
Recovering disrupted airline operations
through matching augmentations

Julien Bensmail, Valentin Garnero, Nicolas Nisse

Université Nice-Sophia-Antipolis, France

Séminaire Algorithmique Distribuée, LaBRI
April 3, 2023

1/33



Introduction

2/33



Matchings in graphs

Graph, Matching.
Exposed vertex, Covered vertex.

3/33



Matchings in graphs

Graph

, Matching.
Exposed vertex, Covered vertex.

3/33



Matchings in graphs

Graph, Matching.

Exposed vertex, Covered vertex.

3/33



Matchings in graphs

Graph, Matching.
Exposed vertex, Covered vertex.

3/33



Augmenting a matching

Augmenting path, Augmentation.

Augmentation ⇒ Bigger matching.

4/33



Augmenting a matching

Augmenting path, Augmentation.

Augmentation ⇒ Bigger matching.

4/33



Augmenting a matching

Augmenting path, Augmentation.

Augmentation ⇒ Bigger matching.

4/33



Augmenting a matching

Augmenting path, Augmentation.

Augmentation ⇒ Bigger matching.

4/33



Augmenting a matching

Augmenting path, Augmentation.

Augmentation ⇒ Bigger matching.

4/33



Augmenting a matching

Augmenting path, Augmentation.

Augmentation ⇒ Bigger matching.

4/33



Augmenting a matching

Augmenting path, Augmentation.

Augmentation ⇒ Bigger matching.

4/33



Augmenting a matching

Augmenting path, Augmentation.

Augmentation ⇒ Bigger matching.
4/33



Berge and Edmonds’ results

Maximum matching = Biggest matching.
µ(G ) = Cardinality of a maximum matching of G .

Theorem [Berge, 1957]

Maximum matching ⇔ No augmenting path.

Finding augmenting paths?

Theorem [Edmonds’ Blossom Algorithm, 1965]

Detection in polynomial time.

Hence, µ(G ) can be determined in poly-time.

5/33



Berge and Edmonds’ results

Maximum matching = Biggest matching.
µ(G ) = Cardinality of a maximum matching of G .

Theorem [Berge, 1957]

Maximum matching ⇔ No augmenting path.

Finding augmenting paths?

Theorem [Edmonds’ Blossom Algorithm, 1965]

Detection in polynomial time.

Hence, µ(G ) can be determined in poly-time.

5/33



Berge and Edmonds’ results

Maximum matching = Biggest matching.
µ(G ) = Cardinality of a maximum matching of G .

Theorem [Berge, 1957]

Maximum matching ⇔ No augmenting path.

Finding augmenting paths?

Theorem [Edmonds’ Blossom Algorithm, 1965]

Detection in polynomial time.

Hence, µ(G ) can be determined in poly-time.

5/33



Motivations

Plane → Suitable landing slot times/tracks (edges) + Scheduled one (matching).

9h – T1 9h – T2 9h15 – T2 9h15 – T3 9h – T3

6/33



Motivations

Issue: For some reason, 2nd plane cannot land on Track 2 at 9h15 any more...

9h – T1 9h – T2 9h15 – T2 9h15 – T3 9h – T3

What should we do??

7/33



Motivations

Issue: For some reason, 2nd plane cannot land on Track 2 at 9h15 any more...

9h – T1 9h – T2 9h15 – T2 9h15 – T3 9h – T3

What should we do??

7/33



Motivations

Re-scheduling a lot is not acceptable! ⇒ Cannot start over from scratch.
⇒ Modify the matching “locally”, via an augmentation.

9h – T1 9h – T2 9h15 – T2 9h15 – T3 9h – T3

8/33



Motivations

Re-scheduling a lot is not acceptable! ⇒ Cannot start over from scratch.
⇒ Modify the matching “locally”, via an augmentation.

9h – T1 9h – T2 9h15 – T2 9h15 – T3 9h – T3

8/33



Motivations

Re-scheduling a lot is not acceptable! ⇒ Cannot start over from scratch.
⇒ Modify the matching “locally”, via an augmentation.

