# On the hardness of determining the irregularity strength of graphs 

Julien Bensmail<br>Université Côte d'Azur, France

Séminaire Graphes et Optimisation, LaBRI
November 17, 2023

## General context

## From regularity to irregularity

regular graph ()

## From regularity to irregularity

```
regular graph ()
irregular graph }\odot:)
```


## From regularity to irregularity

```
regular graph ()
irregular graph © : ) : )
```

Attempt: irregular $=$ all degrees are pairwise distinct does not fit well with simple graphs $:+:+$

## From regularity to irregularity

```
regular graph ();
irregular graph :; ;):
```

Attempt: irregular $=$ all degrees are pairwise distinct does not fit well with simple graphs $*: 2 \cdot(:$

```
assume G is irregular, with n\geq2 vertices
possible degrees range from 0 (isolated) to n-1 (universal)
thus n possible degrees
all distinct and n\geq2 m isolated vertex + universal vertex {
```


## From regularity to irregularity

```
regular graph ()
irregular graph :- ): )
```

Attempt: irregular $=$ all degrees are pairwise distinct does not fit well with simple graphs $:+:+$

```
assume G is irregular, with n\geq2 vertices
possible degrees range from 0 (isolated) to n-1 (universal)
thus n possible degrees
all distinct and n\geq2 m}\mathrm{ isolated vertex + universal vertex &
```

How to overcome this?

## Making simple graphs irregular

## IRREGULAR NETWORKS

Gary Chartrand ${ }^{1}$, Western Michigan University Michael S. Jacobson, University of Louisville Jenö Lehel, Computer and Automation Institute, Hungarian Academy of Sciences, Budapest
Ortrud R. Oellermann, Western Michigan University
Sergio Ruiz, Universidad Católica de Valparaíso, Chile Farrokh Saba, Western Michigan University

## ABSTRACT

A network $N$ is a graph in which each edge is assigned a positive integer weight. The degree of a vertex in $N$ is the sum of the weights of its incident edges. A network is irregular if its vertices have distinct degrees. The strength of a network $N$ is the maximum weight among the edges of $N$. The irregularity strength $s(G)$ of a graph $G$ is the minimum strength among the irregular networks having $G$ as an underlying graph. It is shown that $s(G)$ is defined for every connected graph $G$ of order $p \geq 3$ and that $s(G) \leq 2 p-3$. Further, if $N$ is a network of strength at least 2 , then there exists an irregular network having the same strength as $N$ and containing $N$ as an induced subnetwork.

## 1. Introduction

A graph $G$ is regular if its vertices have the same degree; $G$ is irregular if its vertices have distinct degrees. While the literature abounds with results about regular graphs, it is well known that nontrivial irregular graphs fail even to exist. Such is not the case for multigraphs, however. For example, the multigraph of Figure 1(a) is irregular, having vertices of degrees 3,4 and 5 .

## Sample example



- graph $\rightarrow$ (irregular) multigraph
- preserves the original structure


## Sample example



- graph $\rightarrow$ (irregular) multigraph
- preserves the original structure
- Chartrand et al.: avoid "exploding" an edge too much?
- above: every edge $\rightarrow \leq 4$ parallel edges; what about $\leq 3$ ?


## Another take on the problem

Remark: previous problem a bit tedious to study


## Another take on the problem

Remark: previous problem a bit tedious to study


## Another take on the problem

Remark: previous problem a bit tedious to study


## Another take on the problem

Remark: previous problem a bit tedious to study


## Another take on the problem

Remark: previous problem a bit tedious to study


## Another take on the problem

Remark: previous problem a bit tedious to study


- $k$ parallel edges $\rightarrow$ label $k$


## Another take on the problem

Remark: previous problem a bit tedious to study


- $k$ parallel edges $\rightarrow$ label $k$
- degrees $\rightarrow$ incident sums


## Another take on the problem

Remark: previous problem a bit tedious to study


- $k$ parallel edges $\rightarrow$ label $k$
- degrees $\rightarrow$ incident sums
- irregular multigraph $\rightarrow$ irregular labelling


## Another take on the problem

Remark: previous problem a bit tedious to study


- $k$ parallel edges $\rightarrow$ label $k$
- degrees $\rightarrow$ incident sums
- irregular multigraph $\rightarrow$ irregular labelling
- minimising max. edge "explosion" $\rightarrow$ minimising max. label
- irregularity strength $s(G)$ of $G$ : this minimum


## A few more examples



A few more examples


## A few more examples



## A few more examples



## A few more examples



## A few more examples



$$
s\left(K_{7}\right) \leq 3\left(\text { and actually } s\left(K_{7}\right)=3\right)
$$

## Understanding the problem

## Remarks:

- $s(G)$ well defined iff $G$ is nice (no $K_{2}$ as a connected component)


## Understanding the problem

## Remarks:

- $s(G)$ well defined iff $G$ is nice (no $K_{2}$ as a connected component)
- non-connected graphs are troublesome $)^{2}$


## Understanding the problem

## Remarks:

- $s(G)$ well defined iff $G$ is nice (no $K_{2}$ as a connected component)
- non-connected graphs are troublesome $\cdot:$
- $s(G)$ not bounded by an absolute constant $k \geq 1$
for any $x \geq 0$, set $n b(x)$ as the \# of degree- $x$ vertices; then, need:
- $\mathrm{nb}(1) \leq k$ for $x=1$, sums in $\{1, \ldots, k\}$
- $\mathrm{nb}(2) \leq 2 k-1$
- $\mathrm{nb}(3) \leq 3 k-2$
- etc.




