
On the hardness of determining
the irregularity strength of graphs

Julien Bensmail

Université Côte d’Azur, France

Séminaire Graphes et Optimisation, LaBRI
November 17, 2023

1/38



General context

2/38



From regularity to irregularity

regular graph ⌣

irregular graph À À À

Attempt: irregular = all degrees are pairwise distinct
does not fit well with simple graphs ⌢ ⌢ ⌢ only K1...

assume G is irregular, with n ≥ 2 vertices
possible degrees range from 0 (isolated) to n − 1 (universal)
thus n possible degrees
all distinct and n ≥ 2 ⇒ isolated vertex + universal vertex E

How to overcome this?

3/38



From regularity to irregularity

regular graph ⌣
irregular graph À À À

Attempt: irregular = all degrees are pairwise distinct
does not fit well with simple graphs ⌢ ⌢ ⌢ only K1...

assume G is irregular, with n ≥ 2 vertices
possible degrees range from 0 (isolated) to n − 1 (universal)
thus n possible degrees
all distinct and n ≥ 2 ⇒ isolated vertex + universal vertex E

How to overcome this?

3/38



From regularity to irregularity

regular graph ⌣
irregular graph À À À

Attempt: irregular = all degrees are pairwise distinct
does not fit well with simple graphs ⌢ ⌢ ⌢ only K1...

assume G is irregular, with n ≥ 2 vertices
possible degrees range from 0 (isolated) to n − 1 (universal)
thus n possible degrees
all distinct and n ≥ 2 ⇒ isolated vertex + universal vertex E

How to overcome this?

3/38



From regularity to irregularity

regular graph ⌣
irregular graph À À À

Attempt: irregular = all degrees are pairwise distinct
does not fit well with simple graphs ⌢ ⌢ ⌢ only K1...

assume G is irregular, with n ≥ 2 vertices
possible degrees range from 0 (isolated) to n − 1 (universal)
thus n possible degrees
all distinct and n ≥ 2 ⇒ isolated vertex + universal vertex E

How to overcome this?

3/38



From regularity to irregularity

regular graph ⌣
irregular graph À À À

Attempt: irregular = all degrees are pairwise distinct
does not fit well with simple graphs ⌢ ⌢ ⌢ only K1...

assume G is irregular, with n ≥ 2 vertices
possible degrees range from 0 (isolated) to n − 1 (universal)
thus n possible degrees
all distinct and n ≥ 2 ⇒ isolated vertex + universal vertex E

How to overcome this?

3/38



Making simple graphs irregular

4/38



Sample example

2

4

4

4

4

4

2

graph → (irregular) multigraph

preserves the original structure

Chartrand et al.: avoid “exploding” an edge too much?

above: every edge → ≤ 4 parallel edges; what about ≤ 3?

5/38



Sample example

2

4

4

4

4

5

3

graph → (irregular) multigraph

preserves the original structure

Chartrand et al.: avoid “exploding” an edge too much?

above: every edge → ≤ 4 parallel edges; what about ≤ 3?

5/38



Sample example

2

4

4

6

6

5

3

graph → (irregular) multigraph

preserves the original structure

Chartrand et al.: avoid “exploding” an edge too much?

above: every edge → ≤ 4 parallel edges; what about ≤ 3?

5/38



Sample example

2

4

7

9

6

5

3

graph → (irregular) multigraph

preserves the original structure

Chartrand et al.: avoid “exploding” an edge too much?

above: every edge → ≤ 4 parallel edges; what about ≤ 3?

5/38



Sample example

2

4

7

9

6

5

3

graph → (irregular) multigraph

preserves the original structure

Chartrand et al.: avoid “exploding” an edge too much?

above: every edge → ≤ 4 parallel edges; what about ≤ 3?

5/38



Sample example

2

4

7

9

6

5

3

graph → (irregular) multigraph

preserves the original structure

Chartrand et al.: avoid “exploding” an edge too much?

above: every edge → ≤ 4 parallel edges; what about ≤ 3?

5/38



Another take on the problem

Remark: previous problem a bit tedious to study

2

4

7

9

6

5

3

k parallel edges → label k

degrees → incident sums

irregular multigraph → irregular labelling

minimising max. edge “explosion” → minimising max. label

irregularity strength s(G) of G : this minimum

6/38



Another take on the problem

Remark: previous problem a bit tedious to study

2

4

7

9

6

5

3

4

k parallel edges → label k

degrees → incident sums

irregular multigraph → irregular labelling

minimising max. edge “explosion” → minimising max. label

irregularity strength s(G) of G : this minimum

6/38



Another take on the problem

Remark: previous problem a bit tedious to study

2

4

7

9

6

5

3

3

4

k parallel edges → label k

degrees → incident sums

irregular multigraph → irregular labelling

minimising max. edge “explosion” → minimising max. label

irregularity strength s(G) of G : this minimum

6/38



Another take on the problem

Remark: previous problem a bit tedious to study

2

4

7

9

6

5

3

2

3

4

k parallel edges → label k

degrees → incident sums

irregular multigraph → irregular labelling

minimising max. edge “explosion” → minimising max. label

irregularity strength s(G) of G : this minimum

6/38



Another take on the problem

Remark: previous problem a bit tedious to study

2

4

7

9

6

5

3

1

1

1

1

1

1

1

1

1

2

3

4

k parallel edges → label k

degrees → incident sums

irregular multigraph → irregular labelling

minimising max. edge “explosion” → minimising max. label

irregularity strength s(G) of G : this minimum

6/38



Another take on the problem

Remark: previous problem a bit tedious to study

2

4

7

9

6

5

3

1

1

1

1

1

1

1

1

1

2

3

4

k parallel edges → label k

degrees → incident sums

irregular multigraph → irregular labelling

minimising max. edge “explosion” → minimising max. label

irregularity strength s(G) of G : this minimum

6/38



Another take on the problem

Remark: previous problem a bit tedious to study

2

4

7

9

6

5

3

1

1

1

1

1

1

1

1

1

2

3

4

k parallel edges → label k

degrees → incident sums

irregular multigraph → irregular labelling

minimising max. edge “explosion” → minimising max. label

irregularity strength s(G) of G : this minimum

6/38



Another take on the problem

Remark: previous problem a bit tedious to study

2

4

7

9

6

5

3

1

1

1

1

1

1

1

1

1

2

3

4

k parallel edges → label k

degrees → incident sums

irregular multigraph → irregular labelling

minimising max. edge “explosion” → minimising max. label

irregularity strength s(G) of G : this minimum

6/38



Another take on the problem

Remark: previous problem a bit tedious to study

2

4

7

9

6

5

3

1

1

1

1

1

1

1

1

1

2

3

4

k parallel edges → label k

degrees → incident sums

irregular multigraph → irregular labelling

minimising max. edge “explosion” → minimising max. label

irregularity strength s(G) of G : this minimum

6/38



A few more examples

1

2

6 7 10

5

8

3

4

s(G) = 5

7/38



A few more examples

1

2

6 7 10

5

8

3

4

1

2

5

3

4

s(G) = 5

7/38



A few more examples

1

2

6 7 10

5

8

3

4

1

2

3

5

3

4

s(G) = 5

7/38



A few more examples

1

2

6 7 10

5

8

3

4

1

2

3 4

5

3

4

s(G) = 5

7/38



A few more examples

1

2

6 7 10

5

8

3

4

1

2

3 4

5

1

3

4

s(G) = 5

7/38



A few more examples

1

2

6 7 10

5

8

3

4

1

2

3 4

5

1

3

4

s(G) = 5

7/38



A few more examples

10 10 10 10 10 10 10

s(K7) ≤ 3 (and actually s(K7) = 3)

8/38



A few more examples

4 3 5
1 2

3

s(K7) ≤ 3 (and actually s(K7) = 3)

8/38



A few more examples

5 4 6 3

1
1

1

s(K7) ≤ 3 (and actually s(K7) = 3)

8/38



A few more examples

8 7 9 6 12

3

3
3

3

s(K7) ≤ 3 (and actually s(K7) = 3)

8/38



A few more examples

9 8 10 7 13 5

1

1

1

1

1

s(K7) ≤ 3 (and actually s(K7) = 3)

8/38



A few more examples

12 11 13 10 16 8 18

3

3

3

3

3

3

s(K7) ≤ 3 (and actually s(K7) = 3)

8/38



A few more examples

12 11 13 10 16 8 18

3

3

3

3

3

3

s(K7) ≤ 3 (and actually s(K7) = 3)

8/38



Understanding the problem

Remarks:

s(G) well defined iff G is nice (no K2 as a connected component)

non-connected graphs are troublesome ⌢

s(G) not bounded by an absolute constant k ≥ 1

for any x ≥ 0, set nb(x) as the # of degree-x vertices; then, need:

nb(1) ≤ k for x = 1, sums in {1, . . . , k}
nb(2) ≤ 2k − 1 for x = 2, sums in {2, . . . , 2k}
nb(3) ≤ 3k − 2 for x = 3, sums in {3, . . . , 3k}
etc.

