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From regularity to irregularity

regular graph ©
irregular graph ® © ©

Attempt: irregular = all degrees are pairwise distinct
does not fit well with simple graphs © ® ®

How to overcome this?
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Making simple graphs irregular

IRREGULAR NETWORKS
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Jent Lehel, Computer and Automation Institute,
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Farrokh Saba, Western Michigan University

ABSTRACT

A network N is a graph in which each edge is assigned a positive
integer weight. The degree of a vertex in N is the sum of the
weights of its incident edges. A network is irregular if its vertices
have distinct degrees. The strength of a network N is the maximum
weight among the edges of N. The irregularity strength s(G) of a
graph G is the minimum strength among the irregular networks having
G as an underlying graph. It is shown that s(G) is defined for
every connected graph G of order p 2 3 and that s(G) € 2p - 3.
Further, if N is a network of strength at least 2, then there exists
an irregular network having the same strength as N and containing N

as an induced subnetwork.

1. Introduction

A graph G is regular if its vertices have the same degree; G
is irregular if its vertices have distinct degrees. While the litera-
ture abounds with results about regular graphs, it is well known that
nontrivial irregular graphs fail even to exist. Such is not the case

for multigraphs, however. For example, the multigraph of Figure 1(a)

is irregular, having vertices of degrees 3, 4 and 5.
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Sample example

graph — (irregular) multigraph

preserves the original structure

Chartrand et al.: avoid “exploding” an edge too much?

@ above: every edge — < 4 parallel edges; what about < 37
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Another take on the problem

Remark: previous problem a bit tedious to study

irg!

k parallel edges — label k

@ degrees — incident sums

irregular multigraph — irregular labelling

minimising max. edge “explosion” — minimising max. label

irregularity strength s(G) of G: this minimum
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A few more examples

G

s(G)=5
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A few more examples

s(K7) < 3 (and actually s(K7) = 3)

8/38



Understanding the problem

Remarks:
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Understanding the problem

Remarks:
o 5(G) well defined iff G is nice (no K, as a connected component)
@ non-connected graphs are troublesome ®
@ 5(G) not bounded by an absolute constant k > 1

for any x > 0, set nb(x) as the # of degree-x vertices; then, need:

e nb(1) < k

e nb(2) <2k -1
o nb(3) <3k -2
@ etc.

but vertices with different, yet close degrees can also “collide” ®
9/38



Some known results

lots (lots!) of results of varying interest...

7.14 Irregular Total Labelings

Motivated by the notion of the irregularity strength of a graph introduced by Chartrand, Jacob-
son, Lehel, Oellermann, Ruiz, and Saba [309] in 1988 and various kinds of other total labelings,
Baéa, Jendrol, Miller, and Ryan [136] introduced the total edge irregularity strength of a graph as
follows. For a graph G(V, E) a labeling & : VUE — {1,2,..., k} is called an edge irregular total
k-labeling if for every pair of distinct edges uv and zy, (u)+8(uv)+8(v) # (x)+d(xy)+d(y)-
Similarly, 8 is called an vertez irregular total k-labeling if for every pair of distinct vertices u and
v, (u) + Y- 8(e) over all edges e incident to u # A(v) + 3 d(e) over all edges e incident to v.
The minimum k for which G has an edge (vertex) irregular total k-labeling is called the total edge
(vertez) irregularity strength of G. The total edge (vertex) irregular strength of G is denoted by
tes(G) (tvs(G)). They prove: for G(V, E), E not empty, [(|E| +2)/3] < tes(G)< |E]; tes(G)>
[(A(G)+1)/2] and tes(G)< |E|~ A(G), if A(G) < (|E|—1)/2; tes(Pa) = tes(Ca)= [(n+2)/3];
tes(Wn)= [(2n +2)/3]; tes(Cy) (friendship graph) = [(3n +2)/3]; tvs(Cn) = [(n +2)/3]; for
n > 2, tvs(Ka)= 2; tvs(K1,n) = [(n+1)/2]; and tvs(Cn x P2)= [(2n + 3)/4]. Jendrol, Miskul,
and Sotak [610] (see also [611]) proved: tes(Ks) = 5; for n > 6, tes(Kn)= [(n? — n +4)/6]; and
that tes(Kmn)= [(mn + 2)/3]. They conjecture that for any graph G other than K3, tes(G)
= max{[(A(G) +1)/2],[(|E| +2)/3]}. Ivanco and Jendrol [601] proved that this conjecture
is true for all trees. Jendrol, Miskuf, and Soték [610] prove the conjecture for complete graphs
and complete bipartite graphs. Ahmad and Baca [46] proved the conjecture holds for the cat-
egorical product of two paths. (The categorical product Pm x Py has vertex set the Cartesian
product of P, and P, and edge set ((u, ), (v,y)) for all (u,v) in P and (z,y) in Pa.) Brandt,
Misskuf, and Rautenbach [260] proved the conjecture for large graphs whose maximum degree
is not too large relative to its order and size. In particular, using the probabilistic method they
prove that if G(V,E) is a multigraph without loops and with nonzero maximum degree less
than |E|/10°\/8|V|, then tes(G) = ([|E| +2)/3]. As corollaries they have: if G(V, E) satisfies
|E| > 3-10°[V[*/2, then tes(G) = [(|E| + 2)/3]; if G(V,E) has minimum degree 6 > 0 and
maximum degree A such that A < §1/[V][/10* - 4y/2 then tes(G) = [(|E| + 2)/3]; and for every
positive integer A there is some n(A) such that every graph G(V, E) without isolated vertices
with [V| > n(A) and maximum degree at most A satisfies tes(G) = [(|E| + 2)/3]. Notice that
this last result includes d-regular graphs of large order. They also prove that if G(V, E) has max-
imum degree A > 2|E|/3, then G has an edge irregular total k-labeling with k = [(A +1)/2].
Pfender [984] proved the conjecture for graphs with at least 7 x 101 edges and proved for graphs
G(V, E) with A(G) < E(G)/4350 we have tes(G) = ([|E| +2)/3].