## Understanding the problem

## Remarks:

- $s(G)$ well defined iff $G$ is nice (no $K_{2}$ as a connected component)
- non-connected graphs are troublesome $\cdot:$
- $s(G)$ not bounded by an absolute constant $k \geq 1$
for any $x \geq 0$, set $n b(x)$ as the \# of degree- $x$ vertices; then, need:
- $\operatorname{nb}(1) \leq k$ for $x=1$, sums in $\{1, \ldots, k\}$
- $\mathrm{nb}(2) \leq 2 k-1$
- $\mathrm{nb}(3) \leq 3 k-2$
- etc.


but vertices with different, yet close degrees can also "collide" ${ }^{()}$


## Some known results

## lots (lots!) of results of varying interest...

### 7.14 Irregular Total Labelings

Motivated by the notion of the irregularity strength of a graph introduced by Chartrand, Jacobson, Lehel, Oellermann, Ruiz, and Saba [309] in 1988 and various kinds of other total labelings, Bača, Jendroll, Miller, and Ryan [136] introduced the total edge irregularity strength of a graph as follows. For a graph $G(V, E)$ a labeling $\partial: V \cup E \rightarrow\{1,2, \ldots, k\}$ is called an edge irregular total $k$-labeling if for every pair of distinct edges $u v$ and $x y, \partial(u)+\partial(u v)+\partial(v) \neq \partial(x)+\partial(x y)+\partial(y)$. Similarly, $\partial$ is called an vertex irregular total $k$-labeling if for every pair of distinct vertices $u$ and $v, \partial(u)+\sum \partial(e)$ over all edges $e$ incident to $u \neq \partial(v)+\sum \partial(e)$ over all edges $e$ incident to $v$. The minimum $k$ for which $G$ has an edge (vertex) irregular total $k$-labeling is called the total edge (vertex) irregularity strength of $G$. The total edge (vertex) irregular strength of $G$ is denoted by $\operatorname{tes}(G)(\operatorname{tvs}(G))$. They prove: for $G(V, E), E$ not empty, $\lceil(|E|+2) / 3\rceil \leqslant \operatorname{tes}(G) \leqslant|E| ; \operatorname{tes}(G) \geqslant$ $\lceil(\Delta(G)+1) / 2\rceil$ and $\operatorname{tes}(G) \leqslant|E|-\Delta(G)$, if $\Delta(G) \leqslant(|E|-1) / 2 ; \operatorname{tes}\left(P_{n}\right)=\operatorname{tes}\left(C_{n}\right)=\lceil(n+2) / 3\rceil ;$ $\operatorname{tes}\left(W_{n}\right)=\lceil(2 n+2) / 3\rceil ; \operatorname{tes}\left(C_{3}^{n}\right)$ (friendship graph) $=\lceil(3 n+2) / 3\rceil ; \operatorname{tvs}\left(C_{n}\right)=\lceil(n+2) / 3\rceil$; for $n \geqslant 2, \operatorname{tvs}\left(K_{n}\right)=2 ; \operatorname{tvs}\left(K_{1, n}\right)=\lceil(n+1) / 2\rceil ;$ and $\operatorname{tvs}\left(C_{n} \times P_{2}\right)=\lceil(2 n+3) / 4\rceil$. Jendrol, Miskul, and Soták [610] (see also [611]) proved: $\operatorname{tes}\left(K_{5}\right)=5$; for $n \geqslant 6$, $\operatorname{tes}\left(K_{n}\right)=\left\lceil\left(n^{2}-n+4\right) / 6\right]$; and that tes $\left(K_{m, n}\right)=\lceil(m n+2) / 3\rceil$. They conjecture that for any graph $G$ other than $K_{5}, \operatorname{tes}(G)$ $=\max \{\lceil(\Delta(G)+1) / 2\rceil,\lceil(|E|+2) / 3\rceil\}$. Ivancoo and Jendroil [601] proved that this conjecture is true for all trees. Jendroil, Miskuf, and Soták [610] prove the conjecture for complete graphs and complete bipartite graphs. Ahmad and Bac̆a [46] proved the conjecture holds for the categorical product of two paths. (The categorical product $P_{m} \times P_{n}$ has vertex set the Cartesian product of $P_{m}$ and $P_{n}$ and edge set $((u, x),(v, y))$ for all $(u, v)$ in $P_{m}$ and $(x, y)$ in $P_{n}$.) Brandt, Misškuf, and Rautenbach [260] proved the conjecture for large graphs whose maximum degree is not too large relative to its order and size. In particular, using the probabilistic method they prove that if $G(V, E)$ is a multigraph without loops and with nonzero maximum degree less than $|E| / 10^{3} \sqrt{8|V|} \mid$, then tes $(G)=(\lceil|E|+2) / 3\rceil$. As corollaries they have: if $G(V, E)$ satisfies $|E| \geqslant 3 \cdot 10^{3}|V|^{3 / 2}$, then tes $(G)=\lceil(|E|+2) / 3\rceil ;$ if $G(V, E)$ has minimum degree $\delta>0$ and maximum degree $\Delta$ such that $\Delta<\delta \sqrt{|V|} / 10^{3} \cdot 4 \sqrt{2}$ then tes $(G)=\lceil(|E|+2) / 3\rceil$; and for every positive integer $\Delta$ there is some $n(\Delta)$ such that every graph $G(V, E)$ without isolated vertices with $|V| \geqslant n(\Delta)$ and maximum degree at most $\Delta$ satisfies tes $(G)=\lceil(|E|+2) / 3\rceil$. Notice that this last result includes $d$-regular graphs of large order. They also prove that if $G(V, E)$ has maximum degree $\Delta \geqslant 2|E| / 3$, then $G$ has an edge irregular total $k$-labeling with $k=\lceil(\Delta+1) / 2\rceil$. Pfender [984] proved the conjecture for graphs with at least $7 \times 10^{10}$ edges and proved for graphs $G(V, E)$ with $\Delta(G) \leqslant E(G) / 4350$ we have tes $(G)=(\lceil|E|+2) / 3\rceil$.

Nurdin, Baskoro, Salman, and Gaos [964] determine the total vertex irregularity strength of trees with no vertices of degree 2 or 3 ; improve some of the bounds given in [136]; and show

## Some known results

in particular:

- conjectures (sometimes for some classes) involving the $n b(x)$ 's


## Some known results

in particular:

- conjectures (sometimes for some classes) involving the $\mathrm{nb}(x)$ 's
- most of which remain open and out of reach to date
- even for trees/forests (e.g. seminal works by Togni (:))


## Some known results

in particular:

- conjectures (sometimes for some classes) involving the $\mathrm{nb}(x)$ 's
- most of which remain open and out of reach to date
- even for trees/forests (e.g. seminal works by Togni (:))
- $s(G) \leq n-1$ for every $n$-graph $G$ (Nierhoff, 2000)
- $s(G) \leq 6\lceil n / \delta(G)\rceil$ (Kalkowski, Karoński, Pfender, 2011)
- ( $\sim$ Faudree-Lehel Conjecture, confirmed recently asymptotically by Przybyło)


## Some known results

in particular:

- conjectures (sometimes for some classes) involving the $\mathrm{nb}(x)$ 's
- most of which remain open and out of reach to date
- even for trees/forests (e.g. seminal works by Togni (:))
- $s(G) \leq n-1$ for every $n$-graph $G$ (Nierhoff, 2000)
- $s(G) \leq 6\lceil n / \delta(G)\rceil$ (Kalkowski, Karoński, Pfender, 2011)
- ( $\sim$ Faudree-Lehel Conjecture, confirmed recently asymptotically by Przybyło)
- variants (local, total, etc.)


