Strong edge-coloring of (3, A)-bipartite graphs

Julien Bensmail®, Aurélie Lagoutte® and Petru ValicovP

a. LIP — ENS de Lyon — France
b. LIF — Université Aix-Marseille — France

LIRIS
December 12th, 2014

Strong edge-coloring

G: undirected simple graph
c: edge-coloring of G

Definition: strong edge-coloring

We call ¢ strong if every two edges at distance at most 2 in G are assigned
distinct colors by c.

Strong edge-coloring

G: undirected simple graph
c: edge-coloring of G

Definition: strong edge-coloring

We call ¢ strong if every two edges at distance at most 2 in G are assigned
distinct colors by c.

Strong edge-coloring

G: undirected simple graph
c: edge-coloring of G

Definition: strong edge-coloring

We call ¢ strong if every two edges at distance at most 2 in G are assigned
distinct colors by c.

Strong edge-coloring

G: undirected simple graph
c: edge-coloring of G

Definition: strong edge-coloring

We call ¢ strong if every two edges at distance at most 2 in G are assigned
distinct colors by c.

Strong edge-coloring

G: undirected simple graph
c: edge-coloring of G

Definition: strong edge-coloring

We call ¢ strong if every two edges at distance at most 2 in G are assigned
distinct colors by c.

Strong edge-coloring

G: undirected simple graph
c: edge-coloring of G

Definition: strong edge-coloring

We call ¢ strong if every two edges at distance at most 2 in G are assigned
distinct colors by c.

Equivalently:
@ edge-partition giving induced matchings
@ proper vertex-coloring of L(G)?

2/20

Strong chromatic index

A: maximum degree of an explicit graph

Definition: strong chromatic index

The least number of colors in a strong edge-coloring of G is the strong
chromatic index of G, denoted x.(G).

Strong chromatic index

A: maximum degree of an explicit graph

Definition: strong chromatic index

The least number of colors in a strong edge-coloring of G is the strong
chromatic index of G, denoted x.(G).

Brooks-like argument: y.(G) < 2A2 —2A +1 (= 2A2?)

On the Brooks-like upper bound on .,

optimality of 2A2?

Theorem [Molloy, Reed — 1997]

If A is large enough, then x.(G) < 1.998A2.

On the Brooks-like upper bound on .,

optimality of 2A2?

Theorem [Molloy, Reed — 1997]

If A is large enough, then x.(G) < 1.998A2.

What would be a “worst graph”? CA:

On the Brooks-like upper bound on .,

optimality of 2A2?

Theorem [Molloy, Reed — 1997]

If A is large enough, then x.(G) < 1.998A2.

What would be a “worst graph”? CA:

@ e every /; is an independent set,
2 N e two “adjacent” /;'s are complete to each other,
@ @ o if A =2k, then || = k,
' ' o if A =2k+1, then |h| = |kb| = |k| = k,

@ and |l] = |Is| = k + 1.

Erdés and Nesetfil's conjecture

Conjecture [Erdds, Nesetfil — 1985]

%A2 for A even, and

We h «(G) <
e have x5(G) < {%(5A2 — 2A + 1) otherwise.

Erdés and Nesetfil's conjecture

Conjecture [Erdds, Nesetfil — 1985]

%A2 for A even, and

We h «(G) <
e have x5(G) < {%(5A2 — 2A + 1) otherwise.

Facts:
o reached for C2's only [Chung, Gy&rfas, Tuza, Trotter — 1990]

Erdés and Nesetfil's conjecture

Conjecture [Erdds, Nesetfil — 1985]

%A2 for A even, and

We h «(G) <
e have x5(G) < {%(5A2 — 2A + 1) otherwise.

Facts:
o reached for C2's only [Chung, Gy&rfas, Tuza, Trotter — 1990]
o verified for A = 3 [Andersen — 1992]

Erdés and Nesetfil's conjecture

Conjecture [Erdds, Nesetfil — 1985]

%A2 for A even, and

We h «(G) <
e have x5(G) < {%(5A2 — 2A + 1) otherwise.

