Strong edge-coloring of $(3, \Delta)$ -bipartite graphs

Julien Bensmail^a, Aurélie Lagoutte^a and Petru Valicov^b

a. LIP – ENS de Lyon – France b. LIF – Université Aix-Marseille – France

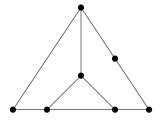
> LIRIS December 12th, 2014

G: undirected simple graph *c*: edge-coloring of *G*

Definition: *strong edge-coloring*

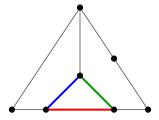
G: undirected simple graph *c*: edge-coloring of *G*

Definition: *strong edge-coloring*



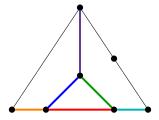
G: undirected simple graph *c*: edge-coloring of *G*

Definition: *strong edge-coloring*



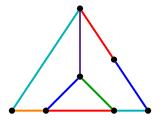
G: undirected simple graph *c*: edge-coloring of *G*

Definition: *strong edge-coloring*



G: undirected simple graph *c*: edge-coloring of *G*

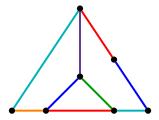
Definition: *strong edge-coloring*



G: undirected simple graph *c*: edge-coloring of *G*

Definition: strong edge-coloring

We call c strong if every two edges at distance at most 2 in G are assigned distinct colors by c.



Equivalently:

- edge-partition giving induced matchings
- proper vertex-coloring of $L(G)^2$

Strong chromatic index

 Δ : maximum degree of an explicit graph

Definition: strong chromatic index

The least number of colors in a strong edge-coloring of G is the strong chromatic index of G, denoted $\chi'_s(G)$.

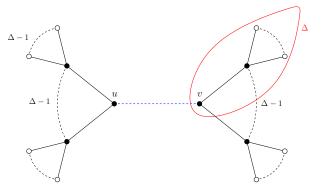
Strong chromatic index

 Δ : maximum degree of an explicit graph

Definition: strong chromatic index

The least number of colors in a strong edge-coloring of G is the strong chromatic index of G, denoted $\chi'_s(G)$.

Brooks-like argument: $\chi'_s(G) \leq 2\Delta^2 - 2\Delta + 1 \ (\approx 2\Delta^2)$



On the Brooks-like upper bound on χ_s'

optimality of $2\Delta^2$?

Theorem [Molloy, Reed - 1997]

If Δ is large enough, then $\chi'_s(G) \leq 1.998\Delta^2$.

On the Brooks-like upper bound on χ_s'

optimality of $2\Delta^2$?

Theorem [Molloy, Reed - 1997]

If Δ is large enough, then $\chi'_s(G) \leq 1.998\Delta^2$.

What would be a "worst graph"? C_5^{Δ} :

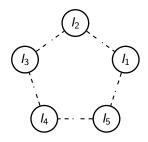
On the Brooks-like upper bound on χ_s'

optimality of $2\Delta^2$?

Theorem [Molloy, Reed - 1997]

If Δ is large enough, then $\chi'_s(G) \leq 1.998\Delta^2$.

What would be a "worst graph"? C_5^{Δ} :



- every I_j is an independent set,
- two "adjacent" *l_j*'s are complete to each other,
- if $\Delta = 2k$, then $|I_j| = k$,

• if
$$\Delta = 2k + 1$$
, then $|I_1| = |I_2| = |I_3| = k$,

and $|I_4| = |I_5| = k + 1$.

