to color.

Proof. There may be a forbidden color (−, j) adjacent to the bottom-most edge
– this is the only one since cB is proper and “maximum”

a1

a2

b

(−, j)

(−, j)

(−, j)

(−, `)

(−, j)

(−, k)

... we could just switch two colors and make a1 Type 1

13 / 20

Step 2: color the paired edges incident to Type 2 vertices

Just assign the colors among {1, 2, 3} greedily

Lemma

There is at least one available color for every edge to color.

Proof. There may be a forbidden color (−, j) adjacent to the bottom-most edge
– this is the only one since cB is proper and “maximum” �

a1

a2

b

(−, j)

(−, j)

(−, j)

(−, `)

(−, j)

(−, k)

... we could just switch two colors and make a1 Type 1

13 / 20

Step 3: color the edges incident to Type 3 vertices

Just assign the colors among {1, 2, 3} greedily

Lemma

There is at least one available color for every edge to color.

Proof. There may be up to two forbidden colors (−, j) near the bottom-most
edges – these are the only ones since cB is proper and “maximum”

a1

a2

b

(−,m)

(−,m)

(−,m)

(?, j)

(−, k)

(−, `)

if a1 is Type 1, then the colors are different

14 / 20

Step 3: color the edges incident to Type 3 vertices

Just assign the colors among {1, 2, 3} greedily

Lemma

There is at least one available color for every edge to color.

Proof. There may be up to two forbidden colors (−, j) near the bottom-most
edges – these are the only ones since cB is proper and “maximum”

a1

a2

b

(−,m)

(−,m)

(−,m)

(?, j)

(−, k)

(−, `)

if a1 is Type 1, then the colors are different

14 / 20

Step 3: color the edges incident to Type 3 vertices

Just assign the colors among {1, 2, 3} greedily

Lemma

There is at least one available color for every edge to color.

Proof. There may be up to two forbidden colors (−, j) near the bottom-most
edges – these are the only ones since cB is proper and “maximum”

a1

a2

b

(1, j)

(2, j)

(−,m)

(?, j)

(−, k)

(−, `)

if a1 is Type 2...

14 / 20

Step 3: color the edges incident to Type 3 vertices

Just assign the colors among {1, 2, 3} greedily

Lemma

There is at least one available color for every edge to color.

Proof. There may be up to two forbidden colors (−, j) near the bottom-most
edges – these are the only ones since cB is proper and “maximum”

a1

a2

b

(−, j)

(−, j)

(−, j)

(−,m)

(−, k)

(−, `)

... we could switch two colors and make a1 Type 1

14 / 20

Step 3: color the edges incident to Type 3 vertices

Just assign the colors among {1, 2, 3} greedily

Lemma

There is at least one available color for every edge to color.

Proof. There may be up to two forbidden colors (−, j) near the bottom-most
edges – these are the only ones since cB is proper and “maximum”

a1

a2

b

(−, n)

(1, j)

(−,m)

(?, j)

(−, k)

(−, `)

if a1 is Type 3...

14 / 20

Step 3: color the edges incident to Type 3 vertices

Just assign the colors among {1, 2, 3} greedily

Lemma

There is at least one available color for every edge to color.

Proof. There may be up to two forbidden colors (−, j) near the bottom-most
edges – these are the only ones since cB is proper and “maximum”

a1

a2

b

(−, n)

(−, j)

(−, j)

(−,m)

(−, k)

(−, `)

... we could switch two colors and make a1 Type 2

14 / 20

Step 3: color the edges incident to Type 3 vertices

Just assign the colors among {1, 2, 3} greedily

Lemma

There is at least one available color for every edge to color.

Proof. There may be up to two forbidden colors (−, j) near the bottom-most
edges – these are the only ones since cB is proper and “maximum” �

a1

a2

b

(−, n)

(−, j)

(−, j)

(−,m)

(−, k)

(−, `)

... we could switch two colors and make a1 Type 2

14 / 20

Step 4: color the lonely edges incident to Type 2 vertices

Cj : (connected) subgraph induced by the j-lonely edges (i.e. with cB = j)

Alternate cycle of Cj : edges alternate between j-lonely and non-j-lonely

Lemma

Every cycle of Cj is alternate.

Proof. Assume C is a cycle of Cj – if C is not alternate, then there are two
adjacent non-lonely edges e and e′ both incident to a vertex in B

? ?