Facts:
o reached for C2's only [Chung, Gy&rfas, Tuza, Trotter — 1990]
o verified for A = 3 [Andersen — 1992]
o for A =4, we know x%(G) < 22 [Cranston — 2006]

Beyond Erdos and Nesetfil's construction

Less dependencies for graphs with no small cycles

6/20

Beyond Erdos and Nesetfil's construction

Less dependencies for graphs with no small cycles

Theorem [Mahdian — 2000]

If G is Cy-free, then x(G) < (2 + o(1))2x.

6

20

Beyond Erdos and Nesetfil's construction

Less dependencies for graphs with no small cycles

Theorem [Mahdian — 2000]

If G is Cy-free, then x(G) < (2 + o(1))2x.

What for C3- and Cs-free graphs?

6

20

What for bipartite graphs?

Bipartite graphs are C3 and Cg-free...

Conjecture [Faudree, Gyérfas, Schelp, Tuza — 1990]

If G is bipartite, then Y.(G) < A2

Reached e.g. for any complete bipartite graph Kj ,

What for bipartite graphs?

Bipartite graphs are C3 and Cg-free...

Conjecture [Faudree, Gyérfas, Schelp, Tuza — 1990]

If G is bipartite, then Y.(G) < A2

Reached e.g. for any complete bipartite graph Kj ,

G = (A, B, E): bipartite graph with bipartition A and B
(A4, Apg)-bipartite graph: A and B have maximum degree A and Ag, resp.

Conjecture [Brualdi, Quinn Massey — 1993]

If G is (Aa, Ap)-bipartite, then x.(G) < ApAg.

Refined conjecture for bipartite graphs

Conjecture [Brualdi, Quinn Massey — 1993]

If G is (Aa, Ag)-bipartite, then x4(G) < AaAg.

Verified when:
o Ap = Apg =3 [Steger and Yu — 1993]
o A, =2 [Nakprasit — 2008]

Refined conjecture for bipartite graphs

Conjecture [Brualdi, Quinn Massey — 1993]

If G is (Aa, Ag)-bipartite, then x4(G) < AaAg.

Verified when:
o Ap = Apg =3 [Steger and Yu — 1993]
o A, =2 [Nakprasit — 2008]

We confirm the conjecture when Ay =3 and Ag >4

Theorem [B., Lagoutte, Valicov — 2014+]

If G is (3, Ag)-bipartite, then x.(G) < 4Ap.

(,)-bipartite graphs — a proof

Theorem [B., Lagoutte, Valicov — 2014+

If G is (3, Ag)-bipartite, then x.(G) < 4A5.

Proof. G = (A, B, E), where all vertices in A have degree 3

(,)-bipartite graphs — a proof

Theorem [B., Lagoutte, Valicov — 2014+

If G is (3, Ag)-bipartite, then x.(G) < 4A5.

Proof. G = (A, B, E), where all vertices in A have degree 3

Idea: we produce a strong 4A g edge-coloring ¢ of G by combining an incidence
coloring cp of the incidences involving A and one cg of the incidences involving B

(,)-bipartite graphs — a proof

Theorem [B., Lagoutte, Valicov — 2014+

If G is (3, Ag)-bipartite, then x.(G) < 4A5.

Proof. G = (A, B, E), where all vertices in A have degree 3

Idea: we produce a strong 4A g edge-coloring ¢ of G by combining an incidence
coloring cp of the incidences involving A and one cg of the incidences involving B

ai ?(L) =— by

(1,9

e (2,1) by

(€Y

234(2,) ——e b3

(,)-bipartite graphs — a proof

Theorem [B., Lagoutte, Valicov — 2014+

If G is (3, Ag)-bipartite, then x.(G) < 4A5.