Conjecture [Erdős, Nešetřil - 1985]

We have
$$\chi'_s(G) \leq \begin{cases} \frac{5}{4}\Delta^2 \text{ for } \Delta \text{ even, and} \\ \frac{1}{4}(5\Delta^2 - 2\Delta + 1) \text{ otherwise} \end{cases}$$

Conjecture [Erdős, Nešetřil - 1985]

We have
$$\chi'_{\mathfrak{s}}(G) \leq \begin{cases} \frac{5}{4}\Delta^2 \text{ for } \Delta \text{ even, and} \\ \frac{1}{4}(5\Delta^2 - 2\Delta + 1) \text{ otherwise} \end{cases}$$

Facts:

• reached for C_5^{Δ} 's only [Chung, Gyárfás, Tuza, Trotter – 1990]

Conjecture [Erdős, Nešetřil – 1985]

We have
$$\chi'_{\mathfrak{s}}(G) \leq \begin{cases} \frac{5}{4}\Delta^2 \text{ for } \Delta \text{ even, and} \\ \frac{1}{4}(5\Delta^2 - 2\Delta + 1) \text{ otherwise} \end{cases}$$

Facts:

- reached for C_5^{Δ} 's only [Chung, Gyárfás, Tuza, Trotter 1990]
- verified for $\Delta = 3$ [Andersen 1992]

Conjecture [Erdős, Nešetřil – 1985]

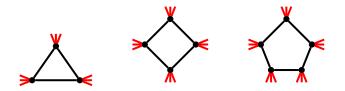
We have
$$\chi'_s(G) \leq \begin{cases} \frac{5}{4}\Delta^2 \text{ for } \Delta \text{ even, and} \\ \frac{1}{4}(5\Delta^2 - 2\Delta + 1) \text{ otherwise} \end{cases}$$

Facts:

- reached for C_5^{Δ} 's only [Chung, Gyárfás, Tuza, Trotter 1990]
- verified for $\Delta = 3$ [Andersen 1992]
- for $\Delta =$ 4, we know $\chi_s'(G) \leq$ 22 [Cranston 2006]

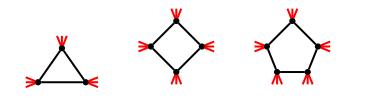
Beyond Erdős and Nešetřil's construction

Less dependencies for graphs with no small cycles



Beyond Erdős and Nešetřil's construction

Less dependencies for graphs with no small cycles

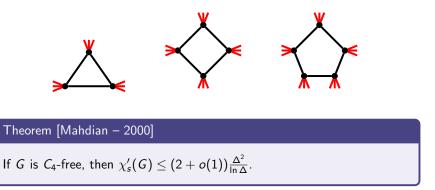


Theorem [Mahdian – 2000]

If G is C_4 -free, then $\chi'_s(G) \leq (2+o(1))\frac{\Delta^2}{\ln \Delta}$.

Beyond Erdős and Nešetřil's construction

Less dependencies for graphs with no small cycles



What for C_3 - and C_5 -free graphs?

What for bipartite graphs?

Bipartite graphs are C_3 and C_5 -free...

Conjecture [Faudree, Gyárfás, Schelp, Tuza – 1990]

If G is bipartite, then $\chi'_s(G) \leq \Delta^2$.

Reached e.g. for any complete bipartite graph $K_{a,a}$

What for bipartite graphs?

Bipartite graphs are C_3 and C_5 -free...

Conjecture [Faudree, Gyárfás, Schelp, Tuza – 1990]

If G is bipartite, then $\chi'_s(G) \leq \Delta^2$.

Reached e.g. for any complete bipartite graph $K_{a,a}$

G = (A, B, E): bipartite graph with bipartition A and B (Δ_A, Δ_B) -bipartite graph: A and B have maximum degree Δ_A and Δ_B , resp.

Conjecture [Brualdi, Quinn Massey - 1993]

If G is (Δ_A, Δ_B) -bipartite, then $\chi'_s(G) \leq \Delta_A \Delta_B$.

Refined conjecture for bipartite graphs

Conjecture [Brualdi, Quinn Massey - 1993]

If G is (Δ_A, Δ_B) -bipartite, then $\chi'_s(G) \leq \Delta_A \Delta_B$.

Verified when:

- $\Delta_A = \Delta_B = 3$ [Steger and Yu 1993]
- $\Delta_A = 2$ [Nakprasit 2008]

Refined conjecture for bipartite graphs

Conjecture [Brualdi, Quinn Massey - 1993]

If G is (Δ_A, Δ_B) -bipartite, then $\chi'_s(G) \leq \Delta_A \Delta_B$.