# Our (modest $;$ ) contribution 

## Our focus

What about complexity aspects?

## Our focus

## What about complexity aspects?

- existing (positive and negative) results for a few variants...
- ... but nothing for the irregularity strength : $^{2}$


## Our focus

What about complexity aspects?

- existing (positive and negative) results for a few variants...
- ... but nothing for the irregularity strength : $^{2}$
focus on a (very) simple question:


## Question ( $k \geq 1$ fixed)

For a given graph $G$, determining whether $s(G) \leq k$ ?

## Our focus

What about complexity aspects?

- existing (positive and negative) results for a few variants...
- ... but nothing for the irregularity strength $)^{2}$
focus on a (very) simple question:


## Question ( $k \geq 1$ fixed)

For a given graph $G$, determining whether $s(G) \leq k$ ?

- as seen earlier, yields bounds (functions of $k$ ) on the $\mathrm{nb}(x)$ 's


## Our focus

What about complexity aspects?

- existing (positive and negative) results for a few variants...
- ... but nothing for the irregularity strength $)^{2}$
focus on a (very) simple question:


## Question ( $k \geq 1$ fixed)

For a given graph $G$, determining whether $s(G) \leq k$ ?

- as seen earlier, yields bounds (functions of $k$ ) on the $n b(x)$ 's
- ... but this apart $):+;$...


## Our focus

## What about complexity aspects?

- existing (positive and negative) results for a few variants...
- ... but nothing for the irregularity strength $)^{-}$
focus on a (very) simple question:


## Question ( $k \geq 1$ fixed)

For a given graph $G$, determining whether $s(G) \leq k$ ?

- as seen earlier, yields bounds (functions of $k$ ) on the $n b(x)$ 's
- ... but this apart $;-):$...
- obvious for $k=1$ : . so, what about

Main question for today
For a given graph $G$, determining whether $s(G) \leq 2$ ?

## Our results

## Main question for today

$$
\text { For a given graph } G \text {, determining whether } s(G) \leq 2 ?
$$

towards this:

- we show two (very) close problems are NP-complete


## Our results

## Main question for today

$$
\text { For a given graph } G \text {, determining whether } s(G) \leq 2 \text { ? }
$$

towards this:

- we show two (very) close problems are NP-complete
- when only vertices at distance at most some $d$ must be distinguished $\rightarrow$ same distinguishing aggregate (sums), but weaker constraint radius


## Our results

## Main question for today

$$
\text { For a given graph } G \text {, determining whether } s(G) \leq 2 ?
$$

towards this:

- we show two (very) close problems are NP-complete
- when only vertices at distance at most some $d$ must be distinguished $\rightarrow$ same distinguishing aggregate (sums), but weaker constraint radius
- when all vertices must get pairwise distinct multisets of incident labels $\rightarrow$ same constraint radius, but weaker distinguishing aggregate
- thus problems encapsulating all aspects of the original one


## Our results

## Main question for today

$$
\text { For a given graph } G \text {, determining whether } s(G) \leq 2 \text { ? }
$$

towards this:

- we show two (very) close problems are NP-complete
- when only vertices at distance at most some $d$ must be distinguished $\rightarrow$ same distinguishing aggregate (sums), but weaker constraint radius
- when all vertices must get pairwise distinct multisets of incident labels $\rightarrow$ same constraint radius, but weaker distinguishing aggregate
- thus problems encapsulating all aspects of the original one


## for today, TRY TO:

- show you most of the two proofs


## Our results

## Main question for today

$$
\text { For a given graph } G \text {, determining whether } s(G) \leq 2 ?
$$

towards this:

- we show two (very) close problems are NP-complete
- when only vertices at distance at most some $d$ must be distinguished $\rightarrow$ same distinguishing aggregate (sums), but weaker constraint radius
- when all vertices must get pairwise distinct multisets of incident labels $\rightarrow$ same constraint radius, but weaker distinguishing aggregate
- thus problems encapsulating all aspects of the original one


## for today, TRY TO:

- show you most of the two proofs
- get a better grasp on these labellings


## Our results

## Main question for today

$$
\text { For a given graph } G \text {, determining whether } s(G) \leq 2 ?
$$

towards this:

- we show two (very) close problems are NP-complete
- when only vertices at distance at most some $d$ must be distinguished $\rightarrow$ same distinguishing aggregate (sums), but weaker constraint radius
- when all vertices must get pairwise distinct multisets of incident labels $\rightarrow$ same constraint radius, but weaker distinguishing aggregate
- thus problems encapsulating all aspects of the original one


## for today, TRY TO:

- show you most of the two proofs
- get a better grasp on these labellings
- insist on what this might mean for the original problem


## Our results

## Main question for today

$$
\text { For a given graph } G \text {, determining whether } s(G) \leq 2 ?
$$

towards this:

- we show two (very) close problems are NP-complete
- when only vertices at distance at most some $d$ must be distinguished $\rightarrow$ same distinguishing aggregate (sums), but weaker constraint radius
- when all vertices must get pairwise distinct multisets of incident labels $\rightarrow$ same constraint radius, but weaker distinguishing aggregate
- thus problems encapsulating all aspects of the original one


## for today, TRY TO:

- show you most of the two proofs
- get a better grasp on these labellings
- insist on what this might mean for the original problem

$$
\text { Let's go } \odot \odot \odot:+!
$$

Distant irregularity strength

## (Very brief) introduction

- introduced by Przybyto in 2013


## (Very brief) introduction

- introduced by Przybyto in 2013
- fix some $d \geq 1$, and require vertices at distance at most $d$ to be distinguished