?

?

??

hidden text

15 / 20

Step 4: color the lonely edges incident to Type 2 vertices

Cj : (connected) subgraph induced by the j-lonely edges (i.e. with cB = j)

Alternate cycle of Cj : edges alternate between j-lonely and non-j-lonely

Lemma

Every cycle of Cj is alternate.

Proof. Assume C is a cycle of Cj – if C is not alternate, then there are two
adjacent non-lonely edges e and e′ both incident to a vertex in B

? ?

?

?

??

hidden text

15 / 20

Step 4: color the lonely edges incident to Type 2 vertices

Cj : (connected) subgraph induced by the j-lonely edges (i.e. with cB = j)

Alternate cycle of Cj : edges alternate between j-lonely and non-j-lonely

Lemma

Every cycle of Cj is alternate.

Proof. Assume C is a cycle of Cj – if C is not alternate, then there are two
adjacent non-lonely edges e and e′ both incident to a vertex in B

? ?

?

?

??

hidden text

15 / 20

Step 4: color the lonely edges incident to Type 2 vertices

Cj : (connected) subgraph induced by the j-lonely edges (i.e. with cB = j)

Alternate cycle of Cj : edges alternate between j-lonely and non-j-lonely

Lemma

Every cycle of Cj is alternate.

Proof. Assume C is a cycle of Cj – if C is not alternate, then there are two
adjacent non-lonely edges e and e′ both incident to a vertex in B

?

?

?

??

Type 2 + 2 adjacent j-lonely = new Type 1

15 / 20

Step 4: color the lonely edges incident to Type 2 vertices

Cj : (connected) subgraph induced by the j-lonely edges (i.e. with cB = j)

Alternate cycle of Cj : edges alternate between j-lonely and non-j-lonely

Lemma

Every cycle of Cj is alternate.

Proof. Assume C is a cycle of Cj – if C is not alternate, then there are two
adjacent non-lonely edges e and e′ both incident to a vertex in B

?

?

??

No two adjacent j-lonely

15 / 20

Step 4: color the lonely edges incident to Type 2 vertices

Cj : (connected) subgraph induced by the j-lonely edges (i.e. with cB = j)

Alternate cycle of Cj : edges alternate between j-lonely and non-j-lonely

Lemma

Every cycle of Cj is alternate.

Proof. Assume C is a cycle of Cj – if C is not alternate, then there are two
adjacent non-lonely edges e and e′ both incident to a vertex in B

?

??

hidden text

15 / 20

Step 4: color the lonely edges incident to Type 2 vertices

Cj : (connected) subgraph induced by the j-lonely edges (i.e. with cB = j)

Alternate cycle of Cj : edges alternate between j-lonely and non-j-lonely

Lemma

Every cycle of Cj is alternate.

Proof. Assume C is a cycle of Cj – if C is not alternate, then there are two
adjacent non-lonely edges e and e′ both incident to a vertex in B

??

hidden text

15 / 20

Step 4: color the lonely edges incident to Type 2 vertices

Cj : (connected) subgraph induced by the j-lonely edges (i.e. with cB = j)

Alternate cycle of Cj : edges alternate between j-lonely and non-j-lonely

Lemma

Every cycle of Cj is alternate.

Proof. Assume C is a cycle of Cj – if C is not alternate, then there are two
adjacent non-lonely edges e and e′ both incident to a vertex in B

?

15 / 20

Step 4: color the lonely edges incident to Type 2 vertices

Cj : (connected) subgraph induced by the j-lonely edges (i.e. with cB = j)

Alternate cycle of Cj : edges alternate between j-lonely and non-j-lonely

Lemma

Every cycle of Cj is alternate.

Proof. Assume C is a cycle of Cj – if C is not alternate, then there are two
adjacent non-lonely edges e and e′ both incident to a vertex in B

?

How to close the tour?

15 / 20

Step 4: color the lonely edges incident to Type 2 vertices

Cj : (connected) subgraph induced by the j-lonely edges (i.e. with cB = j)

Alternate cycle of Cj : edges alternate between j-lonely and non-j-lonely

Lemma

Every cycle of Cj is alternate.

Proof. Assume C is a cycle of Cj – if C is not alternate, then there are two
adjacent non-lonely edges e and e′ both incident to a vertex in B �

?

How to close the tour?