Verified when:

- $\Delta_A = \Delta_B = 3$ [Steger and Yu 1993]
- $\Delta_A = 2$ [Nakprasit 2008]

We confirm the conjecture when $\Delta_A = 3$ and $\Delta_B \ge 4$

Theorem [B., Lagoutte, Valicov – 2014+] If G is $(3, \Delta_B)$ -bipartite, then $\chi'_s(G) \le 4\Delta_B$.

Theorem [B., Lagoutte, Valicov - 2014+]

If G is $(3, \Delta_B)$ -bipartite, then $\chi'_s(G) \leq 4\Delta_B$.

Proof. G = (A, B, E), where all vertices in A have degree 3

Theorem [B., Lagoutte, Valicov – 2014+]

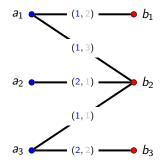
If G is $(3, \Delta_B)$ -bipartite, then $\chi'_s(G) \leq 4\Delta_B$.

Proof. G = (A, B, E), where all vertices in A have degree 3

Theorem [B., Lagoutte, Valicov – 2014+]

If G is $(3, \Delta_B)$ -bipartite, then $\chi'_s(G) \leq 4\Delta_B$.

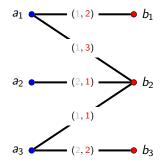
Proof. G = (A, B, E), where all vertices in A have degree 3



Theorem [B., Lagoutte, Valicov – 2014+]

If G is $(3, \Delta_B)$ -bipartite, then $\chi'_s(G) \leq 4\Delta_B$.

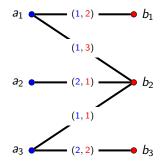
Proof. G = (A, B, E), where all vertices in A have degree 3



Theorem [B., Lagoutte, Valicov – 2014+]

If G is $(3, \Delta_B)$ -bipartite, then $\chi'_s(G) \leq 4\Delta_B$.

Proof. G = (A, B, E), where all vertices in A have degree 3



Three steps:

Three steps:

1. choose c_B as a specific Δ_B -incidence coloring

Three steps:

- 1. choose c_B as a specific Δ_B -incidence coloring
- 2. according to c_B , define c_A using at most 4 colors

Three steps:

- 1. choose c_B as a specific Δ_B -incidence coloring
- 2. according to c_B , define c_A using at most 4 colors
- 3. mix c_A and c_B , *i.e.* set $c(e) = (c_A(e), c_B(e))$ for every $e \in E$

Three steps:

- 1. choose c_B as a specific Δ_B -incidence coloring
- 2. according to c_B , define c_A using at most 4 colors
- 3. mix c_A and c_B , *i.e.* set $c(e) = (c_A(e), c_B(e))$ for every $e \in E$

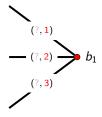
Remark: we have $c(e) \neq c(f)$ as soon as $c_A(e) \neq c_A(f)$ or $c_B(e) \neq c_B(f)$

Three steps:

- 1. choose c_B as a specific Δ_B -incidence coloring
- 2. according to c_B , define c_A using at most 4 colors
- 3. mix c_A and c_B , *i.e.* set $c(e) = (c_A(e), c_B(e))$ for every $e \in E$

Remark: we have $c(e) \neq c(f)$ as soon as $c_A(e) \neq c_A(f)$ or $c_B(e) \neq c_B(f)$

As c_B , just consider a proper Δ_B -incidence coloring



(adjacent incidences are of the form (b_1, e) and (b_1, f))

Coloring procedure

 c_B yields a characterization of the vertices in A as follows:

Coloring procedure

 c_B yields a characterization of the vertices in A as follows:

• Type 1: all three incident edges have the same color by c_B

- Type 1: all three incident edges have the same color by c_B
- **Type 2**: two incident edges (= *paired*) have the same color by *c*_B, which is different from the color of the third one (= *lonely*)