## (Very brief) introduction

- introduced by Przybyło in 2013
- fix some $d \geq 1$, and require vertices at distance at most $d$ to be distinguished
- for a graph $G$, parameter $s^{d}(G)$ to minimise


## (Very brief) introduction

- introduced by Przybyło in 2013
- fix some $d \geq 1$, and require vertices at distance at most $d$ to be distinguished
- for a graph $G$, parameter $s^{d}(G)$ to minimise
- $d=1$, distinguish only neighbours $\rightarrow$ proper labellings \& 1-2-3 Conjecture
- $d=\infty \rightarrow$ irregularity strength


## (Very brief) introduction

- introduced by Przybyło in 2013
- fix some $d \geq 1$, and require vertices at distance at most $d$ to be distinguished
- for a graph $G$, parameter $s^{d}(G)$ to minimise
- $d=1$, distinguish only neighbours $\rightarrow$ proper labellings \& 1-2-3 Conjecture
- $d=\infty \rightarrow$ irregularity strength
- thus, in between two well studied problems


## (Very brief) introduction

- introduced by Przybyto in 2013
- fix some $d \geq 1$, and require vertices at distance at most $d$ to be distinguished
- for a graph $G$, parameter $s^{d}(G)$ to minimise
- $d=1$, distinguish only neighbours $\rightarrow$ proper labellings \& 1-2-3 Conjecture
- $d=\infty \rightarrow$ irregularity strength
- thus, in between two well studied problems
- close to irregularity strength in spirit, but if $\operatorname{diam}(G) \gg d$... ©


## (Very brief) introduction

- introduced by Przybyło in 2013
- fix some $d \geq 1$, and require vertices at distance at most $d$ to be distinguished
- for a graph $G$, parameter $s^{d}(G)$ to minimise
- $d=1$, distinguish only neighbours $\rightarrow$ proper labellings \& 1-2-3 Conjecture
- $d=\infty \rightarrow$ irregularity strength
- thus, in between two well studied problems
- close to irregularity strength in spirit, but if $\operatorname{diam}(G) \gg d_{\ldots}$. 2
- regarding our question, for $d=1$ :


## Theorem [Dudek, Wajc, 2011]

For a given graph $G$, determining whether $s^{1}(G) \leq 2$ is NP-complete.

## Our result

## Theorem [B., 2022]

For any $d \geq 1$, and any given graph $G$, determining whether $s^{d}(G) \leq 2$ is NP-complete.

## Our result

## Theorem [B., 2022]

For any $d \geq 1$, and any given graph $G$, determining whether $s^{d}(G) \leq 2$ is NP-complete.
main ideas: build upon the result of Dudek and Wajc

## Our result

## Theorem [B., 2022]

For any $d \geq 1$, and any given graph $G$, determining whether $s^{d}(G) \leq 2$ is NP-complete.
main ideas: build upon the result of Dudek and Wajc

- given a graph $G$, build a graph $H$ such that
- proper 2-labelling of $G \rightarrow$ one of $H$ distinguishing at distance $d$
- 2-labelling of $H$ distinguishing at distance $d \rightarrow$ proper one of $G$


## Our result

## Theorem [B., 2022]

For any $d \geq 1$, and any given graph $G$, determining whether $s^{d}(G) \leq 2$ is NP-complete.
main ideas: build upon the result of Dudek and Wajc

- given a graph $G$, build a graph $H$ such that
- proper 2-labelling of $G \rightarrow$ one of $H$ distinguishing at distance $d$
- 2-labelling of $H$ distinguishing at distance $d \rightarrow$ proper one of $G$
- construction in poly-time


## Getting started (example with $d=3$ )



## Getting started (example with $d=3$ )



## Getting started (example with $d=3$ )


white vertices are at distance $d$; ; but:

## Getting started (example with $d=3$ )


white vertices are at distance $d$; ; but:

- new possible conflicts to handle (white $\times$ black, black $\times$ black)
- 2-labelling of $G \leftrightarrow 2$-labelling of $H$ ?


## Restricting gadgets

(partial) solution: attach some structure to black vertices so that

## Restricting gadgets

(partial) solution: attach some structure to black vertices so that

- get control over their sums by any distinguishing 2-labelling of $H$
- cannot get conflicts involving black vertices
- subdivided edges must be labelled in a certain way


## Restricting gadgets

(partial) solution: attach some structure to black vertices so that

- get control over their sums by any distinguishing 2-labelling of $H$
- cannot get conflicts involving black vertices
- subdivided edges must be labelled in a certain way Warning: adding vertices yields new possible conflicts $)$


## Restricting gadgets

(partial) solution: attach some structure to black vertices so that

- get control over their sums by any distinguishing 2-labelling of $H$
- cannot get conflicts involving black vertices
- subdivided edges must be labelled in a certain way Warning: adding vertices yields new possible conflicts $)$ consider $K_{p+1}$, the complete graph on $p+1$ vertices


## Restricting gadgets

(partial) solution: attach some structure to black vertices so that

- get control over their sums by any distinguishing 2-labelling of $H$
- cannot get conflicts involving black vertices
- subdivided edges must be labelled in a certain way

Warning: adding vertices yields new possible conflicts $)$
consider $K_{p+1}$, the complete graph on $p+1$ vertices no distinguishing 2-labelling of $K_{p+1} ;$

## Restricting gadgets

(partial) solution: attach some structure to black vertices so that

- get control over their sums by any distinguishing 2-labelling of $H$
- cannot get conflicts involving black vertices
- subdivided edges must be labelled in a certain way

Warning: adding vertices yields new possible conflicts $)$
consider $K_{p+1}$, the complete graph on $p+1$ vertices
no distinguishing 2-labelling of $K_{p+1} \odot \quad p+1$ vertices but sums in $\{p, \ldots, 2 p\}$ however:

## Lemma [B., 2022]

Assume the vertices of $K_{p+1}$ are $w, v_{1}, \ldots, v_{p}$. By every 2-labelling that is distinguishing when omitting $w$, the set $\left\{\sigma\left(v_{1}\right), \ldots, \sigma\left(v_{p}\right)\right\}$ is either $\{p, \ldots, 2 p-1\}$ or $\{p+1, \ldots, 2 p\}$. Furthermore, for every $s \in\{p, 2 p\}$, there exist distinguishing 2-labellings of $K_{p+1}$ where $s \notin\left\{\sigma(w), \sigma\left(v_{1}\right), \ldots, \sigma\left(v_{p}\right)\right\}$, and $\sigma(w)$ is either $\frac{3 p}{2}$ (even $p$ ), or $(\operatorname{odd} p) \frac{3 p-1}{2}(s=2 p)$ or $\frac{3 p+1}{2}(s=p)$.