9h – T1 9h – T2 9h15 – T2 9h15 – T3 9h – T3

8/33



Motivations

Re-scheduling a lot is not acceptable! ⇒ Cannot start over from scratch.
⇒ Modify the matching “locally”, via an augmentation.

9h – T1 9h – T2 9h15 – T2 9h15 – T3 9h – T3

8/33



General question

Question

For odd k ≥ 1, attain a largest matching via (≤ k)-augmentations?

µ≤k(G ,M): Its cardinality for G equipped with M.

Note: µ≤1(G , ∅) = µ(G ).

9/33



Note: order matters /

k = 5. First attempt.

10/33



Note: order matters /

k = 5. First attempt.

10/33



Note: order matters /

k = 5. First attempt.

10/33



Note: order matters /

k = 5. First attempt.

10/33



Note: order matters /

k = 5. Second attempt.

11/33



Note: order matters /

k = 5. Second attempt.

11/33



Note: order matters /

k = 5. Second attempt.

11/33



Note: order matters /

k = 5. Second attempt.

11/33



Note: order matters /

k = 5. Second attempt.

11/33



Note: order matters /

k = 5. Second attempt.

11/33



Note: order matters /

k = 5. Second attempt.

11/33



First dichotomy

(≤ k)-Matching Problem – (≤ k)-MP
Input: A graph G , and a matching M of G .
Question: What is the value of µ≤k(G ,M)?

Reminder: (≤ ∞)-MP is in P, by Berge and Edmonds’ results.

For fixed k’s, a dichotomy:

Theorem [Nisse, Salch, Weber, 2015]

(≤ k)-MP is

in P for k = 1, 3;

NP-hard for every odd k ≥ 5.

Latter statement true for planar bipartite graphs with ∆ ≤ 3 and arb. large girth.

12/33



First dichotomy

(≤ k)-Matching Problem – (≤ k)-MP
Input: A graph G , and a matching M of G .
Question: What is the value of µ≤k(G ,M)?

Reminder: (≤ ∞)-MP is in P, by Berge and Edmonds’ results.

For fixed k’s, a dichotomy:

Theorem [Nisse, Salch, Weber, 2015]

(≤ k)-MP is

in P for k = 1, 3;

NP-hard for every odd k ≥ 5.

Latter statement true for planar bipartite graphs with ∆ ≤ 3 and arb. large girth.

12/33



First dichotomy

(≤ k)-Matching Problem – (≤ k)-MP
Input: A graph G , and a matching M of G .
Question: What is the value of µ≤k(G ,M)?

Reminder: (≤ ∞)-MP is in P, by Berge and Edmonds’ results.

For fixed k’s, a dichotomy:

Theorem [Nisse, Salch, Weber, 2015]

(≤ k)-MP is

in P for k = 1, 3;

NP-hard for every odd k ≥ 5.

Latter statement true for planar bipartite graphs with ∆ ≤ 3 and arb. large girth.

12/33



Towards a second dichotomy

Summary:

For k = 1, 3, the problem is settled.

For odd k ≥ 5, NP-hard for graphs close to trees.

Complexity of (≤ k)-MP for trees?

Today’s talk:

(≤ k)-MP is in P for caterpillars, subdivided stars, “sparse trees”, etc.

A modified version is NP-complete for trees.

13/33



Towards a second dichotomy

Summary:

For k = 1, 3, the problem is settled.

For odd k ≥ 5, NP-hard for graphs close to trees.

Complexity of (≤ k)-MP for trees?

Today’s talk:

(≤ k)-MP is in P for caterpillars, subdivided stars, “sparse trees”, etc.

A modified version is NP-complete for trees.

13/33



Towards a second dichotomy

Summary:

For k = 1, 3, the problem is settled.

For odd k ≥ 5, NP-hard for graphs close to trees.

Complexity of (≤ k)-MP for trees?

Today’s talk:

(≤ k)-MP is in P for caterpillars, subdivided stars, “sparse trees”, etc.

A modified version is NP-complete for trees.

13/33



Towards a second dichotomy

Summary:

For k = 1, 3, the problem is settled.

For odd k ≥ 5, NP-hard for graphs close to trees.

Complexity of (≤ k)-MP for trees?