- Type 1: all three incident edges have the same color by c_B
- **Type 2**: two incident edges (= *paired*) have the same color by *c*_B, which is different from the color of the third one (= *lonely*)
- Type 3: all three incident edges have distinct colors by cB

- Type 1: all three incident edges have the same color by c_B
- **Type 2**: two incident edges (= *paired*) have the same color by *c*_B, which is different from the color of the third one (= *lonely*)
- Type 3: all three incident edges have distinct colors by c_B

As c_B , choose the one maximizing the number of Type 1 vertices, and then maximizing the number of Type 2 vertices

- Type 1: all three incident edges have the same color by c_B
- **Type 2**: two incident edges (= *paired*) have the same color by *c*_B, which is different from the color of the third one (= *lonely*)
- Type 3: all three incident edges have distinct colors by c_B

As c_B , choose the one maximizing the number of Type 1 vertices, and then maximizing the number of Type 2 vertices

For every edge e, we assign a color to $c_A(e)$ in such a way that no conflict appears

- Type 1: all three incident edges have the same color by c_B
- **Type 2**: two incident edges (= *paired*) have the same color by *c*_B, which is different from the color of the third one (= *lonely*)
- Type 3: all three incident edges have distinct colors by c_B

As c_B , choose the one maximizing the number of Type 1 vertices, and then maximizing the number of Type 2 vertices

For every edge e, we assign a color to $c_A(e)$ in such a way that no conflict appears

Coloring procedure:

Step 1: color the edges incident to Type 1 vertices

- Step 2: color the paired edges incident to Type 2
- Step 3: color the edges incident to Type 3 vertices
- Step 4: color the lonely edges incident to Type 2 vertices

Just assign the colors among $\{1,2,3\}$ greedily

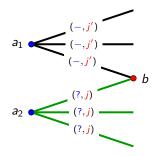
Lemma

There is at least one available color for every edge to color.

Just assign the colors among $\{1,2,3\}$ greedily

Lemma
There is at least one available color for every edge to color.

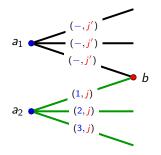
Proof. Follows from the properness of *c*_B



Just assign the colors among $\{1,2,3\}$ greedily

Lemma
There is at least one available color for every edge to color.

Proof. Follows from the properness of *c*_B



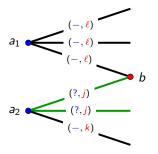
Just assign the colors among $\{1,2,3\}$ greedily

Lemma

There is at least one available color for every edge to color.

Just assign the colors among $\{1, 2, 3\}$ greedily

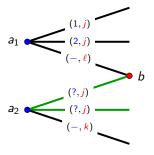
Proof. There may be a forbidden color (-, j) adjacent to the bottom-most edge – this is the only one since c_B is proper and "maximum"



if a_1 is Type 1, then the colors are different

Just assign the colors among $\{1, 2, 3\}$ greedily

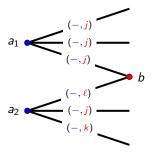
Proof. There may be a forbidden color (-, j) adjacent to the bottom-most edge – this is the only one since c_B is proper and "maximum"



if a_1 is Type 2...

Just assign the colors among $\{1, 2, 3\}$ greedily

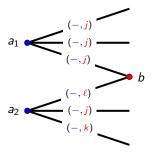
Proof. There may be a forbidden color (-, j) adjacent to the bottom-most edge – this is the only one since c_B is proper and "maximum"



 \dots we could just switch two colors and make a_1 Type 1

Just assign the colors among $\{1, 2, 3\}$ greedily

Proof. There may be a forbidden color (-, j) adjacent to the bottom-most edge – this is the only one since c_B is proper and "maximum"



 \dots we could just switch two colors and make a_1 Type 1

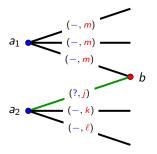
Just assign the colors among $\{1,2,3\}$ greedily

Lemma

There is at least one available color for every edge to color.