Illustration


Illustration


Illustration


## Illustration



- $v_{i}$ 's have degree $4 \rightarrow$ sums in $\{4, \ldots, 8\}$


## Illustration



- $v_{i}$ 's have degree $4 \rightarrow$ sums in $\{4, \ldots, 8\}$
- four $v_{i}$ 's $\rightarrow$ some $\sigma\left(v_{i}\right)$ 's must lie in $\{4,8\}$


## Illustration



- $v_{i}$ 's have degree $4 \rightarrow$ sums in $\{4, \ldots, 8\}$
- four $v_{i}$ 's $\rightarrow$ some $\sigma\left(v_{i}\right)$ 's must lie in $\{4,8\}$
- $\Rightarrow$ all $v_{i}$ 's are all incident to either a 1 or a 2
- $\Rightarrow\left\{\sigma\left(v_{1}\right), \ldots, \sigma\left(v_{4}\right)\right\}$ is either $\{4,5,6,7\}$ or $\{5,6,7,8\}$


## Illustration



- $v_{i}$ 's have degree $4 \rightarrow$ sums in $\{4, \ldots, 8\}$
- four $v_{i}$ 's $\rightarrow$ some $\sigma\left(v_{i}\right)$ 's must lie in $\{4,8\}$
- $\Rightarrow$ all $v_{i}$ 's are all incident to either a 1 or a 2
- $\Rightarrow\left\{\sigma\left(v_{1}\right), \ldots, \sigma\left(v_{4}\right)\right\}$ is either $\{4,5,6,7\}$ or $\{5,6,7,8\}$
- we can 2-label so that, also, $\sigma(w)=6$


## Restricting gadgets (cont'd)

Note: locally, we can 2-label the gadget properly, "pushing" conflicts at $w$ $\rightarrow w$ is intended to eventually have much larger degree, to make it kind of safe

## Restricting gadgets (cont'd)

Note: locally, we can 2-label the gadget properly, "pushing" conflicts at $w$ $\rightarrow w$ is intended to eventually have much larger degree, to make it kind of safe next constructions:

- attaching a $k$-clique at $v$ : add a $k$-clique, and make it dominated by $v$


## Restricting gadgets (cont'd)

Note: locally, we can 2-label the gadget properly, "pushing" conflicts at $w$ $\rightarrow w$ is intended to eventually have much larger degree, to make it kind of safe next constructions:

- attaching a $k$-clique at $v$ : add a $k$-clique, and make it dominated by $v$
- attaching, for $k \geq 7$, a $k$-fan at a degree-2 vertex $v$ :
- add $k-2$ vertices $u_{1}, \ldots, u_{k-2}$, adjacent to $v$
- attach a $k$-clique and a $(2 k+1)$-clique at $u_{1}$; set $n_{1}=3 k+2=d\left(u_{1}\right)$
- attach a $\left(2 n_{1}+1\right)$-clique and a $\left(2\left(2 n_{1}+1\right)+1\right)$-clique at $u_{2}$; set $n_{2}=d\left(u_{2}\right)$
- go on like this for all $u_{i}$ 's one after the other



## Attaching $k$-fans



## Remarks:

- $v$ gets degree exactly $k$, like the $k$ vertices of the smallest clique


## Attaching $k$-fans



## Remarks:

- $v$ gets degree exactly $k$, like the $k$ vertices of the smallest clique
- these $k+1$ vertices are at distance $2 \Rightarrow$ sum set is $\{k, \ldots, 2 k\}$


## Attaching $k$-fans



## Remarks:

- $v$ gets degree exactly $k$, like the $k$ vertices of the smallest clique
- these $k+1$ vertices are at distance $2 \Rightarrow$ sum set is $\{k, \ldots, 2 k\}$
- previous Lemma $\Rightarrow v$ has sum $k$ (only 1 's), or $2 k$ (only 2 's)


## Attaching $k$-fans



## Remarks:

- $v$ gets degree exactly $k$, like the $k$ vertices of the smallest clique
- these $k+1$ vertices are at distance $2 \Rightarrow$ sum set is $\{k, \ldots, 2 k\}$
- previous Lemma $\Rightarrow v$ has sum $k$ (only 1 's), or $2 k$ (only 2 's)
- due to degrees, cannot get the same sums in two distinct cliques


## Attaching $k$-fans



## Remarks:

- $v$ gets degree exactly $k$, like the $k$ vertices of the smallest clique
- these $k+1$ vertices are at distance $2 \Rightarrow$ sum set is $\{k, \ldots, 2 k\}$
- previous Lemma $\Rightarrow v$ has sum $k$ (only 1 's), or $2 k$ (only 2 's)
- due to degrees, cannot get the same sums in two distinct cliques
- also, the $u_{i}$ 's, 2-labelled as in Lemma, have large sums due to their large degrees


## Attaching $k$-fans



## Remarks:

- $v$ gets degree exactly $k$, like the $k$ vertices of the smallest clique
- these $k+1$ vertices are at distance $2 \Rightarrow$ sum set is $\{k, \ldots, 2 k\}$
- previous Lemma $\Rightarrow v$ has sum $k$ (only 1 's), or $2 k$ (only 2 's)
- due to degrees, cannot get the same sums in two distinct cliques
- also, the $u_{i}$ 's, 2-labelled as in Lemma, have large sums due to their large degrees
- largest degree: function of $k$ only


## Sequences of fans



$$
\nabla
$$

Sequences of fans


## Sequences of fans



- no conflicts in different fans


## Sequences of fans



- no conflicts in different fans
- same for attachment vertices


## Sequences of fans



- no conflicts in different fans
- same for attachment vertices
- subdivided edges all assigned the same label $x$ (either 1 or 2 )