Today’s talk:

(≤ k)-MP is in P for caterpillars, subdivided stars, “sparse trees”, etc.

A modified version is NP-complete for trees.

13/33



Positive results

14/33



Intuition (= spoilers)

One key idea: Prove that ∃ a particular way to reach a max. matching.

Upcoming ideas:

In paths, augmenting path overlaps can be avoided.

⇒ Go from “left to right” and “match” consecutive exposed vertices.

Can it be done in caterpillars?

In subdivided stars?
⇒ Augmentations along branches ⇔ Path case.
⇒ Can root-augmentations be avoided?

Trees where b-vertices are sufficiently far apart?

15/33



Intuition (= spoilers)

One key idea: Prove that ∃ a particular way to reach a max. matching.

Upcoming ideas:

In paths, augmenting path overlaps can be avoided.
⇒ Go from “left to right” and “match” consecutive exposed vertices.

Can it be done in caterpillars?

In subdivided stars?
⇒ Augmentations along branches ⇔ Path case.
⇒ Can root-augmentations be avoided?

Trees where b-vertices are sufficiently far apart?

15/33



Intuition (= spoilers)

One key idea: Prove that ∃ a particular way to reach a max. matching.

Upcoming ideas:

In paths, augmenting path overlaps can be avoided.
⇒ Go from “left to right” and “match” consecutive exposed vertices.

Can it be done in caterpillars?

In subdivided stars?
⇒ Augmentations along branches ⇔ Path case.
⇒ Can root-augmentations be avoided?

Trees where b-vertices are sufficiently far apart?

15/33



Intuition (= spoilers)

One key idea: Prove that ∃ a particular way to reach a max. matching.

Upcoming ideas:

In paths, augmenting path overlaps can be avoided.
⇒ Go from “left to right” and “match” consecutive exposed vertices.

Can it be done in caterpillars?

In subdivided stars?

⇒ Augmentations along branches ⇔ Path case.
⇒ Can root-augmentations be avoided?

Trees where b-vertices are sufficiently far apart?

15/33



Intuition (= spoilers)

One key idea: Prove that ∃ a particular way to reach a max. matching.

Upcoming ideas:

In paths, augmenting path overlaps can be avoided.
⇒ Go from “left to right” and “match” consecutive exposed vertices.

Can it be done in caterpillars?

In subdivided stars?
⇒ Augmentations along branches ⇔ Path case.
⇒ Can root-augmentations be avoided?

Trees where b-vertices are sufficiently far apart?

15/33



Intuition (= spoilers)

One key idea: Prove that ∃ a particular way to reach a max. matching.

Upcoming ideas:

In paths, augmenting path overlaps can be avoided.
⇒ Go from “left to right” and “match” consecutive exposed vertices.

Can it be done in caterpillars?

In subdivided stars?
⇒ Augmentations along branches ⇔ Path case.
⇒ Can root-augmentations be avoided?

Trees where b-vertices are sufficiently far apart?

15/33



Easy case: paths

Theorem [Nisse, Salch, Weber, 2015]

(≤ k)-MP is in P for paths.

1st key idea: Forget about consecutive exposed vertices that are too far apart.

> k

⇒ Decompose the problem into two sub-problems.

In a path ⇒ Assume exposed vertices have one on the left/right at distance ≤ k.

16/33



Easy case: paths

Theorem [Nisse, Salch, Weber, 2015]

(≤ k)-MP is in P for paths.

1st key idea: Forget about consecutive exposed vertices that are too far apart.

> k

⇒ Decompose the problem into two sub-problems.

In a path ⇒ Assume exposed vertices have one on the left/right at distance ≤ k.

16/33



Easy case: paths

Theorem [Nisse, Salch, Weber, 2015]

(≤ k)-MP is in P for paths.

1st key idea: Forget about consecutive exposed vertices that are too far apart.

> k

E

⇒ Decompose the problem into two sub-problems.

In a path ⇒ Assume exposed vertices have one on the left/right at distance ≤ k.

16/33



Easy case: paths

Theorem [Nisse, Salch, Weber, 2015]

(≤ k)-MP is in P for paths.

1st key idea: Forget about consecutive exposed vertices that are too far apart.