Just assign the colors among $\{1, 2, 3\}$ greedily

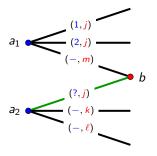
Proof. There may be up to two forbidden colors (-, j) near the bottom-most edges – these are the only ones since c_B is proper and "maximum"



if a_1 is Type 1, then the colors are different

Just assign the colors among $\{1, 2, 3\}$ greedily

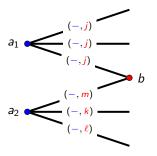
Proof. There may be up to two forbidden colors (-, j) near the bottom-most edges – these are the only ones since c_B is proper and "maximum"



if a_1 is Type 2...

Just assign the colors among $\{1, 2, 3\}$ greedily

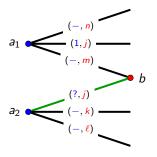
Proof. There may be up to two forbidden colors (-, j) near the bottom-most edges – these are the only ones since c_B is proper and "maximum"



... we could switch two colors and make a_1 Type 1

Just assign the colors among $\{1, 2, 3\}$ greedily

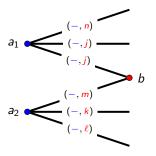
Proof. There may be up to two forbidden colors (-, j) near the bottom-most edges – these are the only ones since c_B is proper and "maximum"



if a_1 is Type 3...

Just assign the colors among $\{1, 2, 3\}$ greedily

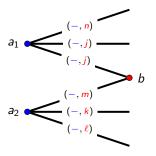
Proof. There may be up to two forbidden colors (-, j) near the bottom-most edges – these are the only ones since c_B is proper and "maximum"



... we could switch two colors and make a_1 Type 2

Just assign the colors among $\{1,2,3\}$ greedily

Proof. There may be up to two forbidden colors (-, j) near the bottom-most edges – these are the only ones since c_B is proper and "maximum"



... we could switch two colors and make a_1 Type 2

 C_j : (connected) subgraph induced by the *j*-lonely edges (*i.e.* with $c_B = j$) Alternate cycle of C_j : edges alternate between *j*-lonely and non-*j*-lonely

 C_j : (connected) subgraph induced by the *j*-lonely edges (*i.e.* with $c_B = j$)

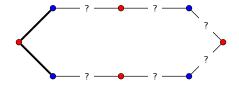
Alternate cycle of C_j : edges alternate between *j*-lonely and non-*j*-lonely

Lemma Every cycle of \mathcal{C}_j is alternate.

 C_j : (connected) subgraph induced by the *j*-lonely edges (*i.e.* with $c_B = j$)

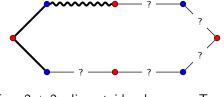
Alternate cycle of C_j : edges alternate between *j*-lonely and non-*j*-lonely

Lemma
Every cycle of
$$\mathcal{C}_j$$
 is alternate.



 C_j : (connected) subgraph induced by the *j*-lonely edges (*i.e.* with $c_B = j$) Alternate cycle of C_i : edges alternate between *j*-lonely and non-*j*-lonely

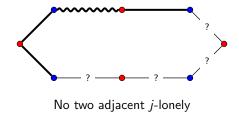
Lemma Every cycle of \mathcal{C}_j is alternate.



Type 2 + 2 adjacent *j*-lonely = new Type 1

 C_j : (connected) subgraph induced by the *j*-lonely edges (*i.e.* with $c_B = j$) Alternate cycle of C_i : edges alternate between *j*-lonely and non-*j*-lonely

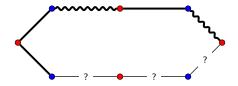
Lemma
Every cycle of
$$C_j$$
 is alternate.



 C_j : (connected) subgraph induced by the *j*-lonely edges (*i.e.* with $c_B = j$)

Alternate cycle of C_j : edges alternate between *j*-lonely and non-*j*-lonely

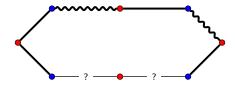
Lemma
Every cycle of
$$\mathcal{C}_j$$
 is alternate.