## Sequences of fans



- no conflicts in different fans
- same for attachment vertices
- subdivided edges all assigned the same label $x$ (either 1 or 2 )
- again, largest degree function of $k$ and $d$ only


## Progress this far (example with $d=3$ )



Progress this far (example with $d=3$ )


## Progress this far (example with $d=3$ )



- fans grow exponentially $+\Delta(G)$ types required $\Rightarrow$ exponential function of $\Delta(G)$ )


## Progress this far (example with $d=3$ )



- fans grow exponentially $+\Delta(G)$ types required $\Rightarrow$ exponential function of $\Delta(G) \cdot($
- Still, 2-labelling of $G \leftrightarrow 2$-labelling of H ();


## Polishing things

to limit \# of needed types of fans: make sure $\Delta(G)$ is bounded; fortunately:

## Theorem [Ahadi, Dehghan, Sadeghi, 2013]

For a given cubic graph $G$, determining whether $s^{1}(G) \leq 2$ is NP-complete.

## Polishing things

to limit \# of needed types of fans: make sure $\Delta(G)$ is bounded; fortunately:

## Theorem [Ahadi, Dehghan, Sadeghi, 2013]

For a given cubic graph $G$, determining whether $s^{1}(G) \leq 2$ is NP-complete.
also, if $\delta(G)=\Delta(G)=3$ :

- Vizing: $\chi^{\prime}(G) \in\{3,4\}$


## Polishing things

to limit \# of needed types of fans: make sure $\Delta(G)$ is bounded; fortunately:

## Theorem [Ahadi, Dehghan, Sadeghi, 2013]

For a given cubic graph $G$, determining whether $s^{1}(G) \leq 2$ is NP-complete.
also, if $\delta(G)=\Delta(G)=3$ :

- Vizing: $\chi^{\prime}(G) \in\{3,4\}$
- Misra, Gries: a proper 4-edge-colouring of $G$ can be obtained in poly-time


## Polishing things

to limit \# of needed types of fans: make sure $\Delta(G)$ is bounded; fortunately:

## Theorem [Ahadi, Dehghan, Sadeghi, 2013]

For a given cubic graph $G$, determining whether $s^{1}(G) \leq 2$ is NP-complete.
also, if $\delta(G)=\Delta(G)=3$ :

- Vizing: $\chi^{\prime}(G) \in\{3,4\}$
- Misra, Gries: a proper 4-edge-colouring of $G$ can be obtained in poly-time thus, for free, can suppose $G$ comes with a proper 4-edge-colouring $\phi$


## Coloured fans



## Coloured fans


now OK ${ }^{-}$:

- $4(d-1)$ types of fans $\Rightarrow$ constant number


## Coloured fans


now OK ${ }^{-}$:

- 4( $d-1$ ) types of fans $\Rightarrow$ constant number
- $\phi \Rightarrow$ fans of the same type are at distance more than $d$


## Coloured fans


now OK ${ }^{-}$:

- 4( $d-1$ ) types of fans $\Rightarrow$ constant number
- $\phi \Rightarrow$ fans of the same type are at distance more than $d$
- white vertices have sum at most $6 \Rightarrow$ no conflicts with fans if $(\geq 7)$-fans


## Coloured fans


now OK $\odot$ :

- 4( $d-1$ ) types of fans $\Rightarrow$ constant number
- $\phi \Rightarrow$ fans of the same type are at distance more than $d$
- white vertices have sum at most $6 \Rightarrow$ no conflicts with fans if $(\geq 7)$-fans altogether, construction in poly-time + labelling equivalence ;)

Multiset irregularity strength

## (Very brief) introduction

- introduced by Chartrand, Escuardro, Okamoto, and Zhang in 2006


## (Very brief) introduction

- introduced by Chartrand, Escuardro, Okamoto, and Zhang in 2006
- distinguish (all) vertices through their colour codes (multisets of incident labels)
- require colour codes to be pairwise distinct


## (Very brief) introduction

- introduced by Chartrand, Escuardro, Okamoto, and Zhang in 2006
- distinguish (all) vertices through their colour codes (multisets of incident labels)
- require colour codes to be pairwise distinct
- also called detectable colourings


## (Very brief) introduction

- introduced by Chartrand, Escuardro, Okamoto, and Zhang in 2006
- distinguish (all) vertices through their colour codes (multisets of incident labels)
- require colour codes to be pairwise distinct
- also called detectable colourings
- for a graph $G$, parameter $s_{m}(G)$ to minimise


## (Very brief) introduction

- introduced by Chartrand, Escuardro, Okamoto, and Zhang in 2006
- distinguish (all) vertices through their colour codes (multisets of incident labels)
- require colour codes to be pairwise distinct
- also called detectable colourings
- for a graph $G$, parameter $s_{m}(G)$ to minimise
- clearly, $s_{m}(G) \leq s(G)$ for any nice graph $G$


## (Very brief) introduction

- introduced by Chartrand, Escuardro, Okamoto, and Zhang in 2006
- distinguish (all) vertices through their colour codes (multisets of incident labels)
- require colour codes to be pairwise distinct
- also called detectable colourings
- for a graph $G$, parameter $s_{m}(G)$ to minimise
- clearly, $s_{m}(G) \leq s(G)$ for any nice graph $G$
- much easier in this setting!
- labels can be regarded as colours


## (Very brief) introduction

- introduced by Chartrand, Escuardro, Okamoto, and Zhang in 2006
- distinguish (all) vertices through their colour codes (multisets of incident labels)
- require colour codes to be pairwise distinct
- also called detectable colourings
- for a graph $G$, parameter $s_{m}(G)$ to minimise
- clearly, $s_{m}(G) \leq s(G)$ for any nice graph $G$
- much easier in this setting!
- labels can be regarded as colours
- in particular, different degrees $\Rightarrow$ different colour codes!


## Our result

## Theorem [B., 2022]

For any given graph $G$, determining whether $s_{m}(G) \leq 2$ is NP-complete.

## Our result

## Theorem [B., 2022]

For any given graph $G$, determining whether $s_{m}(G) \leq 2$ is NP-complete. main idea:

- exploit the properties on distinct degrees


## Our result

## Theorem [B., 2022]

For any given graph $G$, determining whether $s_{m}(G) \leq 2$ is NP-complete.