Nurdin, Baskoro, Salman, and Gaos [964] determine the total vertex irregularity strength of
trees with no vertices of degree 2 or 3; improve some of the bounds given in [136]; and show

THE ELECTRONIC JOURNAL OF COMBINATORICS 19 (2012), #DS6 180
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Some known results

in particular:
@ conjectures (sometimes for some classes) involving the nb(x)'s
@ most of which remain open and out of reach to date

@ even for trees/forests (e.g. seminal works by Togni ©)

e 5(G) < n—1 for every n-graph G (Nierhoff, 2000)
e 5(G) <6[n/j(G)] (Kalkowski, Karoriski, Pfender, 2011)
o (~ Faudree-Lehel Conjecture, confirmed recently asymptotically by Przybyto)

@ variants (local, total, etc.)
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Our focus

What about complexity aspects?

@ existing (positive and negative) results for a few variants...

@ ... but nothing for the irregularity strength @

focus on a (very) simple question:

Question (k > 1 fixed)

For a given graph G, determining whether s(G) < k7

@ as seen earlier, yields bounds (functions of k) on the nb(x)’s
e ... but thisapart @ ®@ ® ...

@ obvious for k =1 © . so, what about

Main question for today

For a given graph G, determining whether s(G) < 2?
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Our results

Main question for today

For a given graph G, determining whether s(G) < 2?

towards this:

@ we show two (very) close problems are NP-complete

o when only vertices at distance at most some d must be distinguished
— same distinguishing aggregate (sums), but weaker constraint radius

o when all vertices must get pairwise distinct multisets of incident labels
— same constraint radius, but weaker distinguishing aggregate

@ thus problems encapsulating all aspects of the original one

for today, TRY TO:
@ show you most of the two proofs
@ get a better grasp on these labellings

@ insist on what this might mean for the original problem

Let'sgo© © © !!
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Distant irregularity strength
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(Very brief) introduction

@ introduced by Przybyto in 2013
o fix some d > 1, and require vertices at distance at most d to be distinguished

o for a graph G, parameter s%(G) to minimise

d = 1, distinguish only neighbours — proper labellings & 1-2-3 Conjecture
d = oo — irregularity strength
thus, in between two well studied problems

close to irregularity strength in spirit, but if diam(G) > d... @

regarding our question, for d = 1:

Theorem [Dudek, Wajc, 2011]

For a given graph G, determining whether s'(G) < 2 is NP-complete.
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Our result

Theorem [B., 2022]

For any d > 1, and any given graph G,
determining whether s?(G) < 2 is NP-complete.

main ideas: build upon the result of Dudek and Wajc
@ given a graph G, build a graph H such that

o proper 2-labelling of G — one of H distinguishing at distance d
o 2-labelling of H distinguishing at distance d — proper one of G

@ construction in poly-time
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Getting started (example with d = 3)

=<

@ new possible conflicts to handle (whitexblack, blackxblack)
@ 2-labelling of G <+ 2-labelling of H?

white vertices are at distance d © ; but:
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Restricting gadgets

(partial) solution: attach some structure to black vertices so that
@ get control over their sums by any distinguishing 2-labelling of H
@ cannot get conflicts involving black vertices
@ subdivided edges must be labelled in a certain way