 C_j : (connected) subgraph induced by the *j*-lonely edges (*i.e.* with $c_B = j$)

Alternate cycle of C_j : edges alternate between *j*-lonely and non-*j*-lonely

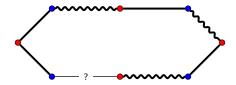
Lemma
Every cycle of
$$\mathcal{C}_j$$
 is alternate.



 C_j : (connected) subgraph induced by the *j*-lonely edges (*i.e.* with $c_B = j$)

Alternate cycle of C_j : edges alternate between *j*-lonely and non-*j*-lonely

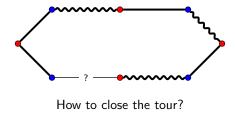
Lemma
Every cycle of
$$\mathcal{C}_j$$
 is alternate.



 C_j : (connected) subgraph induced by the *j*-lonely edges (*i.e.* with $c_B = j$)

Alternate cycle of C_j : edges alternate between *j*-lonely and non-*j*-lonely

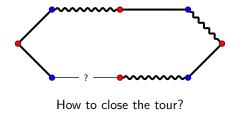
Lemma
Every cycle of
$$\mathcal{C}_j$$
 is alternate.



 C_j : (connected) subgraph induced by the *j*-lonely edges (*i.e.* with $c_B = j$)

Alternate cycle of C_j : edges alternate between *j*-lonely and non-*j*-lonely

Lemma
Every cycle of
$$\mathcal{C}_j$$
 is alternate.



Lemma

Every two cycles of C_j are disjoint.

Lemma

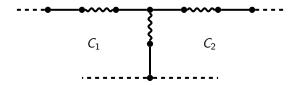
Every two cycles of C_j are disjoint.

Proof. If two cycles C_1 and C_2 of C_j share a vertex without sharing an edge, then a vertex is adjacent to two *j*-lonely edges

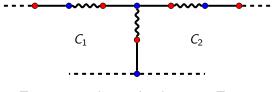
Lemma

Every two cycles of C_i are disjoint.

Proof. If two cycles C_1 and C_2 of C_j share a vertex without sharing an edge, then a vertex is adjacent to two *j*-lonely edges

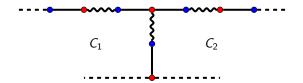


Proof. If two cycles C_1 and C_2 of C_j share a vertex without sharing an edge, then a vertex is adjacent to two *j*-lonely edges



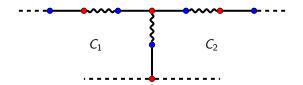
Type 2 + 2 adjacent lonely = new Type 1

Proof. If two cycles C_1 and C_2 of C_j share a vertex without sharing an edge, then a vertex is adjacent to two *j*-lonely edges



Second end point of the intersecting path cannot be correct

Proof. If two cycles C_1 and C_2 of C_j share a vertex without sharing an edge, then a vertex is adjacent to two *j*-lonely edges



Second end point of the intersecting path cannot be correct

Lemma

 C_j cannot have two disjoint cycles joined by a path.

Lemma C_j cannot have two disjoint cycles joined by a path.

Proof. Assume C_1 and C_2 are linked by a path u...v where $u \in C_1$ and $v \in C_2$

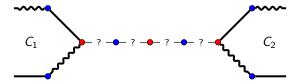
Lemma \mathcal{C}_j cannot have two disjoint cycles joined by a path.

Proof. Assume C_1 and C_2 are linked by a path u...v where $u \in C_1$ and $v \in C_2$

Type 2 + 2 adjacent lonely = new Type 1

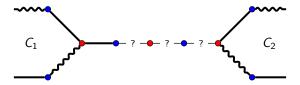
Lemma C_j cannot have two disjoint cycles joined by a path.

Proof. Assume C_1 and C_2 are linked by a path u...v where $u \in C_1$ and $v \in C_2$



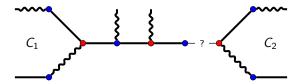
Lemma C_j cannot have two disjoint cycles joined by a path.