## main idea:

- exploit the properties on distinct degrees
- in particular, $k+1$ degree- $k$ vertices $\Rightarrow$ we know the set of their colour codes
- colour codes of $k$ of them are forced $\Rightarrow$ last one is forced too


## Our result

## Theorem [B., 2022]

For any given graph $G$, determining whether $s_{m}(G) \leq 2$ is NP-complete.

## main idea:

- exploit the properties on distinct degrees
- in particular, $k+1$ degree- $k$ vertices $\Rightarrow$ we know the set of their colour codes
- colour codes of $k$ of them are forced $\Rightarrow$ last one is forced too
reduction from Monotone Cubic 1-In-3 SAT:
- instance: 3CNF formula $F$ over clauses $C_{1}, \ldots, C_{m}$ and variables $x_{1}, \ldots, x_{n}$
- all clauses contain exactly three distinct (positive) variables
- all variables appear in exactly three distinct clauses cubic structure
- question: is F 1-in-3 satisfiable, i.e. can the variables be set to true or false so that each clause has exactly one true variable?


## Our result

## Theorem [B., 2022]

For any given graph $G$, determining whether $s_{m}(G) \leq 2$ is NP-complete.

## main idea:

- exploit the properties on distinct degrees
- in particular, $k+1$ degree- $k$ vertices $\Rightarrow$ we know the set of their colour codes
- colour codes of $k$ of them are forced $\Rightarrow$ last one is forced too
reduction from Monotone Cubic 1-In-3 SAT:
- instance: 3CNF formula $F$ over clauses $C_{1}, \ldots, C_{m}$ and variables $x_{1}, \ldots, x_{n}$
- all clauses contain exactly three distinct (positive) variables
- all variables appear in exactly three distinct clauses
- question: is F 1-in-3 satisfiable, i.e. can the variables be set to true or false so that each clause has exactly one true variable?
from $F$, build, in poly-time, graph $G$, so that $F$ is 1 -in-3 satisfiable $\leftrightarrow s_{m}(G) \leq 2$


## Main ideas

$1=$ blue, $2=$ red
Main ideas: model the structure of $F$ as a graph, and add forcing mechanisms so that reflecting labelling properties (i.e., clause vertices: exactly one blue incident formula edge; variable vertices: three incident formula edges the same colour)


## Main ideas

$1=$ blue, $2=$ red
Main ideas: model the structure of $F$ as a graph, and add forcing mechanisms so that reflecting labelling properties (i.e., clause vertices: exactly one blue incident formula edge; variable vertices: three incident formula edges the same colour)


## Main ideas

1=blue, $2=$ red
Main ideas: model the structure of $F$ as a graph, and add forcing mechanisms so that reflecting labelling properties (i.e., clause vertices: exactly one blue incident formula edge; variable vertices: three incident formula edges the same colour)


## Main ideas

$1=$ blue, $2=$ red
Main ideas: model the structure of $F$ as a graph, and add forcing mechanisms so that reflecting labelling properties (i.e., clause vertices: exactly one blue incident formula edge; variable vertices: three incident formula edges the same colour)

thus, forbid:

- for clause vertices: $R R R+R B B+B B B$
- for variable vertices: $R B B+R R B$


## Forcing mechanisms

Goal: "generate" vertices with same degree, that must have the forbidden colour codes


## Forcing mechanisms

Goal: "generate" vertices with same degree, that must have the forbidden colour codes


## Forcing mechanisms

Goal: "generate" vertices with same degree, that must have the forbidden colour codes

$\Rightarrow$ thus need to "generate" edges of a certain colour

## Forcing mechanisms

Goal: "generate" vertices with same degree, that must have the forbidden colour codes

$\Rightarrow$ thus need to "generate" edges of a certain colour
Note: any two variable vertices and/or clause vertices should have distinct degrees... (for now, let us just pretend $\odot ;)(:)$ )

## Forcing mechanisms

Note: properties of cliques still apply here
$\Rightarrow$ have, somewhere, a vertex to which forcing cliques are attached:

Implications:

## Forcing mechanisms

Note: properties of cliques still apply here
$\Rightarrow$ have, somewhere, a vertex to which forcing cliques are attached:


## Implications:

- a vertices of degree $a+$ all colour codes but $R^{a}$ or $B^{a} \Rightarrow$ only $R^{a}$ or $B^{a}$ remains


## Forcing mechanisms

Note: properties of cliques still apply here
$\Rightarrow$ have, somewhere, a vertex to which forcing cliques are attached:


## Implications:

- a vertices of degree $a+$ all colour codes but $R^{a}$ or $B^{a} \Rightarrow$ only $R^{a}$ or $B^{a}$ remains
- $b$ vertices of degree $b+$ all colour codes but $R^{b}$ or $B^{b} \Rightarrow$ only $R^{b}$ or $B^{b}$ remains


## Forcing mechanisms

Note: properties of cliques still apply here
$\Rightarrow$ have, somewhere, a vertex to which forcing cliques are attached:


## Implications:

- a vertices of degree $a+$ all colour codes but $R^{a}$ or $B^{a} \Rightarrow$ only $R^{a}$ or $B^{a}$ remains
- $b$ vertices of degree $b+$ all colour codes but $R^{b}$ or $B^{b} \Rightarrow$ only $R^{b}$ or $B^{b}$ remains
- $c$ vertices of degree $c+$ all colour codes but $R^{c}$ or $B^{c} \Rightarrow$ only $R^{c}$ or $B^{c}$ remains


## Forcing mechanisms

Note: properties of cliques still apply here
$\Rightarrow$ have, somewhere, a vertex to which forcing cliques are attached:


## Implications:

- a vertices of degree $a+$ all colour codes but $R^{a}$ or $B^{a} \Rightarrow$ only $R^{a}$ or $B^{a}$ remains
- $b$ vertices of degree $b+$ all colour codes but $R^{b}$ or $B^{b} \Rightarrow$ only $R^{b}$ or $B^{b}$ remains
- c vertices of degree $c+$ all colour codes but $R^{c}$ or $B^{c} \Rightarrow$ only $R^{c}$ or $B^{c}$ remains
- $d$ vertices of degree $d+$ all colour codes but $R^{d}$ or $B^{d} \Rightarrow$ only $R^{d}$ or $B^{d}$ remains