1

2

3

4

5

6

7

2

3

4

5

6

7

8

but vertices with different, yet close degrees can also “collide” ⌢

9/38



Understanding the problem

Remarks:

s(G) well defined iff G is nice (no K2 as a connected component)

non-connected graphs are troublesome ⌢

s(G) not bounded by an absolute constant k ≥ 1

for any x ≥ 0, set nb(x) as the # of degree-x vertices; then, need:

nb(1) ≤ k for x = 1, sums in {1, . . . , k}
nb(2) ≤ 2k − 1 for x = 2, sums in {2, . . . , 2k}
nb(3) ≤ 3k − 2 for x = 3, sums in {3, . . . , 3k}
etc.

1

2

3

4

5

6

7

2

3

4

5

6

7

8

but vertices with different, yet close degrees can also “collide” ⌢

9/38



Understanding the problem

Remarks:

s(G) well defined iff G is nice (no K2 as a connected component)

non-connected graphs are troublesome ⌢

s(G) not bounded by an absolute constant k ≥ 1

for any x ≥ 0, set nb(x) as the # of degree-x vertices; then, need:

nb(1) ≤ k for x = 1, sums in {1, . . . , k}
nb(2) ≤ 2k − 1 for x = 2, sums in {2, . . . , 2k}
nb(3) ≤ 3k − 2 for x = 3, sums in {3, . . . , 3k}
etc.

1

2

3

4

5

6

7

2

3

4

5

6

7

8

but vertices with different, yet close degrees can also “collide” ⌢

9/38



Understanding the problem

Remarks:

s(G) well defined iff G is nice (no K2 as a connected component)

non-connected graphs are troublesome ⌢

s(G) not bounded by an absolute constant k ≥ 1

for any x ≥ 0, set nb(x) as the # of degree-x vertices; then, need:

nb(1) ≤ k for x = 1, sums in {1, . . . , k}
nb(2) ≤ 2k − 1 for x = 2, sums in {2, . . . , 2k}
nb(3) ≤ 3k − 2 for x = 3, sums in {3, . . . , 3k}
etc.

1

2

3

4

5

6

7

2

3

4

5

6

7

8

but vertices with different, yet close degrees can also “collide” ⌢
9/38



Some known results

lots (lots!) of results of varying interest...

10/38



Some known results

in particular:

conjectures (sometimes for some classes) involving the nb(x)’s

most of which remain open and out of reach to date

even for trees/forests (e.g. seminal works by Togni ⌣)

s(G) ≤ n − 1 for every n-graph G (Nierhoff, 2000)

s(G) ≤ 6⌈n/δ(G)⌉ (Kalkowski, Karoński, Pfender, 2011)

(∼ Faudree-Lehel Conjecture, confirmed recently asymptotically by Przyby lo)

variants (local, total, etc.)

11/38



Some known results

in particular:

conjectures (sometimes for some classes) involving the nb(x)’s

most of which remain open and out of reach to date

even for trees/forests (e.g. seminal works by Togni ⌣)

s(G) ≤ n − 1 for every n-graph G (Nierhoff, 2000)

s(G) ≤ 6⌈n/δ(G)⌉ (Kalkowski, Karoński, Pfender, 2011)

(∼ Faudree-Lehel Conjecture, confirmed recently asymptotically by Przyby lo)

variants (local, total, etc.)

11/38



Some known results

in particular:

conjectures (sometimes for some classes) involving the nb(x)’s

most of which remain open and out of reach to date

even for trees/forests (e.g. seminal works by Togni ⌣)

s(G) ≤ n − 1 for every n-graph G (Nierhoff, 2000)

s(G) ≤ 6⌈n/δ(G)⌉ (Kalkowski, Karoński, Pfender, 2011)

(∼ Faudree-Lehel Conjecture, confirmed recently asymptotically by Przyby lo)

variants (local, total, etc.)

11/38



Some known results

in particular:

conjectures (sometimes for some classes) involving the nb(x)’s

most of which remain open and out of reach to date

even for trees/forests (e.g. seminal works by Togni ⌣)

s(G) ≤ n − 1 for every n-graph G (Nierhoff, 2000)

s(G) ≤ 6⌈n/δ(G)⌉ (Kalkowski, Karoński, Pfender, 2011)

(∼ Faudree-Lehel Conjecture, confirmed recently asymptotically by Przyby lo)

variants (local, total, etc.)

11/38



Our (modest ⌣) contribution

12/38



Our focus

What about complexity aspects?

existing (positive and negative) results for a few variants...

... but nothing for the irregularity strength ⌢

focus on a (very) simple question:

Question (k ≥ 1 fixed)

For a given graph G , determining whether s(G) ≤ k?

as seen earlier, yields bounds (functions of k) on the nb(x)’s

... but this apart À À À ...

obvious for k = 1 ⌣ . so, what about

Main question for today

For a given graph G , determining whether s(G) ≤ 2?

13/38



Our focus

What about complexity aspects?

existing (positive and negative) results for a few variants...

... but nothing for the irregularity strength ⌢

focus on a (very) simple question:

Question (k ≥ 1 fixed)

For a given graph G , determining whether s(G) ≤ k?

as seen earlier, yields bounds (functions of k) on the nb(x)’s

... but this apart À À À ...

obvious for k = 1 ⌣ . so, what about

Main question for today

For a given graph G , determining whether s(G) ≤ 2?

13/38



Our focus

What about complexity aspects?

existing (positive and negative) results for a few variants...

... but nothing for the irregularity strength ⌢

focus on a (very) simple question:

Question (k ≥ 1 fixed)

For a given graph G , determining whether s(G) ≤ k?

as seen earlier, yields bounds (functions of k) on the nb(x)’s

... but this apart À À À ...

obvious for k = 1 ⌣ . so, what about

Main question for today

For a given graph G , determining whether s(G) ≤ 2?

13/38



Our focus

What about complexity aspects?

existing (positive and negative) results for a few variants...

... but nothing for the irregularity strength ⌢

focus on a (very) simple question:

Question (k ≥ 1 fixed)

For a given graph G , determining whether s(G) ≤ k?

as seen earlier, yields bounds (functions of k) on the nb(x)’s

... but this apart À À À ...

obvious for k = 1 ⌣ . so, what about

Main question for today

For a given graph G , determining whether s(G) ≤ 2?

13/38



Our focus

What about complexity aspects?

existing (positive and negative) results for a few variants...

... but nothing for the irregularity strength ⌢

focus on a (very) simple question:

Question (k ≥ 1 fixed)

For a given graph G , determining whether s(G) ≤ k?

as seen earlier, yields bounds (functions of k) on the nb(x)’s

... but this apart À À À ...

obvious for k = 1 ⌣ . so, what about

Main question for today

For a given graph G , determining whether s(G) ≤ 2?

13/38



Our focus

What about complexity aspects?

existing (positive and negative) results for a few variants...

... but nothing for the irregularity strength ⌢

focus on a (very) simple question:

Question (k ≥ 1 fixed)

For a given graph G , determining whether s(G) ≤ k?

as seen earlier, yields bounds (functions of k) on the nb(x)’s

... but this apart À À À ...

obvious for k = 1 ⌣ . so, what about

Main question for today

For a given graph G , determining whether s(G) ≤ 2?

13/38



Our results

Main question for today

For a given graph G , determining whether s(G) ≤ 2?

towards this:

we show two (very) close problems are NP-complete

when only vertices at distance at most some d must be distinguished
→ same distinguishing aggregate (sums), but weaker constraint radius
when all vertices must get pairwise distinct multisets of incident labels
→ same constraint radius, but weaker distinguishing aggregate

thus problems encapsulating all aspects of the original one

for today, TRY TO:

show you most of the two proofs

get a better grasp on these labellings

insist on what this might mean for the original problem

Let’s go ⌣ ⌣ ⌣ !!

14/38



Our results

Main question for today

For a given graph G , determining whether s(G) ≤ 2?

towards this:

we show two (very) close problems are NP-complete
when only vertices at distance at most some d must be distinguished
→ same distinguishing aggregate (sums), but weaker constraint radius

when all vertices must get pairwise distinct multisets of incident labels
→ same constraint radius, but weaker distinguishing aggregate

thus problems encapsulating all aspects of the original one

for today, TRY TO:

show you most of the two proofs

get a better grasp on these labellings

insist on what this might mean for the original problem

Let’s go ⌣ ⌣ ⌣ !!