Proof. Assume C_1 and C_2 are linked by a path u...v where $u \in C_1$ and $v \in C_2$



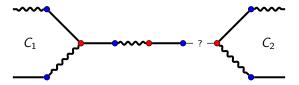
Lemma \mathcal{C}_j cannot have two disjoint cycles joined by a path.

Proof. Assume C_1 and C_2 are linked by a path u...v where $u \in C_1$ and $v \in C_2$



Type 2 + 2 adjacent lonely = new Type 1

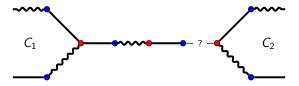
Proof. Assume C_1 and C_2 are linked by a path u...v where $u \in C_1$ and $v \in C_2$



How to join the two cycles?

Lemma C_j cannot have two disjoint cycles joined by a path.

Proof. Assume C_1 and C_2 are linked by a path u...v where $u \in C_1$ and $v \in C_2$



How to join the two cycles?

Step 4:

Phase 1: color the unique cycle *C* of C_j

Phase 2: color every tree *T* of the forest $C_j - E(C)$

Step 4:

Phase 1: color the unique cycle *C* of C_j **Phase 2:** color every tree *T* of the forest $C_j - E(C)$

Lemma

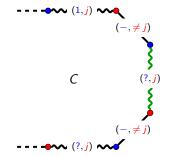
The *j*-lonely edges of C can be colored with $\{1, 2, 3, 4\}$.

Step 4:

Phase 1: color the unique cycle *C* of C_j **Phase 2:** color every tree *T* of the forest $C_j - E(C)$

Lemma	
The <i>j</i> -lonely edges of C can be colored with $\{1, 2, 3, 4\}$.	

Proof. Color the *j*-lonely edges consecutively

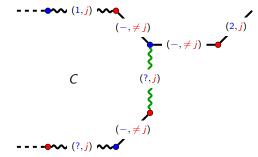


Step 4:

Phase 1: color the unique cycle *C* of C_j **Phase 2:** color every tree *T* of the forest $C_j - E(C)$

Lemma The *j*-lonely edges of C can be colored with $\{1, 2, 3, 4\}$.

Proof. Color the *j*-lonely edges consecutively

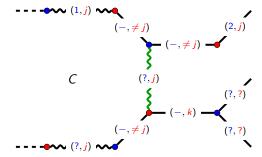


Step 4:

Phase 1: color the unique cycle *C* of C_j **Phase 2:** color every tree *T* of the forest $C_j - E(C)$

Lemma The *j*-lonely edges of C can be colored with $\{1, 2, 3, 4\}$.

Proof. Color the *j*-lonely edges consecutively

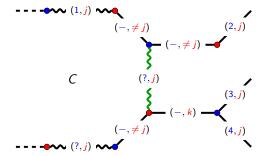


Step 4:

Phase 1: color the unique cycle *C* of C_j **Phase 2:** color every tree *T* of the forest $C_j - E(C)$

Lemma The *j*-lonely edges of C can be colored with $\{1, 2, 3, 4\}$.

Proof. Color the *j*-lonely edges consecutively



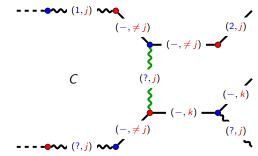
Switch to create a new Type 1 vertex

Step 4:

Phase 1: color the unique cycle *C* of C_j **Phase 2:** color every tree *T* of the forest $C_j - E(C)$

Lemma The *j*-lonely edges of C can be colored with $\{1, 2, 3, 4\}$.

Proof. Color the *j*-lonely edges consecutively



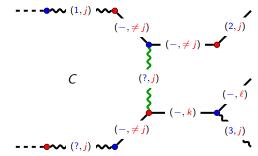
Not yet colored

Step 4:

Phase 1: color the unique cycle *C* of C_j **Phase 2:** color every tree *T* of the forest $C_j - E(C)$

Lemma The *j*-lonely edges of C can be colored with $\{1, 2, 3, 4\}$.