## Forcing mechanisms

Note: properties of cliques still apply here
$\Rightarrow$ have, somewhere, a vertex to which forcing cliques are attached:


## Implications:

- a vertices of degree $a+$ all colour codes but $R^{a}$ or $B^{a} \Rightarrow$ only $R^{a}$ or $B^{a}$ remains
- $b$ vertices of degree $b+$ all colour codes but $R^{b}$ or $B^{b} \Rightarrow$ only $R^{b}$ or $B^{b}$ remains
- $c$ vertices of degree $c+$ all colour codes but $R^{c}$ or $B^{c} \Rightarrow$ only $R^{c}$ or $B^{c}$ remains
- $d$ vertices of degree $d+$ all colour codes but $R^{d}$ or $B^{d} \Rightarrow$ only $R^{d}$ or $B^{d}$ remains
$\Rightarrow$ for any degree $x$, can make sure a degree- $x$ vertex is monochromatic


## Forcing trails

## Forcing trails



## Forcing trails



## Forcing trails



## Forcing trails



## Forcing trails



| $\frac{1 V V}{1 V V} \quad V$ |
| :--- |

$$
\frac{\angle V V . \nabla}{\angle V V}
$$

$$
\begin{aligned}
& \angle V V \cdot \nabla \\
& V V V \cdot \nabla
\end{aligned}
$$

$$
\begin{aligned}
& \angle V V \cdot \nabla \\
& \angle V V \cdot \nabla
\end{aligned}
$$

## Polishing everything

## to finish off:

- "plug" pendant edges from the two trails to fill colour codes and increase degrees


## Polishing everything

## to finish off:

- "plug" pendant edges from the two trails to fill colour codes and increase degrees
- Warning: clause vertices and variables vertices must have distinct degrees
- $\Rightarrow$ degrees $3,4, \ldots, n+m+2$, and same for their respective forcing counterparts


## Polishing everything

## to finish off:

- "plug" pendant edges from the two trails to fill colour codes and increase degrees
- Warning: clause vertices and variables vertices must have distinct degrees
- $\Rightarrow$ degrees $3,4, \ldots, n+m+2$, and same for their respective forcing counterparts
- unused pendant edges: attach cliques (with new degrees) to fill
number of needed degrees: polynomial function of $n, m \Rightarrow$ poly-time construction


## Final picture



# Conclusion 

## Conclusions and perspectives

## Main question

$$
\text { For a given graph } G \text {, determining whether } s(G) \leq 2 ?
$$

- NP-completeness of two close problems
$\Rightarrow$ might indicate the original problem also is (or not $)$ )


## Conclusions and perspectives

## Main question

$$
\text { For a given graph } G \text {, determining whether } s(G) \leq 2 ?
$$

- NP-completeness of two close problems
$\Rightarrow$ might indicate the original problem also is (or not $\mathcal{*}$ )
- second proof adapts to sums $;$...


## Conclusions and perspectives

## Main question

$$
\text { For a given graph } G \text {, determining whether } s(G) \leq 2 ?
$$

- NP-completeness of two close problems
$\Rightarrow$ might indicate the original problem also is (or not $\Theta$ )
- second proof adapts to sums ;) ...
- ... but the degree property implies we must use cliques doubling each step : $^{2}$


## Conclusions and perspectives

## Main question

$$
\text { For a given graph } G \text {, determining whether } s(G) \leq 2 ?
$$

- NP-completeness of two close problems
$\Rightarrow$ might indicate the original problem also is (or not $;$ )
- second proof adapts to sums $;$...
- ... but the degree property implies we must use cliques doubling each step $)^{2}$


## Questions:

- complexity of the sum problem?


## Conclusions and perspectives

## Main question

$$
\text { For a given graph } G \text {, determining whether } s(G) \leq 2 ?
$$

- NP-completeness of two close problems
$\Rightarrow$ might indicate the original problem also is (or not $;$ )
- second proof adapts to sums -()$.$.
- ... but the degree property implies we must use cliques doubling each step $)^{2}$


## Questions:

- complexity of the sum problem?
- replacing cliques with something else?


## Conclusions and perspectives

## Main question

$$
\text { For a given graph } G \text {, determining whether } s(G) \leq 2 ?
$$

- NP-completeness of two close problems
$\Rightarrow$ might indicate the original problem also is (or not $\Theta$ )
- second proof adapts to sums © ...
- ... but the degree property implies we must use cliques doubling each step $)^{2}$


## Questions:

- complexity of the sum problem?
- replacing cliques with something else?
- second proof for connected graphs?


## Conclusions and perspectives

## Main question

$$
\text { For a given graph } G \text {, determining whether } s(G) \leq 2 ?
$$

- NP-completeness of two close problems
$\Rightarrow$ might indicate the original problem also is (or not $\Theta$ )
- second proof adapts to sums -()$.$.
- ... but the degree property implies we must use cliques doubling each step $)^{2}$


## Questions:

- complexity of the sum problem?
- replacing cliques with something else?
- second proof for connected graphs?
- what for any $k \geq 2$ ?


## Conclusions and perspectives

## Main question

$$
\text { For a given graph } G \text {, determining whether } s(G) \leq 2 ?
$$

- NP-completeness of two close problems
$\Rightarrow$ might indicate the original problem also is (or not $)$ )
- second proof adapts to sums -()$.$.
- ... but the degree property implies we must use cliques doubling each step $)^{2}$


## Questions:

- complexity of the sum problem?
- replacing cliques with something else?
- second proof for connected graphs?
- what for any $k \geq 2$ ?
- classes of graphs?


## Conclusions and perspectives

## Main question

$$
\text { For a given graph } G \text {, determining whether } s(G) \leq 2 ?
$$

- NP-completeness of two close problems
$\Rightarrow$ might indicate the original problem also is (or not $)$ )
- second proof adapts to sums -()$.$.
- ... but the degree property implies we must use cliques doubling each step $)^{2}$


## Questions:

- complexity of the sum problem?
- replacing cliques with something else?
- second proof for connected graphs?
- what for any $k \geq 2$ ?
- classes of graphs?