> k

E

⇒ Decompose the problem into two sub-problems.

In a path ⇒ Assume exposed vertices have one on the left/right at distance ≤ k.

16/33



Easy case: paths

Theorem [Nisse, Salch, Weber, 2015]

(≤ k)-MP is in P for paths.

2nd key idea: We can augment paths joining “consecutive” exposed vertices only.

v1 v2 v3 v4 v5 v6

1 2
3

3 ⇒ The paths v1...v2, v3...v4 and v5...v6 have length ≤ k and alternate. So

v1 v2 v3 v4 v5 v6

1 2 3

yields the same matching.

⇒ In a path, just go “from left to right”, and augment paths when possible. �

17/33



Easy case: paths

Theorem [Nisse, Salch, Weber, 2015]

(≤ k)-MP is in P for paths.

2nd key idea: We can augment paths joining “consecutive” exposed vertices only.

v1 v2 v3 v4 v5 v6

1 2
3

3 ⇒ The paths v1...v2, v3...v4 and v5...v6 have length ≤ k and alternate. So

v1 v2 v3 v4 v5 v6

1 2 3

yields the same matching.

⇒ In a path, just go “from left to right”, and augment paths when possible. �

17/33



Easy case: paths

Theorem [Nisse, Salch, Weber, 2015]

(≤ k)-MP is in P for paths.

2nd key idea: We can augment paths joining “consecutive” exposed vertices only.

v1 v2 v3 v4 v5 v6

1 2
3

3 ⇒ The paths v1...v2, v3...v4 and v5...v6 have length ≤ k and alternate. So

v1 v2 v3 v4 v5 v6

1 2 3

yields the same matching.

⇒ In a path, just go “from left to right”, and augment paths when possible. �
17/33



Caterpillars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for caterpillars.

Remark: Matched leaf edge ⇒ Simplification.

⇒ Being adjacent to two leaves is useless.

Focus on caterpillars with ∆ = 3 (∼ paths).

18/33



Caterpillars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for caterpillars.

Remark: Matched leaf edge ⇒ Simplification.

⇒ Being adjacent to two leaves is useless.

Focus on caterpillars with ∆ = 3 (∼ paths).

18/33



Caterpillars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for caterpillars.

Remark: Matched leaf edge ⇒ Simplification.

⇒ Being adjacent to two leaves is useless.

Focus on caterpillars with ∆ = 3 (∼ paths).

18/33



Caterpillars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for caterpillars.

Remark: Matched leaf edge ⇒ Simplification.

⇒ Being adjacent to two leaves is useless.

Focus on caterpillars with ∆ = 3 (∼ paths).

18/33



Caterpillars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for caterpillars.

Again, augmenting paths can be “disentangled”:

1

2

and

⇒ Just as for paths, just “go from left to right”. �

19/33



Caterpillars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for caterpillars.

Again, augmenting paths can be “disentangled”:

1 2

and

⇒ Just as for paths, just “go from left to right”. �

19/33



Caterpillars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for caterpillars.

Again, augmenting paths can be “disentangled”:

1 2

and

1

2

⇒ Just as for paths, just “go from left to right”. �

19/33



Caterpillars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for caterpillars.

Again, augmenting paths can be “disentangled”:

1 2

and

1 2

⇒ Just as for paths, just “go from left to right”. �

19/33



Caterpillars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for caterpillars.

Again, augmenting paths can be “disentangled”:

1 2

and

1 2

⇒ Just as for paths, just “go from left to right”. �

19/33



Subdivided stars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for subdivided stars.

Enhancement: Cope with root-augmentations.

Key fact: “Cycling” root-augmentations can be avoided:

1

2

3

4 equivalent to

1 2

34

(because 1, 2, 3 and 4 are augmenting (≤ k)-paths.)

20/33



Subdivided stars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for subdivided stars.

Enhancement: Cope with root-augmentations.

Key fact: “Cycling” root-augmentations can be avoided:

1

2

3

4

equivalent to

1 2

34

(because 1, 2, 3 and 4 are augmenting (≤ k)-paths.)

20/33



Subdivided stars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for subdivided stars.

Enhancement: Cope with root-augmentations.