Proof. Color the *j*-lonely edges consecutively



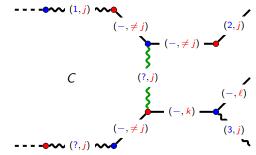
Switch to create a new Type 2 vertex

Step 4:

Phase 1: color the unique cycle *C* of C_j **Phase 2:** color every tree *T* of the forest $C_j - E(C)$

Lemma The *j*-lonely edges of C can be colored with $\{1, 2, 3, 4\}$.

Proof. Color the *j*-lonely edges consecutively



Switch to create a new Type 2 vertex

Remark: color 4 may be needed for the last edge of C

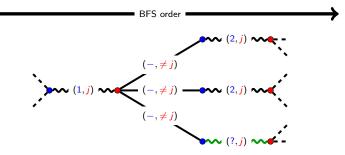
Remark: color 4 may be needed for the last edge of *C*

Lemma

The *j*-lonely edges of T can be colored with $\{1, 2, 3, 4\}$.

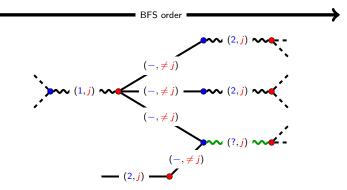
Remark: color 4 may be needed for the last edge of C

Proof. Color the *j*-lonely edges as given by a BFS algorithm



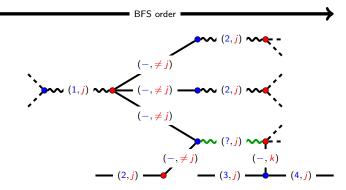
Remark: color 4 may be needed for the last edge of C

Proof. Color the *j*-lonely edges as given by a BFS algorithm



Remark: color 4 may be needed for the last edge of C

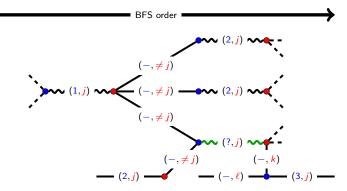
Proof. Color the *j*-lonely edges as given by a BFS algorithm



Switch to create a new Type 1 vertex

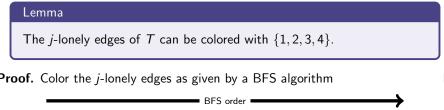
Remark: color 4 may be needed for the last edge of C

Proof. Color the *j*-lonely edges as given by a BFS algorithm

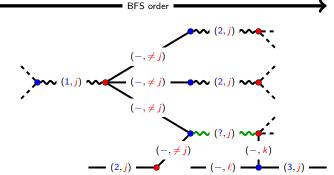


Switch to create a new Type 2 vertex

Remark: color 4 may be needed for the last edge of C



Proof. Color the *j*-lonely edges as given by a BFS algorithm



Switch to create a new Type 2 vertex

- The refined conjecture says $3\Delta_B$...
- ... can our proof be improved?

- The refined conjecture says $3\Delta_B$...
- ... can our proof be improved?
- Hardly generalizable to larger values of Δ_A ...
- ... though it might be successful for 4

- The refined conjecture says $3\Delta_B$...
- ... can our proof be improved?
- Hardly generalizable to larger values of Δ_A ...
- ... though it might be successful for 4
- Particular construction of *c*...
- ... what for the list version?

- The refined conjecture says $3\Delta_B$...
- ... can our proof be improved?
- Hardly generalizable to larger values of Δ_A ...
- ... though it might be successful for 4
- Particular construction of c...
- ... what for the list version?
- Everything is done in polynomial time with c_B in hand...
- ... but it is NP-complete to choose it conveniently

- The refined conjecture says $3\Delta_B$...
- ... can our proof be improved?
- Hardly generalizable to larger values of Δ_A ...
- ... though it might be successful for 4
- Particular construction of c...
- ... what for the list version?
- Everything is done in polynomial time with c_B in hand...
- ... but it is NP-complete to choose it conveniently

Thank you for your attention.