15 / 20

On the structure of the Cj ’s

Lemma

Every two cycles of Cj are disjoint.

Proof. If two cycles C1 and C2 of Cj share a vertex without sharing an edge, then
a vertex is adjacent to two j-lonely edges

C1 C2

hidden text

16 / 20

On the structure of the Cj ’s

Lemma

Every two cycles of Cj are disjoint.

Proof. If two cycles C1 and C2 of Cj share a vertex without sharing an edge, then
a vertex is adjacent to two j-lonely edges

C1 C2

hidden text

16 / 20

On the structure of the Cj ’s

Lemma

Every two cycles of Cj are disjoint.

Proof. If two cycles C1 and C2 of Cj share a vertex without sharing an edge, then
a vertex is adjacent to two j-lonely edges

C1 C2

hidden text

16 / 20

On the structure of the Cj ’s

Lemma

Every two cycles of Cj are disjoint.

Proof. If two cycles C1 and C2 of Cj share a vertex without sharing an edge, then
a vertex is adjacent to two j-lonely edges

C1 C2

Type 2 + 2 adjacent lonely = new Type 1

16 / 20

On the structure of the Cj ’s

Lemma

Every two cycles of Cj are disjoint.

Proof. If two cycles C1 and C2 of Cj share a vertex without sharing an edge, then
a vertex is adjacent to two j-lonely edges

C1 C2

Second end point of the intersecting path cannot be correct

16 / 20

On the structure of the Cj ’s

Lemma

Every two cycles of Cj are disjoint.

Proof. If two cycles C1 and C2 of Cj share a vertex without sharing an edge, then
a vertex is adjacent to two j-lonely edges �

C1 C2

Second end point of the intersecting path cannot be correct

16 / 20

On the structure of the Cj ’s

Lemma

Cj cannot have two disjoint cycles joined by a path.

Proof. Assume C1 and C2 are linked by a path u...v where u ∈ C1 and v ∈ C2

C1 C2? ? ? ?

hidden text

17 / 20

On the structure of the Cj ’s

Lemma

Cj cannot have two disjoint cycles joined by a path.

Proof. Assume C1 and C2 are linked by a path u...v where u ∈ C1 and v ∈ C2

C1 C2? ? ? ?

hidden text

17 / 20

On the structure of the Cj ’s

Lemma

Cj cannot have two disjoint cycles joined by a path.

Proof. Assume C1 and C2 are linked by a path u...v where u ∈ C1 and v ∈ C2

C1 C2? ? ? ?

Type 2 + 2 adjacent lonely = new Type 1

17 / 20

On the structure of the Cj ’s

Lemma

Cj cannot have two disjoint cycles joined by a path.

Proof. Assume C1 and C2 are linked by a path u...v where u ∈ C1 and v ∈ C2

C1 C2? ? ? ?

hidden text

17 / 20

On the structure of the Cj ’s

Lemma

Cj cannot have two disjoint cycles joined by a path.

Proof. Assume C1 and C2 are linked by a path u...v where u ∈ C1 and v ∈ C2

C1 C2? ? ?

hidden text

17 / 20

On the structure of the Cj ’s

Lemma

Cj cannot have two disjoint cycles joined by a path.

Proof. Assume C1 and C2 are linked by a path u...v where u ∈ C1 and v ∈ C2

C1 C2?

Type 2 + 2 adjacent lonely = new Type 1

17 / 20

On the structure of the Cj ’s

Lemma

Cj cannot have two disjoint cycles joined by a path.

Proof. Assume C1 and C2 are linked by a path u...v where u ∈ C1 and v ∈ C2

C1 C2?

How to join the two cycles?

17 / 20

On the structure of the Cj ’s

Lemma

Cj cannot have two disjoint cycles joined by a path.

Proof. Assume C1 and C2 are linked by a path u...v where u ∈ C1 and v ∈ C2 �

C1 C2?

How to join the two cycles?

17 / 20

Back to coloring Step 4

Step 4:
Phase 1: color the unique cycle C of Cj
Phase 2: color every tree T of the forest Cj − E (C)

Lemma

The j-lonely edges of C can be colored with {1, 2, 3, 4}.