Key fact: “Cycling” root-augmentations can be avoided:

1

2

3

4 equivalent to

1 2

34

(because 1, 2, 3 and 4 are augmenting (≤ k)-paths.)

20/33



Subdivided stars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for subdivided stars.

Enhancement: Cope with root-augmentations.

Key fact: “Cycling” root-augmentations can be avoided:

1

2

3

4 equivalent to

1 2

34

(because 1, 2, 3 and 4 are augmenting (≤ k)-paths.)
20/33



Subdivided stars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for subdivided stars.

So why performing root-augmentations?

From the p.o.v. of an inner-branch, an equivalent augmentation can be performed

1

2 →
1

... and it retains the parity of the number of exposed vertices in that branch.

⇒ Root-augmentation → Alters the parity of the two end-branches only.

21/33



Subdivided stars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for subdivided stars.

So why performing root-augmentations?

From the p.o.v. of an inner-branch, an equivalent augmentation can be performed

1

2

→
1

... and it retains the parity of the number of exposed vertices in that branch.

⇒ Root-augmentation → Alters the parity of the two end-branches only.

21/33



Subdivided stars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for subdivided stars.

So why performing root-augmentations?

From the p.o.v. of an inner-branch, an equivalent augmentation can be performed

1

2 →

1

... and it retains the parity of the number of exposed vertices in that branch.

⇒ Root-augmentation → Alters the parity of the two end-branches only.

21/33



Subdivided stars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for subdivided stars.

So why performing root-augmentations?

From the p.o.v. of an inner-branch, an equivalent augmentation can be performed

1

2 →
1

... and it retains the parity of the number of exposed vertices in that branch.

⇒ Root-augmentation → Alters the parity of the two end-branches only.

21/33



Subdivided stars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for subdivided stars.

So why performing root-augmentations?

From the p.o.v. of an inner-branch, an equivalent augmentation can be performed

1

2 →
1

... and it retains the parity of the number of exposed vertices in that branch.

⇒ Root-augmentation → Alters the parity of the two end-branches only.

21/33



Subdivided stars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for subdivided stars.

Remind that for a branch with α exp. vertices, bα/2c augmentations.

⇒ No point starting/ending with an even branch.

So, we can reach a maximum matching by essentially:

1 Performing root-augmentations to match vertices from 6= odd branches;
2 Then finishing off along the branches.

To check if 1. doable, run a BFS in an auxiliary “reachability digraph”:

≤ k

≤ k

≤ k

u

v1 v2

w1 w2

→ u

{v1, v2}

{w1,w2}

22/33



Subdivided stars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for subdivided stars.

Remind that for a branch with α exp. vertices, bα/2c augmentations.
⇒ No point starting/ending with an even branch.

So, we can reach a maximum matching by essentially:

1 Performing root-augmentations to match vertices from 6= odd branches;
2 Then finishing off along the branches.

To check if 1. doable, run a BFS in an auxiliary “reachability digraph”:

≤ k

≤ k

≤ k

u

v1 v2

w1 w2

→ u

{v1, v2}

{w1,w2}

22/33



Subdivided stars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for subdivided stars.

Remind that for a branch with α exp. vertices, bα/2c augmentations.
⇒ No point starting/ending with an even branch.

So, we can reach a maximum matching by essentially:

1 Performing root-augmentations to match vertices from 6= odd branches;

2 Then finishing off along the branches.

To check if 1. doable, run a BFS in an auxiliary “reachability digraph”:

≤ k

≤ k

≤ k

u

v1 v2

w1 w2

→ u

{v1, v2}

{w1,w2}

22/33



Subdivided stars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for subdivided stars.

Remind that for a branch with α exp. vertices, bα/2c augmentations.
⇒ No point starting/ending with an even branch.

So, we can reach a maximum matching by essentially:

1 Performing root-augmentations to match vertices from 6= odd branches;
2 Then finishing off along the branches.

To check if 1. doable, run a BFS in an auxiliary “reachability digraph”:

≤ k

≤ k

≤ k

u

v1 v2

w1 w2

→ u

{v1, v2}

{w1,w2}

22/33



Subdivided stars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for subdivided stars.