Proof. G = (A, B, E), where all vertices in A have degree 3

Idea: we produce a strong 4A g edge-coloring ¢ of G by combining an incidence
coloring cp of the incidences involving A and one cg of the incidences involving B

ai ?()2) m— by

(4,3)

e (1) by

(,)-bipartite graphs — a proof

Theorem [B., Lagoutte, Valicov — 2014+

If G is (3, Ag)-bipartite, then x.(G) < 4A5.

Proof. G = (A, B, E), where all vertices in A have degree 3

Idea: we produce a strong 4A g edge-coloring ¢ of G by combining an incidence
coloring cp of the incidences involving A and one cg of the incidences involving B

31 ?(1,2) ——) b]_

(1,3)

e (2,1) by

(1,1

as .4(2,2) —0 b3

Mixing and to get

Three steps:

10/20

Mixing and to get

Three steps:
1. choose cg as a specific Ag-incidence coloring

10/20

Mixing and to get

Three steps:
1. choose cg as a specific Ag-incidence coloring
2. according to cg, define ca using at most 4 colors

10 /20

Mixing and to get

Three steps:
1. choose cg as a specific Ag-incidence coloring
2. according to cg, define ca using at most 4 colors

3. mix ca and cg, i.e. set c(e) = (ca(e), c(e)) for every e € E

10 /20

Mixing and to get

Three steps:
1. choose cg as a specific Ag-incidence coloring
2. according to cg, define ca using at most 4 colors

3. mix ca and cg, i.e. set c(e) = (ca(e), c(e)) for every e € E

Remark: we have c(e) # c(f) as soon as ca(e) # ca(f) or cg(e) # ca(f)

10 /20

Mixing and to get

Three steps:
1. choose cg as a specific Ag-incidence coloring
2. according to cg, define ca using at most 4 colors

3. mix ca and cg, i.e. set c(e) = (ca(e), c(e)) for every e € E

Remark: we have c(e) # c(f) as soon as ca(e) # ca(f) or cg(e) # ca(f)

As cg, just consider a proper Ag-incidence coloring

(adjacent incidences are of the form (by, €) and (b1, 7))

10 /20

Coloring procedure

cp yields a characterization of the vertices in A as follows:

11/20

Coloring procedure

cp yields a characterization of the vertices in A as follows:

@ Type 1: all three incident edges have the same color by cg

11/20

Coloring procedure

cp yields a characterization of the vertices in A as follows:

@ Type 1: all three incident edges have the same color by cg

e Type 2: two incident edges (= paired) have the same color by cg, which is
different from the color of the third one (= lonely)

11/20

Coloring procedure

cp yields a characterization of the vertices in A as follows:

@ Type 1: all three incident edges have the same color by cg

e Type 2: two incident edges (= paired) have the same color by cg, which is
different from the color of the third one (= lonely)

o Type 3: all three incident edges have distinct colors by cg

11/20

Coloring procedure

cp yields a characterization of the vertices in A as follows:

@ Type 1: all three incident edges have the same color by cg

e Type 2: two incident edges (= paired) have the same color by cg, which is
different from the color of the third one (= lonely)

o Type 3: all three incident edges have distinct colors by cg

As cg, choose the one maximizing the number of Type 1 vertices, and then
maximizing the number of Type 2 vertices

11/20

Coloring procedure

cp yields a characterization of the vertices in A as follows:

@ Type 1: all three incident edges have the same color by cg

e Type 2: two incident edges (= paired) have the same color by cg, which is
different from the color of the third one (= lonely)

o Type 3: all three incident edges have distinct colors by cg

As cg, choose the one maximizing the number of Type 1 vertices, and then
maximizing the number of Type 2 vertices

For every edge e, we assign a color to ca(e) in such a way that no conflict appears

11/20

Coloring procedure

cp yields a characterization of the vertices in A as follows:

@ Type 1: all three incident edges have the same color by cg

e Type 2: two incident edges (= paired) have the same color by cg, which is
different from the color of the third one (= lonely)

o Type 3: all three incident edges have distinct colors by cg

As cg, choose the one maximizing the number of Type 1 vertices, and then
maximizing the number of Type 2 vertices

For every edge e, we assign a color to ca(e) in such a way that no conflict appears

Coloring procedure:
Step 1: color the edges incident to Type 1 vertices
Step 2: color the paired edges incident to Type 2
Step 3: color the edges incident to Type 3 vertices
Step 4: color the lonely edges incident to Type 2 vertices

11/20

Step 1: color the edges incident to Type 1 vertices

Just assign the colors among {1, 2,3} greedily

There is at least one available color for every edge to color.

12 /20

Step 1: color the edges incident to Type 1 vertices

Just assign the colors among {1, 2,3} greedily

There is at least one available color for every edge to color.

Proof. Follows from the properness of cg

al (_’j/) _—

12 /20

Step 1: color the edges incident to Type 1 vertices

Just assign the colors among {1, 2,3} greedily

There is at least one available color for every edge to color.

Proof. Follows from the properness of cg]

al (_’j/) _—

12 /20

Step 2: color the paired edges incident to Type 2 vertices

Just assign the colors among {1, 2,3} greedily

There is at least one available color for every edge to color.

13/20

Step 2: color the paired edges incident to Type 2 vertices

Just assign the colors among {1,2, 3} greedily

There is at least one available color for every edge to color.

Proof. There may be a forbidden color (—, j) adjacent to the bottom-most edge
— this is the only one since cg is proper and “maximum”

/
(=0

ai (=) =—
(=0

b

(.4)

2 é (7)) ——
)

~

if a; is Type 1, then the colors are different

13 /20

Step 2: color the paired edges incident to Type 2 vertices

Just assign the colors among {1,2, 3} greedily

There is at least one available color for every edge to color.

Proof. There may be a forbidden color (—, j) adjacent to the bottom-most edge
— this is the only one since cg is proper and “maximum”

/

<(2J)_

_[)

a é (2,)) ——

if a1 is Type 2...

13 /20

Step 2: color the paired edges incident to Type 2 vertices

Just assign the colors among {1,2, 3} greedily

There is at least one available color for every edge to color.

Proof. There may be a forbidden color (—, j) adjacent to the bottom-most edge
— this is the only one since cg is proper and “maximum”

a (=+)) =—

.. we could just switch two colors and make a; Type 1

13 /20

Step 2: color the paired edges incident to Type 2 vertices

Just assign the colors among {1,2, 3} greedily

There is at least one available color for every edge to color.

Proof. There may be a forbidden color (—, j) adjacent to the bottom-most edge
— this is the only one since cg is proper and “maximum” |

a (=+)) =—

.. we could just switch two colors and make a; Type 1

13 /20

Step 3: color the edges incident to Type 3 vertices

Just assign the colors among {1, 2,3} greedily

There is at least one available color for every edge to color.

14 /20

Step 3: color the edges incident to Type 3 vertices

Just assign the colors among {1,2, 3} greedily

There is at least one available color for every edge to color.

Proof. There may be up to two forbidden colors (—, j) near the bottom-most
edges — these are the only ones since cg is proper and “maximum”

if a; is Type 1, then the colors are different

14 /20

Step 3: color the edges incident to Type 3 vertices

Just assign the colors among {1,2, 3} greedily

There is at least one available color for every edge to color.

Proof. There may be up to two forbidden colors (—, j) near the bottom-most
edges — these are the only ones since cg is proper and “maximum”

(1)) —

a é (2,)) —

if a; is Type 2...

14 /20

Step 3: color the edges incident to Type 3 vertices

Just assign the colors among {1,2, 3} greedily

There is at least one available color for every edge to color.