Warning: adding vertices yields new possible conflicts @

consider Kj41, the complete graph on p 4 1 vertices

no distinguishing 2-labelling of K,11 ©
however:

Lemma [B., 2022]

Assume the vertices of K41 are w, vi, ..., v,. By every 2-labelling that is distin-
guishing when omitting w, the set {o(v1),...,0(v,)} is either {p,...,2p — 1}
or {p+1,...,2p}. Furthermore, for every s € {p,2p}, there exist distinguishing
2-labellings of Ky11 where s & {o(w),a(v1),...,0(vp)}, and o(w) is either 32

(even p), or (odd p) % (s=2p) or 3”2—“ (s=p).
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Illustration

vi's have degree 4 — sums in {4,...,8}

e four v;'s — some o(v;)'s must lie in {4,8}
= all v;'s are all incident to either a 1 or a 2
= {o(w1),...,0(va)} is either {4,5,6,7} or {5,6,7,8}

we can 2-label so that, also, o(w) = 6
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Restricting gadgets (cont'd)

Note: locally, we can 2-label the gadget properly, “pushing” conflicts at w
— w is intended to eventually have much larger degree, to make it kind of safe

next constructions:

@ attaching a k-clique at v: add a k-clique, and make it dominated by v
o attaching, for k > 7, a k-fan at a degree-2 vertex v:

e add k — 2 vertices uy, ..., ux_p, adjacent to v

e attach a k-clique and a (2k + 1)-clique at uy; set n; = 3k +2 = d(u1)

e attach a (2n1 + 1)-clique and a (2(2n1 + 1) + 1)-clique at up; set ny = d(u2)
o go on like this for all u;'s one after the other

Q010000
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Remarks:
o v gets degree exactly k, like the k vertices of the smallest clique
o these k + 1 vertices are at distance 2 = sum set is {k,..., 2k}
@ previous Lemma = v has sum k (only 1's), or 2k (only 2's)
@ due to degrees, cannot get the same sums in two distinct cliques

@ also, the u;'s, 2-labelled as in Lemma, have large sums due to their large degrees

largest degree: function of k only
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Sequences of fans

(2 + 1)-fan

k-fan, A = «

@ no conflicts in different fans
@ same for attachment vertices
o subdivided edges all assigned the same label x (either 1 or 2)

@ again, largest degree function of k and d only
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Progress this far (example with d = 3)

KV Y

H
o fans grow exponentially + A(G) types required = exponential function of A(G
@ Still, 2-labelling of G <+ 2-labelling of H ©
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Polishing things

to limit # of needed types of fans: make sure A(G) is bounded; fortunately:

Theorem [Ahadi, Dehghan, Sadeghi, 2013]

For a given cubic graph G, determining whether s'(G) < 2 is NP-complete.

also, if 6(G) = A(G) = 3:
e Vizing: x'(G) € {3,4}
@ Misra, Gries: a proper 4-edge-colouring of G can be obtained in poly-time

thus, for free, can suppose G comes with a proper 4-edge-colouring ¢

25/38



Coloured fans

26/38



Coloured fans

now OK © :
@ 4(d — 1) types of fans = constant number

26/38



Coloured fans

now OK © :
@ 4(d — 1) types of fans = constant number
@ ¢ = fans of the same type are at distance more than d

26/38



Coloured fans

now OK © :
o 4(d — 1) types of fans = constant number
@ ¢ = fans of the same type are at distance more than d
@ white vertices have sum at most 6 = no conflicts with fans if (> 7)-fans

26/38



Coloured fans

now OK © :
o 4(d — 1) types of fans = constant number
@ ¢ = fans of the same type are at distance more than d
@ white vertices have sum at most 6 = no conflicts with fans if (> 7)-fans

altogether, construction in poly-time + labelling equivalence ©
26/38
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(Very brief) introduction

introduced by Chartrand, Escuardro, Okamoto, and Zhang in 2006

distinguish (all) vertices through their colour codes (multisets of incident labels)
require colour codes to be pairwise distinct

also called detectable colourings

for a graph G, parameter s,(G) to minimise

clearly, sm(G) < s(G) for any nice graph G
much easier in this setting!
labels can be regarded as colours

in particular, different degrees = different colour codes!
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Theorem [B., 2022]

For any given graph G, determining whether s,,(G) < 2 is NP-complete.

main idea:
@ exploit the properties on distinct degrees
@ in particular, k + 1 degree-k vertices = we know the set of their colour codes