Remind that for a branch with α exp. vertices, bα/2c augmentations.
⇒ No point starting/ending with an even branch.

So, we can reach a maximum matching by essentially:

1 Performing root-augmentations to match vertices from 6= odd branches;
2 Then finishing off along the branches.

To check if 1. doable, run a BFS in an auxiliary “reachability digraph”:

≤ k

≤ k

≤ k

u

v1 v2

w1 w2

→ u

{v1, v2}

{w1,w2}

22/33



Subdivided stars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for subdivided stars.

Remind that for a branch with α exp. vertices, bα/2c augmentations.
⇒ No point starting/ending with an even branch.

So, we can reach a maximum matching by essentially:

1 Performing root-augmentations to match vertices from 6= odd branches;
2 Then finishing off along the branches.

To check if 1. doable, run a BFS in an auxiliary “reachability digraph”:

≤ k

≤ k

≤ k

u

v1 v2

w1 w2

→

u

{v1, v2}

{w1,w2}

22/33



Subdivided stars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for subdivided stars.

Remind that for a branch with α exp. vertices, bα/2c augmentations.
⇒ No point starting/ending with an even branch.

So, we can reach a maximum matching by essentially:

1 Performing root-augmentations to match vertices from 6= odd branches;
2 Then finishing off along the branches.

To check if 1. doable, run a BFS in an auxiliary “reachability digraph”:

≤ k

≤ k

≤ k

u

v1 v2

w1 w2

→ u

{v1, v2}

{w1,w2}

22/33



Subdivided stars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for subdivided stars.

To summarize:

1 If necessary, do an augmentation involving the root.

2 If possible, join two odd branches via root-augmentations.

3 Finally, match the remaining exposed vertices along the branches.

⇒ Polynomial-time algorithm. �

23/33



Subdivided stars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for subdivided stars.

To summarize:

1 If necessary, do an augmentation involving the root.

2 If possible, join two odd branches via root-augmentations.

3 Finally, match the remaining exposed vertices along the branches.

⇒ Polynomial-time algorithm. �

23/33



Subdivided stars

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for subdivided stars.

To summarize:

1 If necessary, do an augmentation involving the root.

2 If possible, join two odd branches via root-augmentations.

3 Finally, match the remaining exposed vertices along the branches.

⇒ Polynomial-time algorithm. �

23/33



Going to sparse trees

k-sparse tree: Vertices with degree ≥ 3 are at distance > k.

> k

24/33



(≤ k)-MP for k-sparse trees

Theorem [B., Garnero, Nisse, 2018]

(≤ k)-MP is in P for k-sparse trees.

Idea: Consider subdivided stars, and build a solution from bottom to top. �

> k

25/33



Negative results

26/33



Original intention

NP-hardness proof: Need some forcing mechanisms.

For (≤ k)-MP in trees, sounds hard because of the “≤ k” requirement /.

⇒ What if we augment k-paths only?

(= k)-Matching Problem – (= k)-MP
Input: A graph G , and a matching M of G .
Question: What is the value of µ=k(G ,M)?

Good news: Some properties of (≤ k)-MP derive to (= k)-MP:

NP-hardness for odd k ≥ 5;

all polynomial-time algorithms for classes of trees.

27/33



Original intention

NP-hardness proof: Need some forcing mechanisms.

For (≤ k)-MP in trees, sounds hard because of the “≤ k” requirement /.

⇒ What if we augment k-paths only?

(= k)-Matching Problem – (= k)-MP
Input: A graph G , and a matching M of G .
Question: What is the value of µ=k(G ,M)?

Good news: Some properties of (≤ k)-MP derive to (= k)-MP:

NP-hardness for odd k ≥ 5;

all polynomial-time algorithms for classes of trees.

27/33



Original intention

NP-hardness proof: Need some forcing mechanisms.

For (≤ k)-MP in trees, sounds hard because of the “≤ k” requirement /.

⇒ What if we augment k-paths only?

(= k)-Matching Problem – (= k)-MP
Input: A graph G , and a matching M of G .
Question: What is the value of µ=k(G ,M)?