Proof. There may be up to two forbidden colors (—, j) near the bottom-most
edges — these are the only ones since cg is proper and “maximum”

a (=+)) =—

ap (_rk)

.. we could switch two colors and make a; Type 1

14 /20

Step 3: color the edges incident to Type 3 vertices

Just assign the colors among {1,2, 3} greedily

There is at least one available color for every edge to color.

Proof. There may be up to two forbidden colors (—, j) near the bottom-most
edges — these are the only ones since cg is proper and “maximum”

if a1 is Type 3...

14 /20

Step 3: color the edges incident to Type 3 vertices

Just assign the colors among {1,2, 3} greedily

There is at least one available color for every edge to color.

Proof. There may be up to two forbidden colors (—, j) near the bottom-most
edges — these are the only ones since cg is proper and “maximum”

a (=+)) =—

ap (_rk)

.. we could switch two colors and make a; Type 2

14 /20

Step 3: color the edges incident to Type 3 vertices

Just assign the colors among {1,2, 3} greedily

There is at least one available color for every edge to color.

Proof. There may be up to two forbidden colors (—, j) near the bottom-most
edges — these are the only ones since cg is proper and “maximum” |

a (=+)) =—

ap (_rk)

.. we could switch two colors and make a; Type 2

14 /20

Step 4: color the lonely edges incident to Type 2 vertices

Cj: (connected) subgraph induced by the j-lonely edges (i.e. with cg = j)

Alternate cycle of C;: edges alternate between j-lonely and non-j-lonely

15 /20

Step 4: color the lonely edges incident to Type 2 vertices

Cj: (connected) subgraph induced by the j-lonely edges (i.e. with cg = j)

Alternate cycle of C;: edges alternate between j-lonely and non-j-lonely

Every cycle of C; is alternate.

15/20

Step 4: color the lonely edges incident to Type 2 vertices

Cj: (connected) subgraph induced by the j-lonely edges (i.e. with cg = j)

Alternate cycle of C;: edges alternate between j-lonely and non-j-lonely

Every cycle of C; is alternate.

Proof. Assume C is a cycle of C; — if C is not alternate, then there are two
adjacent non-lonely edges e and €’ both incident to a vertex in B

?—.—?—.\
?

»

?

?—.—?—O/

15 /20

Step 4: color the lonely edges incident to Type 2 vertices

Cj: (connected) subgraph induced by the j-lonely edges (i.e. with cg = j)

Alternate cycle of C;: edges alternate between j-lonely and non-j-lonely

Every cycle of C; is alternate.

Proof. Assume C is a cycle of C; — if C is not alternate, then there are two
adjacent non-lonely edges e and €’ both incident to a vertex in B

=

?

>.

?

?—.—?—/

Type 2 + 2 adjacent j-lonely = new Type 1

15 /20

Step 4: color the lonely edges incident to Type 2 vertices

Cj: (connected) subgraph induced by the j-lonely edges (i.e. with cg = j)

Alternate cycle of C;: edges alternate between j-lonely and non-j-lonely

Every cycle of C; is alternate.

Proof. Assume C is a cycle of C; — if C is not alternate, then there are two
adjacent non-lonely edges e and €’ both incident to a vertex in B

?—.—.7—./

No two adjacent j-lonely

15 /20

Step 4: color the lonely edges incident to Type 2 vertices

Cj: (connected) subgraph induced by the j-lonely edges (i.e. with cg = j)

Alternate cycle of C;: edges alternate between j-lonely and non-j-lonely

Every cycle of C; is alternate.

Proof. Assume C is a cycle of C; — if C is not alternate, then there are two
adjacent non-lonely edges e and €’ both incident to a vertex in B

15 /20

Step 4: color the lonely edges incident to Type 2 vertices

Cj: (connected) subgraph induced by the j-lonely edges (i.e. with cg = j)

Alternate cycle of C;: edges alternate between j-lonely and non-j-lonely

Every cycle of C; is alternate.