14/38



Our results

Main question for today

For a given graph G , determining whether s(G) ≤ 2?

towards this:

we show two (very) close problems are NP-complete
when only vertices at distance at most some d must be distinguished
→ same distinguishing aggregate (sums), but weaker constraint radius
when all vertices must get pairwise distinct multisets of incident labels
→ same constraint radius, but weaker distinguishing aggregate

thus problems encapsulating all aspects of the original one

for today, TRY TO:

show you most of the two proofs

get a better grasp on these labellings

insist on what this might mean for the original problem

Let’s go ⌣ ⌣ ⌣ !!

14/38



Our results

Main question for today

For a given graph G , determining whether s(G) ≤ 2?

towards this:

we show two (very) close problems are NP-complete
when only vertices at distance at most some d must be distinguished
→ same distinguishing aggregate (sums), but weaker constraint radius
when all vertices must get pairwise distinct multisets of incident labels
→ same constraint radius, but weaker distinguishing aggregate

thus problems encapsulating all aspects of the original one

for today, TRY TO:

show you most of the two proofs

get a better grasp on these labellings

insist on what this might mean for the original problem

Let’s go ⌣ ⌣ ⌣ !!

14/38



Our results

Main question for today

For a given graph G , determining whether s(G) ≤ 2?

towards this:

we show two (very) close problems are NP-complete
when only vertices at distance at most some d must be distinguished
→ same distinguishing aggregate (sums), but weaker constraint radius
when all vertices must get pairwise distinct multisets of incident labels
→ same constraint radius, but weaker distinguishing aggregate

thus problems encapsulating all aspects of the original one

for today, TRY TO:

show you most of the two proofs

get a better grasp on these labellings

insist on what this might mean for the original problem

Let’s go ⌣ ⌣ ⌣ !!

14/38



Our results

Main question for today

For a given graph G , determining whether s(G) ≤ 2?

towards this:

we show two (very) close problems are NP-complete
when only vertices at distance at most some d must be distinguished
→ same distinguishing aggregate (sums), but weaker constraint radius
when all vertices must get pairwise distinct multisets of incident labels
→ same constraint radius, but weaker distinguishing aggregate

thus problems encapsulating all aspects of the original one

for today, TRY TO:

show you most of the two proofs

get a better grasp on these labellings

insist on what this might mean for the original problem

Let’s go ⌣ ⌣ ⌣ !!

14/38



Our results

Main question for today

For a given graph G , determining whether s(G) ≤ 2?

towards this:

we show two (very) close problems are NP-complete
when only vertices at distance at most some d must be distinguished
→ same distinguishing aggregate (sums), but weaker constraint radius
when all vertices must get pairwise distinct multisets of incident labels
→ same constraint radius, but weaker distinguishing aggregate

thus problems encapsulating all aspects of the original one

for today, TRY TO:

show you most of the two proofs

get a better grasp on these labellings

insist on what this might mean for the original problem

Let’s go ⌣ ⌣ ⌣ !!

14/38



Distant irregularity strength

15/38



(Very brief) introduction

introduced by Przyby lo in 2013

fix some d ≥ 1, and require vertices at distance at most d to be distinguished

for a graph G , parameter sd(G) to minimise

d = 1, distinguish only neighbours → proper labellings & 1-2-3 Conjecture

d = ∞ → irregularity strength

thus, in between two well studied problems

close to irregularity strength in spirit, but if diam(G) ≫ d ... ⌢

regarding our question, for d = 1:

Theorem [Dudek, Wajc, 2011]

For a given graph G , determining whether s1(G) ≤ 2 is NP-complete.

16/38



(Very brief) introduction

introduced by Przyby lo in 2013

fix some d ≥ 1, and require vertices at distance at most d to be distinguished

for a graph G , parameter sd(G) to minimise

d = 1, distinguish only neighbours → proper labellings & 1-2-3 Conjecture

d = ∞ → irregularity strength

thus, in between two well studied problems

close to irregularity strength in spirit, but if diam(G) ≫ d ... ⌢

regarding our question, for d = 1:

Theorem [Dudek, Wajc, 2011]

For a given graph G , determining whether s1(G) ≤ 2 is NP-complete.

16/38



(Very brief) introduction

introduced by Przyby lo in 2013

fix some d ≥ 1, and require vertices at distance at most d to be distinguished

for a graph G , parameter sd(G) to minimise

d = 1, distinguish only neighbours → proper labellings & 1-2-3 Conjecture

d = ∞ → irregularity strength

thus, in between two well studied problems

close to irregularity strength in spirit, but if diam(G) ≫ d ... ⌢

regarding our question, for d = 1:

Theorem [Dudek, Wajc, 2011]

For a given graph G , determining whether s1(G) ≤ 2 is NP-complete.

16/38



(Very brief) introduction

introduced by Przyby lo in 2013

fix some d ≥ 1, and require vertices at distance at most d to be distinguished

for a graph G , parameter sd(G) to minimise

d = 1, distinguish only neighbours → proper labellings & 1-2-3 Conjecture

d = ∞ → irregularity strength

thus, in between two well studied problems

close to irregularity strength in spirit, but if diam(G) ≫ d ... ⌢

regarding our question, for d = 1:

Theorem [Dudek, Wajc, 2011]

For a given graph G , determining whether s1(G) ≤ 2 is NP-complete.

16/38



(Very brief) introduction

introduced by Przyby lo in 2013

fix some d ≥ 1, and require vertices at distance at most d to be distinguished

for a graph G , parameter sd(G) to minimise

d = 1, distinguish only neighbours → proper labellings & 1-2-3 Conjecture

d = ∞ → irregularity strength

thus, in between two well studied problems

close to irregularity strength in spirit, but if diam(G) ≫ d ... ⌢

regarding our question, for d = 1:

Theorem [Dudek, Wajc, 2011]

For a given graph G , determining whether s1(G) ≤ 2 is NP-complete.

16/38



(Very brief) introduction

introduced by Przyby lo in 2013

fix some d ≥ 1, and require vertices at distance at most d to be distinguished

for a graph G , parameter sd(G) to minimise

d = 1, distinguish only neighbours → proper labellings & 1-2-3 Conjecture

d = ∞ → irregularity strength

thus, in between two well studied problems

close to irregularity strength in spirit, but if diam(G) ≫ d ... ⌢

regarding our question, for d = 1:

Theorem [Dudek, Wajc, 2011]

For a given graph G , determining whether s1(G) ≤ 2 is NP-complete.

16/38



(Very brief) introduction

introduced by Przyby lo in 2013

fix some d ≥ 1, and require vertices at distance at most d to be distinguished

for a graph G , parameter sd(G) to minimise

d = 1, distinguish only neighbours → proper labellings & 1-2-3 Conjecture

d = ∞ → irregularity strength

thus, in between two well studied problems

close to irregularity strength in spirit, but if diam(G) ≫ d ... ⌢

regarding our question, for d = 1:

Theorem [Dudek, Wajc, 2011]

For a given graph G , determining whether s1(G) ≤ 2 is NP-complete.

16/38



Our result

Theorem [B., 2022]

For any d ≥ 1, and any given graph G ,
determining whether sd(G) ≤ 2 is NP-complete.

main ideas: build upon the result of Dudek and Wajc

given a graph G , build a graph H such that
proper 2-labelling of G → one of H distinguishing at distance d
2-labelling of H distinguishing at distance d → proper one of G

construction in poly-time

17/38



Our result

Theorem [B., 2022]

For any d ≥ 1, and any given graph G ,
determining whether sd(G) ≤ 2 is NP-complete.

main ideas: build upon the result of Dudek and Wajc

given a graph G , build a graph H such that
proper 2-labelling of G → one of H distinguishing at distance d
2-labelling of H distinguishing at distance d → proper one of G

construction in poly-time

17/38



Our result

Theorem [B., 2022]

For any d ≥ 1, and any given graph G ,
determining whether sd(G) ≤ 2 is NP-complete.

main ideas: build upon the result of Dudek and Wajc

given a graph G , build a graph H such that
proper 2-labelling of G → one of H distinguishing at distance d
2-labelling of H distinguishing at distance d → proper one of G

construction in poly-time

17/38



Our result

Theorem [B., 2022]

For any d ≥ 1, and any given graph G ,
determining whether sd(G) ≤ 2 is NP-complete.

main ideas: build upon the result of Dudek and Wajc

given a graph G , build a graph H such that
proper 2-labelling of G → one of H distinguishing at distance d
2-labelling of H distinguishing at distance d → proper one of G

construction in poly-time

17/38



Getting started (example with d = 3)

G

y H

white vertices are at distance d ⌣ ; but:

new possible conflicts to handle (white×black, black×black)

2-labelling of G ↔ 2-labelling of H?

18/38



Getting started (example with d = 3)

G

y H

white vertices are at distance d ⌣ ; but:

new possible conflicts to handle (white×black, black×black)

2-labelling of G ↔ 2-labelling of H?

18/38



Getting started (example with d = 3)

G

y H

white vertices are at distance d ⌣ ; but:

new possible conflicts to handle (white×black, black×black)

2-labelling of G ↔ 2-labelling of H?