Good news: Some properties of (≤ k)-MP derive to (= k)-MP:

NP-hardness for odd k ≥ 5;

all polynomial-time algorithms for classes of trees.

27/33



Original intention

NP-hardness proof: Need some forcing mechanisms.

For (≤ k)-MP in trees, sounds hard because of the “≤ k” requirement /.

⇒ What if we augment k-paths only?

(= k)-Matching Problem – (= k)-MP
Input: A graph G , and a matching M of G .
Question: What is the value of µ=k(G ,M)?

Good news: Some properties of (≤ k)-MP derive to (= k)-MP:

NP-hardness for odd k ≥ 5;

all polynomial-time algorithms for classes of trees.

27/33



(= k)-MP in trees for non-fixed k

Modified version:

(=)-Matching Problem – (=)-MP
Input: A graph G , a matching M of G , and an odd k ≥ 1.
Question: What is the value of µ=k(G ,M)?

Negative result for trees:

Theorem [B., Garnero, Nisse, 2018]

(=)-MP is NP-hard for trees.

Proof (sketch): Reduction from 3-SAT.

28/33



(= k)-MP in trees for non-fixed k

Modified version:

(=)-Matching Problem – (=)-MP
Input: A graph G , a matching M of G , and an odd k ≥ 1.
Question: What is the value of µ=k(G ,M)?

Negative result for trees:

Theorem [B., Garnero, Nisse, 2018]

(=)-MP is NP-hard for trees.

Proof (sketch): Reduction from 3-SAT.

28/33



(=)-MP in trees

G (x1)

forth back

G (x2)

forth back

hv hc

G (C1)

forth back

G (C2)

forth back

u

v

switch edge

G (x1, x1)
in

out

in

out

A(x1,C1)
inout

A(x1,C1)

A(x1,C2)

in out

in out

G (x2, x2)
in

out

in

out

A(x2,C2)

inout

A(x2,C1)

in out

29/33



(=)-MP in trees

Theorem [B., Garnero, Nisse, 2018]

(=)-MP is NP-hard for trees.

Lengths of the dashed paths chosen so that:

for each xi , open either the true or false gate;

for each Ci , reach only the arrival points.

⇒ Needed k depends on #clauses and #variables. �

30/33



(=)-MP in trees

Theorem [B., Garnero, Nisse, 2018]

(=)-MP is NP-hard for trees.

Lengths of the dashed paths chosen so that:

for each xi , open either the true or false gate;

for each Ci , reach only the arrival points.

⇒ Needed k depends on #clauses and #variables. �

30/33



Final picture

u

v

hv hc

switch edge

G (x1)

back

forth

G (x2)

back

forth

G (C1)

back

forth

G (C2)

back

forth

G (x1, x1)

A(x1,C1) A(x1,C2)

in

out

in

out

in

out

in

out

G (x2, x2)

A(x2,C1) A(x2,C2)

in

out

in

out

in

out

in

out

`x1 <
⌊

1
10 k

⌋
`x2 <

⌊
1
10 k

⌋
`C1 <

⌊
1
10 k

⌋
`C2 <

⌊
1
10 k

⌋

`v =
⌊

9
10 k

⌋
`c =

⌊
2
10 k

⌋

`x1,x1 <
⌊

1
10 k

⌋
`x2,x2 <

⌊
1
10 k

⌋

`′x1
=

⌊
6
10 k

⌋
`′x1

=
⌊

6
10 k

⌋

`x1,C1 <
⌊

2
10 k

⌋
`x1,C2 <

⌊
2
10 k

⌋

`′x2
=

⌊
6
10 k

⌋
`′x2

=
⌊

6
10 k

⌋

`x2,C2 <
⌊

2
10 k

⌋
`x2,C1 <

⌊
2
10 k

⌋

31/33



Conclusion

32/33



Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?
subdivided combs?
etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!

33/33



Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?

subdivided combs?
etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!

33/33



Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?
subdivided combs?

etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!

33/33



Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?
subdivided combs?
etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!

33/33



Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?
subdivided combs?
etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!

33/33



Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?
subdivided combs?
etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!

33/33



Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?
subdivided combs?
etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!

33/33



Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?
subdivided combs?
etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!

33/33