Proof. Assume C is a cycle of C; — if C is not alternate, then there are two
adjacent non-lonely edges e and €’ both incident to a vertex in B

15 /20

Step 4: color the lonely edges incident to Type 2 vertices

Cj: (connected) subgraph induced by the j-lonely edges (i.e. with cg = j)

Alternate cycle of C;: edges alternate between j-lonely and non-j-lonely

Every cycle of C; is alternate.

Proof. Assume C is a cycle of C; — if C is not alternate, then there are two
adjacent non-lonely edges e and €’ both incident to a vertex in B

15 /20

Step 4: color the lonely edges incident to Type 2 vertices

Cj: (connected) subgraph induced by the j-lonely edges (i.e. with cg = j)

Alternate cycle of C;: edges alternate between j-lonely and non-j-lonely

Every cycle of C; is alternate.

Proof. Assume C is a cycle of C; — if C is not alternate, then there are two
adjacent non-lonely edges e and €’ both incident to a vertex in B

?
How to close the tour?

15 /20

Step 4: color the lonely edges incident to Type 2 vertices

Cj: (connected) subgraph induced by the j-lonely edges (i.e. with cg = j)

Alternate cycle of C;: edges alternate between j-lonely and non-j-lonely

Every cycle of C; is alternate.

Proof. Assume C is a cycle of C; — if C is not alternate, then there are two
adjacent non-lonely edges e and €’ both incident to a vertex in B |

?
How to close the tour?

15 /20

On the structure of the C;'s

Every two cycles of C; are disjoint.

16 /20

On the structure of the C;'s

Every two cycles of C; are disjoint.

Proof. If two cycles C; and G, of C; share a vertex without sharing an edge, then
a vertex is adjacent to two j-lonely edges

16 /20

On the structure of the C;'s

Every two cycles of C; are disjoint.

Proof. If two cycles C; and G, of C; share a vertex without sharing an edge, then
a vertex is adjacent to two j-lonely edges

16 /20

On the structure of the C;'s

Every two cycles of C; are disjoint.

Proof. If two cycles C; and G of C; share a vertex without sharing an edge, then
a vertex is adjacent to two j-lonely edges

Type 2 + 2 adjacent lonely = new Type 1

16 /20

On the structure of the C;'s

Every two cycles of C; are disjoint.

Proof. If two cycles C; and G of C; share a vertex without sharing an edge, then
a vertex is adjacent to two j-lonely edges

Second end point of the intersecting path cannot be correct

16 /20

On the structure of the C;'s

Every two cycles of C; are disjoint.

Proof. If two cycles C; and G of C; share a vertex without sharing an edge, then
a vertex is adjacent to two j-lonely edges |

Second end point of the intersecting path cannot be correct

16 /20

On the structure of the C;'s

C; cannot have two disjoint cycles joined by a path.

17 /20

On the structure of the C;'s

C; cannot have two disjoint cycles joined by a path.

Proof. Assume C; and G, are linked by a path u...v where u € G, and v € G

G 70— 70707 G

17 /20

On the structure of the C;'s

C; cannot have two disjoint cycles joined by a path.

Proof. Assume C; and G are linked by a path u...v where v € G and v € G

G 7—0— 70— 707 G

Type 2 4 2 adjacent lonely = new Type 1

17 /20

On the structure of the C;'s

C; cannot have two disjoint cycles joined by a path.

Proof. Assume C; and G, are linked by a path u...v where u € G, and v € G

G 70— 70707 G

17 /20

On the structure of the C;'s

C; cannot have two disjoint cycles joined by a path.

Proof. Assume C; and G, are linked by a path u...v where u € G, and v € G

G 70— 707 G

17 /20

On the structure of the C;'s

C; cannot have two disjoint cycles joined by a path.

Proof. Assume C; and G are linked by a path u...v where v € G and v € G
Cl § % o— 7 C2

Type 2 4 2 adjacent lonely = new Type 1

17 /20

On the structure of the C;'s

C; cannot have two disjoint cycles joined by a path.