18/38



Getting started (example with d = 3)

G

y H

white vertices are at distance d ⌣ ; but:

new possible conflicts to handle (white×black, black×black)

2-labelling of G ↔ 2-labelling of H?

18/38



Restricting gadgets

(partial) solution: attach some structure to black vertices so that

get control over their sums by any distinguishing 2-labelling of H

cannot get conflicts involving black vertices

subdivided edges must be labelled in a certain way

Warning: adding vertices yields new possible conflicts À

consider Kp+1, the complete graph on p + 1 vertices
no distinguishing 2-labelling of Kp+1 À p + 1 vertices but sums in {p, . . . , 2p}
however:

Lemma [B., 2022]

Assume the vertices of Kp+1 are w , v1, . . . , vp. By every 2-labelling that is distin-
guishing when omitting w , the set {σ(v1), . . . , σ(vp)} is either {p, . . . , 2p − 1}
or {p+1, . . . , 2p}. Furthermore, for every s ∈ {p, 2p}, there exist distinguishing
2-labellings of Kp+1 where s ̸∈ {σ(w), σ(v1), . . . , σ(vp)}, and σ(w) is either 3p

2

(even p), or (odd p) 3p−1
2

(s = 2p) or 3p+1
2

(s = p).

19/38



Restricting gadgets

(partial) solution: attach some structure to black vertices so that

get control over their sums by any distinguishing 2-labelling of H

cannot get conflicts involving black vertices

subdivided edges must be labelled in a certain way

Warning: adding vertices yields new possible conflicts À

consider Kp+1, the complete graph on p + 1 vertices
no distinguishing 2-labelling of Kp+1 À p + 1 vertices but sums in {p, . . . , 2p}
however:

Lemma [B., 2022]

Assume the vertices of Kp+1 are w , v1, . . . , vp. By every 2-labelling that is distin-
guishing when omitting w , the set {σ(v1), . . . , σ(vp)} is either {p, . . . , 2p − 1}
or {p+1, . . . , 2p}. Furthermore, for every s ∈ {p, 2p}, there exist distinguishing
2-labellings of Kp+1 where s ̸∈ {σ(w), σ(v1), . . . , σ(vp)}, and σ(w) is either 3p

2

(even p), or (odd p) 3p−1
2

(s = 2p) or 3p+1
2

(s = p).

19/38



Restricting gadgets

(partial) solution: attach some structure to black vertices so that

get control over their sums by any distinguishing 2-labelling of H

cannot get conflicts involving black vertices

subdivided edges must be labelled in a certain way

Warning: adding vertices yields new possible conflicts À

consider Kp+1, the complete graph on p + 1 vertices
no distinguishing 2-labelling of Kp+1 À p + 1 vertices but sums in {p, . . . , 2p}
however:

Lemma [B., 2022]

Assume the vertices of Kp+1 are w , v1, . . . , vp. By every 2-labelling that is distin-
guishing when omitting w , the set {σ(v1), . . . , σ(vp)} is either {p, . . . , 2p − 1}
or {p+1, . . . , 2p}. Furthermore, for every s ∈ {p, 2p}, there exist distinguishing
2-labellings of Kp+1 where s ̸∈ {σ(w), σ(v1), . . . , σ(vp)}, and σ(w) is either 3p

2

(even p), or (odd p) 3p−1
2

(s = 2p) or 3p+1
2

(s = p).

19/38



Restricting gadgets

(partial) solution: attach some structure to black vertices so that

get control over their sums by any distinguishing 2-labelling of H

cannot get conflicts involving black vertices

subdivided edges must be labelled in a certain way

Warning: adding vertices yields new possible conflicts À

consider Kp+1, the complete graph on p + 1 vertices

no distinguishing 2-labelling of Kp+1 À p + 1 vertices but sums in {p, . . . , 2p}
however:

Lemma [B., 2022]

Assume the vertices of Kp+1 are w , v1, . . . , vp. By every 2-labelling that is distin-
guishing when omitting w , the set {σ(v1), . . . , σ(vp)} is either {p, . . . , 2p − 1}
or {p+1, . . . , 2p}. Furthermore, for every s ∈ {p, 2p}, there exist distinguishing
2-labellings of Kp+1 where s ̸∈ {σ(w), σ(v1), . . . , σ(vp)}, and σ(w) is either 3p

2

(even p), or (odd p) 3p−1
2

(s = 2p) or 3p+1
2

(s = p).

19/38



Restricting gadgets

(partial) solution: attach some structure to black vertices so that

get control over their sums by any distinguishing 2-labelling of H

cannot get conflicts involving black vertices

subdivided edges must be labelled in a certain way

Warning: adding vertices yields new possible conflicts À

consider Kp+1, the complete graph on p + 1 vertices
no distinguishing 2-labelling of Kp+1 À p + 1 vertices but sums in {p, . . . , 2p}

however:

Lemma [B., 2022]

Assume the vertices of Kp+1 are w , v1, . . . , vp. By every 2-labelling that is distin-
guishing when omitting w , the set {σ(v1), . . . , σ(vp)} is either {p, . . . , 2p − 1}
or {p+1, . . . , 2p}. Furthermore, for every s ∈ {p, 2p}, there exist distinguishing
2-labellings of Kp+1 where s ̸∈ {σ(w), σ(v1), . . . , σ(vp)}, and σ(w) is either 3p

2

(even p), or (odd p) 3p−1
2

(s = 2p) or 3p+1
2

(s = p).

19/38



Restricting gadgets

(partial) solution: attach some structure to black vertices so that

get control over their sums by any distinguishing 2-labelling of H

cannot get conflicts involving black vertices

subdivided edges must be labelled in a certain way

Warning: adding vertices yields new possible conflicts À

consider Kp+1, the complete graph on p + 1 vertices
no distinguishing 2-labelling of Kp+1 À p + 1 vertices but sums in {p, . . . , 2p}
however:

Lemma [B., 2022]

Assume the vertices of Kp+1 are w , v1, . . . , vp. By every 2-labelling that is distin-
guishing when omitting w , the set {σ(v1), . . . , σ(vp)} is either {p, . . . , 2p − 1}
or {p+1, . . . , 2p}. Furthermore, for every s ∈ {p, 2p}, there exist distinguishing
2-labellings of Kp+1 where s ̸∈ {σ(w), σ(v1), . . . , σ(vp)}, and σ(w) is either 3p

2

(even p), or (odd p) 3p−1
2

(s = 2p) or 3p+1
2

(s = p).

19/38



Illustration

v1 v2 v3 v4

w

vi ’s have degree 4 → sums in {4, . . . , 8}
four vi ’s → some σ(vi )’s must lie in {4, 8}
⇒ all vi ’s are all incident to either a 1 or a 2

⇒ {σ(v1), . . . , σ(v4)} is either {4, 5, 6, 7} or {5, 6, 7, 8}
we can 2-label so that, also, σ(w) = 6 ∼ half 1’s and 2’s

20/38



Illustration

3

v1
4

v2
4

v3
5

v4

w

1 1 2

1 2

1

vi ’s have degree 4 → sums in {4, . . . , 8}
four vi ’s → some σ(vi )’s must lie in {4, 8}
⇒ all vi ’s are all incident to either a 1 or a 2

⇒ {σ(v1), . . . , σ(v4)} is either {4, 5, 6, 7} or {5, 6, 7, 8}
we can 2-label so that, also, σ(w) = 6 ∼ half 1’s and 2’s

20/38



Illustration

4

v1
5

v2
6

v3
7

v4

6

w

1 1 2

1 2

1

1

1 2

2

vi ’s have degree 4 → sums in {4, . . . , 8}
four vi ’s → some σ(vi )’s must lie in {4, 8}
⇒ all vi ’s are all incident to either a 1 or a 2

⇒ {σ(v1), . . . , σ(v4)} is either {4, 5, 6, 7} or {5, 6, 7, 8}
we can 2-label so that, also, σ(w) = 6 ∼ half 1’s and 2’s

20/38



Illustration

4

v1
5

v2
6

v3
7

v4

6

w

1 1 2

1 2

1

1

1 2

2

vi ’s have degree 4 → sums in {4, . . . , 8}

four vi ’s → some σ(vi )’s must lie in {4, 8}
⇒ all vi ’s are all incident to either a 1 or a 2

⇒ {σ(v1), . . . , σ(v4)} is either {4, 5, 6, 7} or {5, 6, 7, 8}
we can 2-label so that, also, σ(w) = 6 ∼ half 1’s and 2’s

20/38



Illustration

4

v1
5

v2
6

v3
7

v4

6

w

1 1 2

1 2

1

1

1 2

2

vi ’s have degree 4 → sums in {4, . . . , 8}
four vi ’s → some σ(vi )’s must lie in {4, 8}