Proof. Color the j-lonely edges consecutively
(1, j)

(−, 6= j)

(?, j)

(−, 6= j)

(?, j)

C

hidden text

18 / 20

Back to coloring Step 4

Step 4:
Phase 1: color the unique cycle C of Cj
Phase 2: color every tree T of the forest Cj − E (C)

Lemma

The j-lonely edges of C can be colored with {1, 2, 3, 4}.

Proof. Color the j-lonely edges consecutively
(1, j)

(−, 6= j)

(?, j)

(−, 6= j)

(?, j)

C

hidden text

18 / 20

Back to coloring Step 4

Step 4:
Phase 1: color the unique cycle C of Cj
Phase 2: color every tree T of the forest Cj − E (C)

Lemma

The j-lonely edges of C can be colored with {1, 2, 3, 4}.

Proof. Color the j-lonely edges consecutively
(1, j)

(−, 6= j)

(?, j)

(−, 6= j)

(?, j)

C

hidden text 18 / 20

Back to coloring Step 4

Step 4:
Phase 1: color the unique cycle C of Cj
Phase 2: color every tree T of the forest Cj − E (C)

Lemma

The j-lonely edges of C can be colored with {1, 2, 3, 4}.

Proof. Color the j-lonely edges consecutively
(1, j)

(−, 6= j)

(?, j)

(−, 6= j)

(?, j)

(−, 6= j)

(2, j)

C

hidden text 18 / 20

Back to coloring Step 4

Step 4:
Phase 1: color the unique cycle C of Cj
Phase 2: color every tree T of the forest Cj − E (C)

Lemma

The j-lonely edges of C can be colored with {1, 2, 3, 4}.

Proof. Color the j-lonely edges consecutively
(1, j)

(−, 6= j)

(?, j)

(−, 6= j)

(?, j)

(−, 6= j)

(2, j)

(−, k)

(?, ?)

(?, ?)

C

hidden text 18 / 20

Back to coloring Step 4

Step 4:
Phase 1: color the unique cycle C of Cj
Phase 2: color every tree T of the forest Cj − E (C)

Lemma

The j-lonely edges of C can be colored with {1, 2, 3, 4}.

Proof. Color the j-lonely edges consecutively
(1, j)

(−, 6= j)

(?, j)

(−, 6= j)

(?, j)

(−, 6= j)

(2, j)

(−, k)

(3, j)

(4, j)

C

Switch to create a new Type 1 vertex 18 / 20

Back to coloring Step 4

Step 4:
Phase 1: color the unique cycle C of Cj
Phase 2: color every tree T of the forest Cj − E (C)

Lemma

The j-lonely edges of C can be colored with {1, 2, 3, 4}.

Proof. Color the j-lonely edges consecutively
(1, j)

(−, 6= j)

(?, j)

(−, 6= j)

(?, j)

(−, 6= j)

(2, j)

(−, k)

(−, k)

(?, j)

C

Not yet colored 18 / 20

Back to coloring Step 4

Step 4:
Phase 1: color the unique cycle C of Cj
Phase 2: color every tree T of the forest Cj − E (C)

Lemma

The j-lonely edges of C can be colored with {1, 2, 3, 4}.

Proof. Color the j-lonely edges consecutively
(1, j)

(−, 6= j)

(?, j)

(−, 6= j)

(?, j)

(−, 6= j)

(2, j)

(−, k)

(−, `)

(3, j)

C

Switch to create a new Type 2 vertex 18 / 20

Back to coloring Step 4

Step 4:
Phase 1: color the unique cycle C of Cj
Phase 2: color every tree T of the forest Cj − E (C)

Lemma

The j-lonely edges of C can be colored with {1, 2, 3, 4}.

Proof. Color the j-lonely edges consecutively �
(1, j)

(−, 6= j)

(?, j)

(−, 6= j)

(?, j)

(−, 6= j)

(2, j)

(−, k)

(−, `)

(3, j)

C

Switch to create a new Type 2 vertex 18 / 20

Step 4 – the end!

Remark: color 4 may be needed for the last edge of C

Lemma

The j-lonely edges of T can be colored with {1, 2, 3, 4}.

Proof. Color the j-lonely edges as given by a BFS algorithm

BFS order

(1, j)

(−, 6= j)

(−, 6= j)

(−, 6= j)

(2, j)

(2, j)

(?, j)

hidden text

19 / 20

Step 4 – the end!

Remark: color 4 may be needed for the last edge of C

Lemma

The j-lonely edges of T can be colored with {1, 2, 3, 4}.