Proof. Assume C; and G are linked by a path u...v where v € G and v € G

How to join the two cycles?

17 /20

On the structure of the C;'s

C; cannot have two disjoint cycles joined by a path.

Proof. Assume C; and G are linked by a path u...vwhereu e GG;andve G, R

How to join the two cycles?

17 /20

Back to coloring Step 4

Step 4:
Phase 1: color the unique cycle C of ;
Phase 2: color every tree T of the forest C; — E(C)

18 /20

Back to coloring Step 4

Step 4:
Phase 1: color the unique cycle C of ;
Phase 2: color every tree T of the forest C; — E(C)

The j-lonely edges of C can be colored with {1,2,3,4}.

18 /20

Back to coloring Step 4

Step 4:
Phase 1: color the unique cycle C of ;
Phase 2: color every tree T of the forest C; — E(C)

The j-lonely edges of C can be colored with {1,2,3,4}.

Proof. Color the j-lonely edges consecutively

- -~ (1,)) 'vv\
- #J)
C (7,))
(= #1J)

----Om(?,j)rvv(

18 /20

Back to coloring Step 4

Step 4:
Phase 1: color the unique cycle C of ;
Phase 2: color every tree T of the forest C; — E(C)

The j-lonely edges of C can be colored with {1,2,3,4}.

Proof. Color the j-lonely edges consecutively

=== (1)) M /7
(= #1) (2,)
\z— (—#) =
C .J)
(= #J)

----M(?,j)rvv(

18 /20

Back to coloring Step 4

Step 4:
Phase 1: color the unique cycle C of ;
Phase 2: color every tree T of the forest C; — E(C)

The j-lonely edges of C can be colored with {1,2,3,4}.

Proof. Color the j-lonely edges consecutively

=== (1)) M /7
(= #1)) (2,))
\z— (—#)) =
C (7,)) Y
(7,7
(— 1) —
(= #1J) (2,7)

----M(?,j)rvv(N

18 /20

Back to coloring Step 4

Step 4:
Phase 1: color the unique cycle C of ;
Phase 2: color every tree T of the forest C; — E(C)

The j-lonely edges of C can be colored with {1,2,3,4}.

Proof. Color the j-lonely edges consecutively

=== (1)) M Y
(= #J) (2,)
‘z— (—#)) =
C (7,)) Y
(3,1)
j S
(= #J) (4,))
=== =0 (7,)) ~na” N

Switch to create a new Type 1 vertex 1620

Back to coloring Step 4

Step 4:
Phase 1: color the unique cycle C of ;
Phase 2: color every tree T of the forest C; — E(C)

The j-lonely edges of C can be colored with {1,2,3,4}.

Proof. Color the j-lonely edges consecutively

=== =en (1,)) M Y
(= #1J) (2,))
‘;— (- #)) =
C (7,)) Y
j_ (= k)
(— k) —
(= #1J))
=== =0 (7,)) e’ 2

Not yet colored 150

Back to coloring Step 4

Step 4:
Phase 1: color the unique cycle C of ;
Phase 2: color every tree T of the forest C; — E(C)

The j-lonely edges of C can be colored with {1,2,3,4}.

Proof. Color the j-lonely edges consecutively

=== (1)) M Y
(—#)) 2.))
‘;— (—#)) =
C (2.4)
j_ (= 0)
(— k) —
(= #)) G.J)
=== =@ (7,)) AN(2

Switch to create a new Type 2 vertex 1620

Back to coloring Step 4

Step 4:
Phase 1: color the unique cycle C of ;
Phase 2: color every tree T of the forest C; — E(C)

The j-lonely edges of C can be colored with {1,2,3,4}.