⇒ all vi ’s are all incident to either a 1 or a 2

⇒ {σ(v1), . . . , σ(v4)} is either {4, 5, 6, 7} or {5, 6, 7, 8}
we can 2-label so that, also, σ(w) = 6 ∼ half 1’s and 2’s

20/38



Illustration

4

v1
5

v2
6

v3
7

v4

6

w

1 1 2

1 2

1

1

1 2

2

vi ’s have degree 4 → sums in {4, . . . , 8}
four vi ’s → some σ(vi )’s must lie in {4, 8}
⇒ all vi ’s are all incident to either a 1 or a 2

⇒ {σ(v1), . . . , σ(v4)} is either {4, 5, 6, 7} or {5, 6, 7, 8}

we can 2-label so that, also, σ(w) = 6 ∼ half 1’s and 2’s

20/38



Illustration

4

v1
5

v2
6

v3
7

v4

6

w

1 1 2

1 2

1

1

1 2

2

vi ’s have degree 4 → sums in {4, . . . , 8}
four vi ’s → some σ(vi )’s must lie in {4, 8}
⇒ all vi ’s are all incident to either a 1 or a 2

⇒ {σ(v1), . . . , σ(v4)} is either {4, 5, 6, 7} or {5, 6, 7, 8}
we can 2-label so that, also, σ(w) = 6 ∼ half 1’s and 2’s

20/38



Restricting gadgets (cont’d)

Note: locally, we can 2-label the gadget properly, “pushing” conflicts at w
→ w is intended to eventually have much larger degree, to make it kind of safe

next constructions:

attaching a k-clique at v : add a k-clique, and make it dominated by v

attaching, for k ≥ 7, a k-fan at a degree-2 vertex v :
add k − 2 vertices u1, . . . , uk−2, adjacent to v
attach a k-clique and a (2k + 1)-clique at u1; set n1 = 3k + 2 = d(u1)
attach a (2n1 + 1)-clique and a (2(2n1 + 1) + 1)-clique at u2; set n2 = d(u2)
go on like this for all ui ’s one after the other

5 11

u1

35 71

u2

215 431

u3

v

21/38



Restricting gadgets (cont’d)

Note: locally, we can 2-label the gadget properly, “pushing” conflicts at w
→ w is intended to eventually have much larger degree, to make it kind of safe

next constructions:

attaching a k-clique at v : add a k-clique, and make it dominated by v

attaching, for k ≥ 7, a k-fan at a degree-2 vertex v :
add k − 2 vertices u1, . . . , uk−2, adjacent to v
attach a k-clique and a (2k + 1)-clique at u1; set n1 = 3k + 2 = d(u1)
attach a (2n1 + 1)-clique and a (2(2n1 + 1) + 1)-clique at u2; set n2 = d(u2)
go on like this for all ui ’s one after the other

5 11

u1

35 71

u2

215 431

u3

v

21/38



Restricting gadgets (cont’d)

Note: locally, we can 2-label the gadget properly, “pushing” conflicts at w
→ w is intended to eventually have much larger degree, to make it kind of safe

next constructions:

attaching a k-clique at v : add a k-clique, and make it dominated by v

attaching, for k ≥ 7, a k-fan at a degree-2 vertex v :
add k − 2 vertices u1, . . . , uk−2, adjacent to v
attach a k-clique and a (2k + 1)-clique at u1; set n1 = 3k + 2 = d(u1)
attach a (2n1 + 1)-clique and a (2(2n1 + 1) + 1)-clique at u2; set n2 = d(u2)
go on like this for all ui ’s one after the other

5 11

u1

35 71

u2

215 431

u3

v

21/38



Attaching k-fans

5 11

u1

35 71

u2

215 431

u3

v

Remarks:

v gets degree exactly k, like the k vertices of the smallest clique

these k + 1 vertices are at distance 2 ⇒ sum set is {k, . . . , 2k}
previous Lemma ⇒ v has sum k (only 1’s), or 2k (only 2’s)

due to degrees, cannot get the same sums in two distinct cliques

also, the ui ’s, 2-labelled as in Lemma, have large sums due to their large degrees

largest degree: function of k only

22/38



Attaching k-fans

5 11

u1

35 71

u2

215 431

u3

v

Remarks:

v gets degree exactly k, like the k vertices of the smallest clique

these k + 1 vertices are at distance 2 ⇒ sum set is {k, . . . , 2k}

previous Lemma ⇒ v has sum k (only 1’s), or 2k (only 2’s)

due to degrees, cannot get the same sums in two distinct cliques

also, the ui ’s, 2-labelled as in Lemma, have large sums due to their large degrees

largest degree: function of k only

22/38



Attaching k-fans

5 11

u1

35 71

u2

215 431

u3

v

Remarks:

v gets degree exactly k, like the k vertices of the smallest clique

these k + 1 vertices are at distance 2 ⇒ sum set is {k, . . . , 2k}
previous Lemma ⇒ v has sum k (only 1’s), or 2k (only 2’s)

due to degrees, cannot get the same sums in two distinct cliques

also, the ui ’s, 2-labelled as in Lemma, have large sums due to their large degrees

largest degree: function of k only

22/38



Attaching k-fans

5 11

u1

35 71

u2

215 431

u3

v

Remarks:

v gets degree exactly k, like the k vertices of the smallest clique

these k + 1 vertices are at distance 2 ⇒ sum set is {k, . . . , 2k}
previous Lemma ⇒ v has sum k (only 1’s), or 2k (only 2’s)

due to degrees, cannot get the same sums in two distinct cliques

also, the ui ’s, 2-labelled as in Lemma, have large sums due to their large degrees

largest degree: function of k only

22/38



Attaching k-fans

5 11

u1

35 71

u2

215 431

u3

v

Remarks:

v gets degree exactly k, like the k vertices of the smallest clique

these k + 1 vertices are at distance 2 ⇒ sum set is {k, . . . , 2k}
previous Lemma ⇒ v has sum k (only 1’s), or 2k (only 2’s)

due to degrees, cannot get the same sums in two distinct cliques

also, the ui ’s, 2-labelled as in Lemma, have large sums due to their large degrees

largest degree: function of k only

22/38



Attaching k-fans

5 11

u1

35 71

u2

215 431

u3

v

Remarks:

v gets degree exactly k, like the k vertices of the smallest clique

these k + 1 vertices are at distance 2 ⇒ sum set is {k, . . . , 2k}
previous Lemma ⇒ v has sum k (only 1’s), or 2k (only 2’s)

due to degrees, cannot get the same sums in two distinct cliques

also, the ui ’s, 2-labelled as in Lemma, have large sums due to their large degrees

largest degree: function of k only

22/38



Sequences of fans

x x x

x

k-fan, ∆ = α

x

x

(2α+ 1)-fan

x

no conflicts in different fans

same for attachment vertices

subdivided edges all assigned the same label x (either 1 or 2)

again, largest degree function of k and d only

23/38



Sequences of fans

x x

x

k-fan, ∆ = α

x

x x x

x

k-fan, ∆ = α

x

x

(2α+ 1)-fan

x

no conflicts in different fans

same for attachment vertices

subdivided edges all assigned the same label x (either 1 or 2)

again, largest degree function of k and d only

23/38



Sequences of fans

x x x

x

k-fan, ∆ = α

x

x

(2α+ 1)-fan

x

no conflicts in different fans

same for attachment vertices

subdivided edges all assigned the same label x (either 1 or 2)

again, largest degree function of k and d only

23/38



Sequences of fans

x x x

x

k-fan, ∆ = α

x

x

(2α+ 1)-fan

x

no conflicts in different fans

same for attachment vertices

subdivided edges all assigned the same label x (either 1 or 2)

again, largest degree function of k and d only

23/38



Sequences of fans

x x x

x

k-fan, ∆ = α

x

x

(2α+ 1)-fan

x

no conflicts in different fans

same for attachment vertices

subdivided edges all assigned the same label x (either 1 or 2)

again, largest degree function of k and d only

23/38



Sequences of fans

x x x

x

k-fan, ∆ = α

x

x

(2α+ 1)-fan

x

no conflicts in different fans

same for attachment vertices

subdivided edges all assigned the same label x (either 1 or 2)

again, largest degree function of k and d only

23/38



Sequences of fans

x x x

x

k-fan, ∆ = α

x

x

(2α+ 1)-fan

x

no conflicts in different fans

same for attachment vertices

subdivided edges all assigned the same label x (either 1 or 2)

again, largest degree function of k and d only

23/38



Progress this far (example with d = 3)

G

y H

fans grow exponentially + ∆(G) types required ⇒ exponential function of ∆(G) ⌢

Still, 2-labelling of G ↔ 2-labelling of H ⌣

24/38



Progress this far (example with d = 3)