Proof. Color the j-lonely edges as given by a BFS algorithm

BFS order

(1, j)

(−, 6= j)

(−, 6= j)

(−, 6= j)

(2, j)

(2, j)

(?, j)

hidden text

19 / 20

Step 4 – the end!

Remark: color 4 may be needed for the last edge of C

Lemma

The j-lonely edges of T can be colored with {1, 2, 3, 4}.

Proof. Color the j-lonely edges as given by a BFS algorithm

BFS order

(1, j)

(−, 6= j)

(−, 6= j)

(−, 6= j)

(2, j)

(2, j)

(?, j)

hidden text

19 / 20

Step 4 – the end!

Remark: color 4 may be needed for the last edge of C

Lemma

The j-lonely edges of T can be colored with {1, 2, 3, 4}.

Proof. Color the j-lonely edges as given by a BFS algorithm

BFS order

(1, j)

(−, 6= j)

(−, 6= j)

(−, 6= j)

(2, j)

(2, j)

(?, j)

(−, 6= j)

(2, j)

hidden text 19 / 20

Step 4 – the end!

Remark: color 4 may be needed for the last edge of C

Lemma

The j-lonely edges of T can be colored with {1, 2, 3, 4}.

Proof. Color the j-lonely edges as given by a BFS algorithm

BFS order

(1, j)

(−, 6= j)

(−, 6= j)

(−, 6= j)

(2, j)

(2, j)

(?, j)

(−, 6= j)

(2, j)

(−, k)

(3, j) (4, j)

Switch to create a new Type 1 vertex 19 / 20

Step 4 – the end!

Remark: color 4 may be needed for the last edge of C

Lemma

The j-lonely edges of T can be colored with {1, 2, 3, 4}.

Proof. Color the j-lonely edges as given by a BFS algorithm

BFS order

(1, j)

(−, 6= j)

(−, 6= j)

(−, 6= j)

(2, j)

(2, j)

(?, j)

(−, 6= j)

(2, j)

(−, k)

(−, `) (3, j)

Switch to create a new Type 2 vertex 19 / 20

Step 4 – the end!

Remark: color 4 may be needed for the last edge of C

Lemma

The j-lonely edges of T can be colored with {1, 2, 3, 4}.

Proof. Color the j-lonely edges as given by a BFS algorithm �

BFS order

(1, j)

(−, 6= j)

(−, 6= j)

(−, 6= j)

(2, j)

(2, j)

(?, j)

(−, 6= j)

(2, j)

(−, k)

(−, `) (3, j)

Switch to create a new Type 2 vertex 19 / 20

Conclusions and open questions

The refined conjecture says 3∆B ...

... can our proof be improved?

Hardly generalizable to larger values of ∆A...

... though it might be successful for 4

Particular construction of c ...

... what for the list version?

Everything is done in polynomial time with cB in hand...

... but it is NP-complete to choose it conveniently

Thank you for your attention.

20 / 20

Conclusions and open questions

The refined conjecture says 3∆B ...

... can our proof be improved?

Hardly generalizable to larger values of ∆A...

... though it might be successful for 4

Particular construction of c ...

... what for the list version?

Everything is done in polynomial time with cB in hand...

... but it is NP-complete to choose it conveniently

Thank you for your attention.

20 / 20

Conclusions and open questions

The refined conjecture says 3∆B ...

... can our proof be improved?

Hardly generalizable to larger values of ∆A...

... though it might be successful for 4

Particular construction of c ...

... what for the list version?

Everything is done in polynomial time with cB in hand...

... but it is NP-complete to choose it conveniently

Thank you for your attention.

20 / 20

Conclusions and open questions

The refined conjecture says 3∆B ...

... can our proof be improved?

Hardly generalizable to larger values of ∆A...

... though it might be successful for 4

Particular construction of c ...

... what for the list version?

Everything is done in polynomial time with cB in hand...

... but it is NP-complete to choose it conveniently

Thank you for your attention.

20 / 20

Conclusions and open questions

The refined conjecture says 3∆B ...

... can our proof be improved?

Hardly generalizable to larger values of ∆A...

... though it might be successful for 4

Particular construction of c ...

... what for the list version?

Everything is done in polynomial time with cB in hand...

... but it is NP-complete to choose it conveniently

Thank you for your attention.

20 / 20