Proof. Color the j-lonely edges consecutively |
=== (1)) M Y
(= #J) (2.1)
‘;— (—+) —o
C (?.0)
(=0
j S
(= #J) (3.4)
=== (?,)) e’ il

Switch to create a new Type 2 vertex 1620

Step 4 — the end!

Remark: color 4 may be needed for the last edge of C

19/20

Step 4 — the end!

Remark: color 4 may be needed for the last edge of C

The j-lonely edges of T can be colored with {1,2,3,4}.

19/20

Step 4 — the end!

Remark: color 4 may be needed for the last edge of C

The j-lonely edges of T can be colored with {1,2,3,4}.

Proof. Color the j-lonely edges as given by a BFS algorithm

BFS order >
A @) 'wq-
. (—#)) .
:)wv (1)) -wcé—ﬁu) —nn (2,)) ~M(
’ (. #1))

\w 2,5 »vvd-':

19/20

Step 4 — the end!

Remark: color 4 may be needed for the last edge of C

The j-lonely edges of T can be colored with {1,2,3,4}.

Proof. Color the j-lonely edges as given by a BFS algorithm

BFS order >
Pt @) M
. (= #) .
:)wv 1)) -wcé—ﬁu) —on (2,)) ~M(
’ (.))
Sen (7)) et
(= #)

—(2,)) —o

19/20

Step 4 — the end!

Remark: color 4 may be needed for the last edge of C

The j-lonely edges of T can be colored with {1,2,3,4}.

Proof. Color the j-lonely edges as given by a BFS algorithm

BFS order >
Pt @) M
. (= #) .
:)wv 1)) -wcé—ﬁu) —on (2,)) ~M(
’ (.))
e 0 g
(= #) (= k)

—) = — (3,)) —— (4,)) —

Switch to create a new Type 1 vertex 19/20

Step 4 — the end!

Remark: color 4 may be needed for the last edge of C

The j-lonely edges of T can be colored with {1,2,3,4}.

Proof. Color the j-lonely edges as given by a BFS algorithm

BFS order >
Pt @) M
. (= #) .
:)wv 1)) -wcé—ﬁu) —on (2,)) ~M(
’ (.))
e 0 g
(= #) (= k)

—) —e = () —— (3.) —

Switch to create a new Type 2 vertex 19/20

Step 4 — the end!

Remark: color 4 may be needed for the last edge of C

The j-lonely edges of T can be colored with {1,2,3,4}.

Proof. Color the j-lonely edges as given by a BFS algorithm |
BFS order >
/w (2.) "N\'{
. (= #J) ,
:)wv (L.J) -wcé—ﬁu) —enn (2,]) ~M(
’ (. 4))
o) e
(= #J) (= k)

—) —e = () —— (3.) —

Switch to create a new Type 2 vertex 19/20

Conclusions and open questions

@ The refined conjecture says 3Ag...

@ ... can our proof be improved?

20 /20

Conclusions and open questions

@ The refined conjecture says 3Ag...

@ ... can our proof be improved?

o Hardly generalizable to larger values of Aa...

@ ... though it might be successful for 4

20/20

Conclusions and open questions

@ The refined conjecture says 3Ag...

@ ... can our proof be improved?

o Hardly generalizable to larger values of Aa...

@ ... though it might be successful for 4

@ Particular construction of c...

@ ... what for the list version?

20/20

Conclusions and open questions

@ The refined conjecture says 3Ag...

@ ... can our proof be improved?

Hardly generalizable to larger values of A4...

... though it might be successful for 4

Particular construction of c...

.. what for the list version?

Everything is done in polynomial time with cg in hand...

@ ... but it is NP-complete to choose it conveniently

20/20

Conclusions and open questions

@ The refined conjecture says 3Ag...

@ ... can our proof be improved?

Hardly generalizable to larger values of A4...

... though it might be successful for 4

Particular construction of c...

.. what for the list version?

Everything is done in polynomial time with cg in hand...

@ ... but it is NP-complete to choose it conveniently

Thank you for your attention.

20/20