G

y H

fans grow exponentially + ∆(G) types required ⇒ exponential function of ∆(G) ⌢

Still, 2-labelling of G ↔ 2-labelling of H ⌣

24/38



Progress this far (example with d = 3)

G

y H

fans grow exponentially + ∆(G) types required ⇒ exponential function of ∆(G) ⌢

Still, 2-labelling of G ↔ 2-labelling of H ⌣

24/38



Progress this far (example with d = 3)

G

y H

fans grow exponentially + ∆(G) types required ⇒ exponential function of ∆(G) ⌢

Still, 2-labelling of G ↔ 2-labelling of H ⌣

24/38



Progress this far (example with d = 3)

G

y H

fans grow exponentially + ∆(G) types required ⇒ exponential function of ∆(G) ⌢

Still, 2-labelling of G ↔ 2-labelling of H ⌣

24/38



Progress this far (example with d = 3)

G

y H

fans grow exponentially + ∆(G) types required ⇒ exponential function of ∆(G) ⌢

Still, 2-labelling of G ↔ 2-labelling of H ⌣

24/38



Progress this far (example with d = 3)

G

y H

fans grow exponentially + ∆(G) types required ⇒ exponential function of ∆(G) ⌢

Still, 2-labelling of G ↔ 2-labelling of H ⌣

24/38



Polishing things

to limit # of needed types of fans: make sure ∆(G) is bounded; fortunately:

Theorem [Ahadi, Dehghan, Sadeghi, 2013]

For a given cubic graph G , determining whether s1(G) ≤ 2 is NP-complete.

also, if δ(G) = ∆(G) = 3:

Vizing: χ′(G) ∈ {3, 4}
Misra, Gries: a proper 4-edge-colouring of G can be obtained in poly-time

thus, for free, can suppose G comes with a proper 4-edge-colouring ϕ

25/38



Polishing things

to limit # of needed types of fans: make sure ∆(G) is bounded; fortunately:

Theorem [Ahadi, Dehghan, Sadeghi, 2013]

For a given cubic graph G , determining whether s1(G) ≤ 2 is NP-complete.

also, if δ(G) = ∆(G) = 3:

Vizing: χ′(G) ∈ {3, 4}

Misra, Gries: a proper 4-edge-colouring of G can be obtained in poly-time

thus, for free, can suppose G comes with a proper 4-edge-colouring ϕ

25/38



Polishing things

to limit # of needed types of fans: make sure ∆(G) is bounded; fortunately:

Theorem [Ahadi, Dehghan, Sadeghi, 2013]

For a given cubic graph G , determining whether s1(G) ≤ 2 is NP-complete.

also, if δ(G) = ∆(G) = 3:

Vizing: χ′(G) ∈ {3, 4}
Misra, Gries: a proper 4-edge-colouring of G can be obtained in poly-time

thus, for free, can suppose G comes with a proper 4-edge-colouring ϕ

25/38



Polishing things

to limit # of needed types of fans: make sure ∆(G) is bounded; fortunately:

Theorem [Ahadi, Dehghan, Sadeghi, 2013]

For a given cubic graph G , determining whether s1(G) ≤ 2 is NP-complete.

also, if δ(G) = ∆(G) = 3:

Vizing: χ′(G) ∈ {3, 4}
Misra, Gries: a proper 4-edge-colouring of G can be obtained in poly-time

thus, for free, can suppose G comes with a proper 4-edge-colouring ϕ

25/38



Coloured fans

G

y H

now OK ⌣ :

4(d − 1) types of fans ⇒ constant number

ϕ ⇒ fans of the same type are at distance more than d

white vertices have sum at most 6 ⇒ no conflicts with fans if (≥ 7)-fans

altogether, construction in poly-time + labelling equivalence ⌣

26/38



Coloured fans

G

y H

now OK ⌣ :

4(d − 1) types of fans ⇒ constant number

ϕ ⇒ fans of the same type are at distance more than d

white vertices have sum at most 6 ⇒ no conflicts with fans if (≥ 7)-fans

altogether, construction in poly-time + labelling equivalence ⌣

26/38



Coloured fans

G

y H

now OK ⌣ :

4(d − 1) types of fans ⇒ constant number

ϕ ⇒ fans of the same type are at distance more than d

white vertices have sum at most 6 ⇒ no conflicts with fans if (≥ 7)-fans

altogether, construction in poly-time + labelling equivalence ⌣

26/38



Coloured fans

G

y H

now OK ⌣ :

4(d − 1) types of fans ⇒ constant number

ϕ ⇒ fans of the same type are at distance more than d

white vertices have sum at most 6 ⇒ no conflicts with fans if (≥ 7)-fans

altogether, construction in poly-time + labelling equivalence ⌣

26/38



Coloured fans

G

y H

now OK ⌣ :

4(d − 1) types of fans ⇒ constant number

ϕ ⇒ fans of the same type are at distance more than d

white vertices have sum at most 6 ⇒ no conflicts with fans if (≥ 7)-fans

altogether, construction in poly-time + labelling equivalence ⌣
26/38



Multiset irregularity strength

27/38



(Very brief) introduction

introduced by Chartrand, Escuardro, Okamoto, and Zhang in 2006

distinguish (all) vertices through their colour codes (multisets of incident labels)

require colour codes to be pairwise distinct

also called detectable colourings

for a graph G , parameter sm(G) to minimise

clearly, sm(G) ≤ s(G) for any nice graph G

much easier in this setting!

labels can be regarded as colours

in particular, different degrees ⇒ different colour codes!

28/38



(Very brief) introduction

introduced by Chartrand, Escuardro, Okamoto, and Zhang in 2006

distinguish (all) vertices through their colour codes (multisets of incident labels)

require colour codes to be pairwise distinct

also called detectable colourings

for a graph G , parameter sm(G) to minimise

clearly, sm(G) ≤ s(G) for any nice graph G

much easier in this setting!

labels can be regarded as colours

in particular, different degrees ⇒ different colour codes!

28/38



(Very brief) introduction

introduced by Chartrand, Escuardro, Okamoto, and Zhang in 2006

distinguish (all) vertices through their colour codes (multisets of incident labels)

require colour codes to be pairwise distinct

also called detectable colourings

for a graph G , parameter sm(G) to minimise

clearly, sm(G) ≤ s(G) for any nice graph G

much easier in this setting!

labels can be regarded as colours

in particular, different degrees ⇒ different colour codes!

28/38



(Very brief) introduction

introduced by Chartrand, Escuardro, Okamoto, and Zhang in 2006

distinguish (all) vertices through their colour codes (multisets of incident labels)

require colour codes to be pairwise distinct

also called detectable colourings

for a graph G , parameter sm(G) to minimise

clearly, sm(G) ≤ s(G) for any nice graph G

much easier in this setting!

labels can be regarded as colours

in particular, different degrees ⇒ different colour codes!

28/38



(Very brief) introduction

introduced by Chartrand, Escuardro, Okamoto, and Zhang in 2006

distinguish (all) vertices through their colour codes (multisets of incident labels)

require colour codes to be pairwise distinct

also called detectable colourings

for a graph G , parameter sm(G) to minimise

clearly, sm(G) ≤ s(G) for any nice graph G

much easier in this setting!

labels can be regarded as colours

in particular, different degrees ⇒ different colour codes!

28/38



(Very brief) introduction

introduced by Chartrand, Escuardro, Okamoto, and Zhang in 2006

distinguish (all) vertices through their colour codes (multisets of incident labels)

require colour codes to be pairwise distinct

also called detectable colourings

for a graph G , parameter sm(G) to minimise

clearly, sm(G) ≤ s(G) for any nice graph G

much easier in this setting!

labels can be regarded as colours

in particular, different degrees ⇒ different colour codes!

28/38



(Very brief) introduction

introduced by Chartrand, Escuardro, Okamoto, and Zhang in 2006

distinguish (all) vertices through their colour codes (multisets of incident labels)

require colour codes to be pairwise distinct

also called detectable colourings

for a graph G , parameter sm(G) to minimise

clearly, sm(G) ≤ s(G) for any nice graph G

much easier in this setting!

labels can be regarded as colours

in particular, different degrees ⇒ different colour codes!