@ colour codes of k of them are forced = last one is forced too

reduction from MONOTONE CUBIC 1-IN-3 SAT:
o instance: 3CNF formula F over clauses Ci, ..., G, and variables xi,..., X,
@ all clauses contain exactly three distinct (positive) variables
@ all variables appear in exactly three distinct clauses

@ question: is F I-in-3 satisfiable, i.e. can the variables be set to true or false so that
each clause has exactly one true variable?

from F, build, in poly-time, graph G, so that F is 1-in-3 satisfiable <> sn(G) < 2
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Main ideas: model the structure of F as a graph, and add forcing mechanisms so that
reflecting labelling properties (i.e., clause vertices: exactly one blue incident formula
edge; variable vertices: three incident formula edges the same colour)
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1=blue, 2=red

Main ideas: model the structure of F as a graph, and add forcing mechanisms so that
reflecting labelling properties (i.e., clause vertices: exactly one blue incident formula
edge; variable vertices: three incident formula edges the same colour)

G G G Cy
®

X1 X2 X3 X4

thus, forbid:
o for clause vertices: RRR+RBB+BBB
o for variable vertices: RBB+RRB
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Forcing mechanisms

Goal: “generate” vertices with same degree, that must have the forbidden colour codes

G G G G

X1 x2 X3 X1

= thus need to “generate” edges of a certain colour

Note: any two variable vertices and/or clause vertices should have distinct degrees...
(for now, let us just pretend © © © )

31/38



Forcing mechanisms

Note: properties of cliques still apply here
= have, somewhere, a vertex to which forcing cliques are attached:

Implications:

32/38



Forcing mechanisms

Note: properties of cliques still apply here
= have, somewhere, a vertex to which forcing cliques are attached:

Implications:

@ a vertices of degree a + all colour codes but R? or B* = only R* or B* remains

32/38



Forcing mechanisms

Note: properties of cliques still apply here
= have, somewhere, a vertex to which forcing cliques are attached:

Implications:
@ a vertices of degree a + all colour codes but R? or B* = only R* or B* remains

@ b vertices of degree b + all colour codes but R® or B® = only R® or B” remains

32/38



Forcing mechanisms

Note: properties of cliques still apply here
= have, somewhere, a vertex to which forcing cliques are attached:

Implications:
@ a vertices of degree a + all colour codes but R? or B* = only R* or B* remains
@ b vertices of degree b + all colour codes but R® or B® = only R® or B” remains
@ c vertices of degree ¢ + all colour codes but R or B = only R or B® remains

32/38



Forcing mechanisms

Note: properties of cliques still apply here
= have, somewhere, a vertex to which forcing cliques are attached:

Implications:
@ a vertices of degree a + all colour codes but R? or B* = only R* or B* remains
@ b vertices of degree b + all colour codes but R® or B® = only R® or B” remains
@ c vertices of degree ¢ + all colour codes but R or B = only R or B® remains
°

d vertices of degree d + all colour codes but RY or B = only R? or B remains

32/38



Forcing mechanisms

Note: properties of cliques still apply here
= have, somewhere, a vertex to which forcing cliques are attached:

Implications:
@ a vertices of degree a + all colour codes but R? or B* = only R* or B* remains
@ b vertices of degree b + all colour codes but R® or B® = only R® or B” remains
@ c vertices of degree ¢ + all colour codes but R or B = only R or B® remains
@ d vertices of degree d + all colour codes but R? or BY = only R or B remains

= for any degree x, can make sure a degree-x vertex is monochromatic
32/38



Forcing trails

33/38



Forcing trails

33/38



Forcing trails

33/38



Forcing trails

N B VAR VA

33/38



Forcing trails

33/38



Forcing trails

pendant edges: forcing edges + extra edges (discussed later)
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Pairs of forcing trails

force two colours: need two forcing trails (with distinct degrees)
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Polishing everything

to finish off:
o “plug” pendant edges from the two trails to fill colour codes and increase degrees
o Warning: clause vertices and variables vertices must have distinct degrees
@ = degrees 3,4,...,n+ m+ 2, and same for their respective forcing counterparts

@ unused pendant edges: attach cliques (with new degrees) to fill

number of needed degrees: polynomial function of n, m = poly-time construction
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Conclusions and perspectives

Main question

For a given graph G, determining whether s(G) < 2?

@ NP-completeness of two close problems
= might indicate the original problem also is (or not ®)

@ second proof adapts to sums © ...

@ ... but the degree property implies we must use cliques doubling each step ®

Questions:
@ complexity of the sum problem?
o replacing cliques with something else?
@ second proof for connected graphs?
o what for any k > 27

o classes of graphs?

Thanks for your attention!!
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