28/38



Our result

Theorem [B., 2022]

For any given graph G , determining whether sm(G) ≤ 2 is NP-complete.

main idea:

exploit the properties on distinct degrees

in particular, k + 1 degree-k vertices ⇒ we know the set of their colour codes

colour codes of k of them are forced ⇒ last one is forced too

reduction from Monotone Cubic 1-in-3 SAT:

instance: 3CNF formula F over clauses C1, . . . ,Cm and variables x1, . . . , xn

all clauses contain exactly three distinct (positive) variables monotonicity

all variables appear in exactly three distinct clauses cubic structure

question: is F 1-in-3 satisfiable, i.e. can the variables be set to true or false so that
each clause has exactly one true variable?

from F , build, in poly-time, graph G , so that F is 1-in-3 satisfiable ↔ sm(G) ≤ 2

29/38



Our result

Theorem [B., 2022]

For any given graph G , determining whether sm(G) ≤ 2 is NP-complete.

main idea:

exploit the properties on distinct degrees

in particular, k + 1 degree-k vertices ⇒ we know the set of their colour codes

colour codes of k of them are forced ⇒ last one is forced too

reduction from Monotone Cubic 1-in-3 SAT:

instance: 3CNF formula F over clauses C1, . . . ,Cm and variables x1, . . . , xn

all clauses contain exactly three distinct (positive) variables monotonicity

all variables appear in exactly three distinct clauses cubic structure

question: is F 1-in-3 satisfiable, i.e. can the variables be set to true or false so that
each clause has exactly one true variable?

from F , build, in poly-time, graph G , so that F is 1-in-3 satisfiable ↔ sm(G) ≤ 2

29/38



Our result

Theorem [B., 2022]

For any given graph G , determining whether sm(G) ≤ 2 is NP-complete.

main idea:

exploit the properties on distinct degrees

in particular, k + 1 degree-k vertices ⇒ we know the set of their colour codes

colour codes of k of them are forced ⇒ last one is forced too

reduction from Monotone Cubic 1-in-3 SAT:

instance: 3CNF formula F over clauses C1, . . . ,Cm and variables x1, . . . , xn

all clauses contain exactly three distinct (positive) variables monotonicity

all variables appear in exactly three distinct clauses cubic structure

question: is F 1-in-3 satisfiable, i.e. can the variables be set to true or false so that
each clause has exactly one true variable?

from F , build, in poly-time, graph G , so that F is 1-in-3 satisfiable ↔ sm(G) ≤ 2

29/38



Our result

Theorem [B., 2022]

For any given graph G , determining whether sm(G) ≤ 2 is NP-complete.

main idea:

exploit the properties on distinct degrees

in particular, k + 1 degree-k vertices ⇒ we know the set of their colour codes

colour codes of k of them are forced ⇒ last one is forced too

reduction from Monotone Cubic 1-in-3 SAT:

instance: 3CNF formula F over clauses C1, . . . ,Cm and variables x1, . . . , xn

all clauses contain exactly three distinct (positive) variables monotonicity

all variables appear in exactly three distinct clauses cubic structure

question: is F 1-in-3 satisfiable, i.e. can the variables be set to true or false so that
each clause has exactly one true variable?

from F , build, in poly-time, graph G , so that F is 1-in-3 satisfiable ↔ sm(G) ≤ 2

29/38



Our result

Theorem [B., 2022]

For any given graph G , determining whether sm(G) ≤ 2 is NP-complete.

main idea:

exploit the properties on distinct degrees

in particular, k + 1 degree-k vertices ⇒ we know the set of their colour codes

colour codes of k of them are forced ⇒ last one is forced too

reduction from Monotone Cubic 1-in-3 SAT:

instance: 3CNF formula F over clauses C1, . . . ,Cm and variables x1, . . . , xn

all clauses contain exactly three distinct (positive) variables monotonicity

all variables appear in exactly three distinct clauses cubic structure

question: is F 1-in-3 satisfiable, i.e. can the variables be set to true or false so that
each clause has exactly one true variable?

from F , build, in poly-time, graph G , so that F is 1-in-3 satisfiable ↔ sm(G) ≤ 2

29/38



Main ideas

1=blue, 2=red

Main ideas: model the structure of F as a graph, and add forcing mechanisms so that
reflecting labelling properties (i.e., clause vertices: exactly one blue incident formula
edge; variable vertices: three incident formula edges the same colour)

x1 x2 x3 x4

C1 C2 C3 C4

thus, forbid:

for clause vertices: RRR+RBB+BBB

for variable vertices: RBB+RRB

30/38



Main ideas

1=blue, 2=red

Main ideas: model the structure of F as a graph, and add forcing mechanisms so that
reflecting labelling properties (i.e., clause vertices: exactly one blue incident formula
edge; variable vertices: three incident formula edges the same colour)

x1 x2 x3 x4

C1 C2 C3 C4

thus, forbid:

for clause vertices: RRR+RBB+BBB

for variable vertices: RBB+RRB

30/38



Main ideas

1=blue, 2=red

Main ideas: model the structure of F as a graph, and add forcing mechanisms so that
reflecting labelling properties (i.e., clause vertices: exactly one blue incident formula
edge; variable vertices: three incident formula edges the same colour)

x1 x2 x3 x4

C1 C2 C3 C4

thus, forbid:

for clause vertices: RRR+RBB+BBB

for variable vertices: RBB+RRB

30/38



Main ideas

1=blue, 2=red

Main ideas: model the structure of F as a graph, and add forcing mechanisms so that
reflecting labelling properties (i.e., clause vertices: exactly one blue incident formula
edge; variable vertices: three incident formula edges the same colour)

x1 x2 x3 x4

C1 C2 C3 C4

thus, forbid:

for clause vertices: RRR+RBB+BBB

for variable vertices: RBB+RRB

30/38



Forcing mechanisms

Goal: “generate” vertices with same degree, that must have the forbidden colour codes

x1 x2 x3

C1 C1 C2 C3

x1

⇒ thus need to “generate” edges of a certain colour

Note: any two variable vertices and/or clause vertices should have distinct degrees...
(for now, let us just pretend ⌣ ⌣ ⌣ )

31/38



Forcing mechanisms

Goal: “generate” vertices with same degree, that must have the forbidden colour codes

x1 x2 x3

C1 C1 C2 C3

x1

⇒ thus need to “generate” edges of a certain colour

Note: any two variable vertices and/or clause vertices should have distinct degrees...
(for now, let us just pretend ⌣ ⌣ ⌣ )

31/38



Forcing mechanisms

Goal: “generate” vertices with same degree, that must have the forbidden colour codes

x1 x2 x3

C1 C1 C2 C3

x1

⇒ thus need to “generate” edges of a certain colour

Note: any two variable vertices and/or clause vertices should have distinct degrees...
(for now, let us just pretend ⌣ ⌣ ⌣ )

31/38



Forcing mechanisms

Goal: “generate” vertices with same degree, that must have the forbidden colour codes

x1 x2 x3

C1 C1 C2 C3

x1

⇒ thus need to “generate” edges of a certain colour

Note: any two variable vertices and/or clause vertices should have distinct degrees...
(for now, let us just pretend ⌣ ⌣ ⌣ )

31/38



Forcing mechanisms

Note: properties of cliques still apply here
⇒ have, somewhere, a vertex to which forcing cliques are attached:

a-cliqueb-clique

c
-c
li
q
u
e

d
-c
li
q
u
e

Implications:

a vertices of degree a + all colour codes but Ra or Ba ⇒ only Ra or Ba remains

b vertices of degree b + all colour codes but Rb or Bb ⇒ only Rb or Bb remains

c vertices of degree c + all colour codes but Rc or Bc ⇒ only Rc or Bc remains

d vertices of degree d + all colour codes but Rd or Bd ⇒ only Rd or Bd remains

⇒ for any degree x , can make sure a degree-x vertex is monochromatic

32/38



Forcing mechanisms

Note: properties of cliques still apply here
⇒ have, somewhere, a vertex to which forcing cliques are attached:

a-clique

b-clique

c
-c
li
q
u
e

d
-c
li
q
u
e

Implications:

a vertices of degree a + all colour codes but Ra or Ba ⇒ only Ra or Ba remains

b vertices of degree b + all colour codes but Rb or Bb ⇒ only Rb or Bb remains

c vertices of degree c + all colour codes but Rc or Bc ⇒ only Rc or Bc remains

d vertices of degree d + all colour codes but Rd or Bd ⇒ only Rd or Bd remains

⇒ for any degree x , can make sure a degree-x vertex is monochromatic

32/38



Forcing mechanisms

Note: properties of cliques still apply here
⇒ have, somewhere, a vertex to which forcing cliques are attached:

a-cliqueb-clique

c
-c
li
q
u
e

d
-c
li
q
u
e

Implications:

a vertices of degree a + all colour codes but Ra or Ba ⇒ only Ra or Ba remains

b vertices of degree b + all colour codes but Rb or Bb ⇒ only Rb or Bb remains

c vertices of degree c + all colour codes but Rc or Bc ⇒ only Rc or Bc remains

d vertices of degree d + all colour codes but Rd or Bd ⇒ only Rd or Bd remains

⇒ for any degree x , can make sure a degree-x vertex is monochromatic

32/38



Forcing mechanisms

Note: properties of cliques still apply here
⇒ have, somewhere, a vertex to which forcing cliques are attached:

a-cliqueb-clique

c
-c
li
q
u
e

d
-c
li
q
u
e

Implications:

a vertices of degree a + all colour codes but Ra or Ba ⇒ only Ra or Ba remains

b vertices of degree b + all colour codes but Rb or Bb ⇒ only Rb or Bb remains

c vertices of degree c + all colour codes but Rc or Bc ⇒ only Rc or Bc remains

d vertices of degree d + all colour codes but Rd or Bd ⇒ only Rd or Bd remains

⇒ for any degree x , can make sure a degree-x vertex is monochromatic

32/38



Forcing mechanisms

Note: properties of cliques still apply here
⇒ have, somewhere, a vertex to which forcing cliques are attached:

a-cliqueb-clique

c
-c
li
q
u
e

d
-c
li
q
u
e

Implications:

a vertices of degree a + all colour codes but Ra or Ba ⇒ only Ra or Ba remains

b vertices of degree b + all colour codes but Rb or Bb ⇒ only Rb or Bb remains

c vertices of degree c + all colour codes but Rc or Bc ⇒ only Rc or Bc remains

d vertices of degree d + all colour codes but Rd or Bd ⇒ only Rd or Bd remains

⇒ for any degree x , can make sure a degree-x vertex is monochromatic

32/38



Forcing mechanisms

Note: properties of cliques still apply here
⇒ have, somewhere, a vertex to which forcing cliques are attached:

a-cliqueb-clique

c
-c
li
q
u
e

d
-c
li
q
u
e

Implications:

a vertices of degree a + all colour codes but Ra or Ba ⇒ only Ra or Ba remains

b vertices of degree b + all colour codes but Rb or Bb ⇒ only Rb or Bb remains

c vertices of degree c + all colour codes but Rc or Bc ⇒ only Rc or Bc remains

d vertices of degree d + all colour codes but Rd or Bd ⇒ only Rd or Bd remains

⇒ for any degree x , can make sure a degree-x vertex is monochromatic
32/38



Forcing trails

3-clique4-clique

5
-c
li
q
u
e

k
-c
li
q
u
e

k − 2

pendant edges: forcing edges + extra edges (discussed later)

33/38



Forcing trails

3-clique

4-clique

5
-c
li
q
u
e

k
-c
li
q
u
e

k − 2

pendant edges: forcing edges + extra edges (discussed later)

33/38



Forcing trails

3-clique4-clique

5
-c
li
q
u
e

k
-c
li
q
u
e

k − 2

pendant edges: forcing edges + extra edges (discussed later)

33/38



Forcing trails

3-clique4-clique

5
-c
li
q
u
e

k
-c
li
q
u
e

k − 2

pendant edges: forcing edges + extra edges (discussed later)

33/38



Forcing trails

3-clique4-clique

5
-c
li
q
u
e

k
-c
li
q
u
e

k − 2

pendant edges: forcing edges + extra edges (discussed later)

33/38



Forcing trails

3-clique4-clique

5
-c
li
q
u
e

k
-c
li
q
u
e

k − 2

pendant edges: forcing edges + extra edges (discussed later)

33/38



Pairs of forcing trails

force two colours: need two forcing trails (with distinct degrees)

34/38



Pairs of forcing trails

force two colours: need two forcing trails (with distinct degrees)

34/38



Pairs of forcing trails

force two colours: need two forcing trails (with distinct degrees)

34/38



Pairs of forcing trails

force two colours: need two forcing trails (with distinct degrees)

34/38



Polishing everything

to finish off:

“plug” pendant edges from the two trails to fill colour codes and increase degrees

Warning: clause vertices and variables vertices must have distinct degrees

⇒ degrees 3, 4, . . . , n + m + 2, and same for their respective forcing counterparts

unused pendant edges: attach cliques (with new degrees) to fill

number of needed degrees: polynomial function of n,m ⇒ poly-time construction

35/38



Polishing everything

to finish off:

“plug” pendant edges from the two trails to fill colour codes and increase degrees

Warning: clause vertices and variables vertices must have distinct degrees

⇒ degrees 3, 4, . . . , n + m + 2, and same for their respective forcing counterparts

unused pendant edges: attach cliques (with new degrees) to fill

number of needed degrees: polynomial function of n,m ⇒ poly-time construction

35/38



Polishing everything

to finish off:

“plug” pendant edges from the two trails to fill colour codes and increase degrees

Warning: clause vertices and variables vertices must have distinct degrees

⇒ degrees 3, 4, . . . , n + m + 2, and same for their respective forcing counterparts

unused pendant edges: attach cliques (with new degrees) to fill

number of needed degrees: polynomial function of n,m ⇒ poly-time construction

35/38



Final picture

1-forcing

t1

2-forcing

t2

GF

vC1
vC2

clauses

aC1 bC1
cC1

aC2 bC2
cC2

vx1 vx2
variables

ax1 bx1 ax2 bx2

36/38



Conclusion

37/38



Conclusions and perspectives

Main question

For a given graph G , determining whether s(G) ≤ 2?

NP-completeness of two close problems
⇒ might indicate the original problem also is (or not À)

second proof adapts to sums ⌣ ...

... but the degree property implies we must use cliques doubling each step ⌢

Questions:

complexity of the sum problem?

replacing cliques with something else?

second proof for connected graphs?

what for any k ≥ 2?

classes of graphs?

Thanks for your attention!!

38/38



Conclusions and perspectives

Main question

For a given graph G , determining whether s(G) ≤ 2?

NP-completeness of two close problems
⇒ might indicate the original problem also is (or not À)

second proof adapts to sums ⌣ ...

... but the degree property implies we must use cliques doubling each step ⌢

Questions:

complexity of the sum problem?

replacing cliques with something else?

second proof for connected graphs?

what for any k ≥ 2?

classes of graphs?

Thanks for your attention!!

38/38



Conclusions and perspectives

Main question

For a given graph G , determining whether s(G) ≤ 2?

NP-completeness of two close problems
⇒ might indicate the original problem also is (or not À)

second proof adapts to sums ⌣ ...

... but the degree property implies we must use cliques doubling each step ⌢

Questions:

complexity of the sum problem?

replacing cliques with something else?

second proof for connected graphs?

what for any k ≥ 2?

classes of graphs?

Thanks for your attention!!

38/38



Conclusions and perspectives

Main question

For a given graph G , determining whether s(G) ≤ 2?

NP-completeness of two close problems
⇒ might indicate the original problem also is (or not À)

second proof adapts to sums ⌣ ...

... but the degree property implies we must use cliques doubling each step ⌢

Questions:

complexity of the sum problem?

replacing cliques with something else?

second proof for connected graphs?

what for any k ≥ 2?

classes of graphs?

Thanks for your attention!!

38/38



Conclusions and perspectives

Main question

For a given graph G , determining whether s(G) ≤ 2?

NP-completeness of two close problems
⇒ might indicate the original problem also is (or not À)

second proof adapts to sums ⌣ ...

... but the degree property implies we must use cliques doubling each step ⌢

Questions:

complexity of the sum problem?

replacing cliques with something else?

second proof for connected graphs?

what for any k ≥ 2?

classes of graphs?

Thanks for your attention!!

38/38



Conclusions and perspectives

Main question

For a given graph G , determining whether s(G) ≤ 2?

NP-completeness of two close problems
⇒ might indicate the original problem also is (or not À)

second proof adapts to sums ⌣ ...

... but the degree property implies we must use cliques doubling each step ⌢

Questions:

complexity of the sum problem?

replacing cliques with something else?

second proof for connected graphs?

what for any k ≥ 2?

classes of graphs?

Thanks for your attention!!

38/38



Conclusions and perspectives

Main question

For a given graph G , determining whether s(G) ≤ 2?

NP-completeness of two close problems
⇒ might indicate the original problem also is (or not À)

second proof adapts to sums ⌣ ...

... but the degree property implies we must use cliques doubling each step ⌢

Questions:

complexity of the sum problem?

replacing cliques with something else?

second proof for connected graphs?

what for any k ≥ 2?

classes of graphs?

Thanks for your attention!!

38/38



Conclusions and perspectives

Main question

For a given graph G , determining whether s(G) ≤ 2?

NP-completeness of two close problems
⇒ might indicate the original problem also is (or not À)

second proof adapts to sums ⌣ ...

... but the degree property implies we must use cliques doubling each step ⌢

Questions:

complexity of the sum problem?

replacing cliques with something else?

second proof for connected graphs?

what for any k ≥ 2?

classes of graphs?

Thanks for your attention!!

38/38



Conclusions and perspectives

Main question

For a given graph G , determining whether s(G) ≤ 2?

NP-completeness of two close problems
⇒ might indicate the original problem also is (or not À)

second proof adapts to sums ⌣ ...

... but the degree property implies we must use cliques doubling each step ⌢

Questions:

complexity of the sum problem?

replacing cliques with something else?

second proof for connected graphs?

what for any k ≥ 2?

classes of graphs?

Thanks for your attention!!

38/38


