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The 1-2-3 Conjecture, in few words

“Given a graph, can we assign 1,2,3 to its edges, so that
no two adjacent vertices are incident to the same sum of labels?”
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Can the edges of any non-trivial graph be assigned weights from {1,2,3} so that
adjacent vertices have different sums of incident cdge weights?

‘We give a positive answer when the graph is 3-colourable, or when a finite number of
real weights is allowed,
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Sample example, 2nd try (again)
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Early remarks

m K> is the only connected graph that does not admit such proper labellings
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Early remarks

m K> is the only connected graph that does not admit such proper labellings
m For all other graphs, assign 1,..., k as desired, with k as small as possible?

1-2-3 Conjecture (Karonski, tuczak, Thomason, 2004)

This is always possible with k < 3.
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Most of what we know on the 1-2-3 Conjecture

m Verification of the conjecture:

m mainly for complete graphs and 3-colourable graphs
m other partial classes...
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Most of what we know on the 1-2-3 Conjecture

m Verification of the conjecture:

m mainly for complete graphs and 3-colourable graphs
m other partial classes...

m Complexity aspects:

m Deciding if 1,2 suffice is NP-hard, but...
m ... polytime solvable for bipartite graphs
m bipartite graphs needing 1,2,3 are the so-called odd multi-cacti

m Approaching the conjecture:

m Best result to date: 1,2,3,4,5 suffice for all graphs
m Better result: 1,2,3,4 suffice when regular or 4-chromatic

Also, many side aspects, variants, etc.

8/62



Speaking of variants...

m Multiset variant
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Speaking of variants...

m Multiset variant
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Speaking of variants...

m Multiset variant

\/

m—

1-2-3 Conjecture, multiset version (Addario-Berry et al., 2005)

Labels 1,2,3 suffice for all graphs.
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Speaking of variants...

m Product variant
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m Product variant
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Speaking of variants...

m Product variant

2

N
g

1-2-3 Conjecture, product version (Skowronek-Kaziéw, 2012)

Labels 1,2,3 suffice for all graphs.
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Comparing the three variants

Labels are anything in {1,2,3}

If | tell you:
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Comparing the three variants

Labels are anything in {1,2,3}

If | tell you:
Esumis10®® @
m product is 18 ©...oh wait... © ... but meh ®
m multiset is {1,1,2,3,31 ©© © © ©

Nice stuff:

m different sums or products = different multisets
m different degrees = different multisets
m in products, 2 and 3 are coprime, 1 is neutral:
m 2 and 3 act similarly in products and multisets
m 1 is like “skipping” labelling an edge
= product version ~ multiset version with a neutral label
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Progress towards the multiset and product versions

sum version > product version > multiset version
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Progress towards the multiset and product versions

sum version > product version > multiset version

everything in the sum or product version applies in the multiset version

anything on the multiset version might give ideas for the product version

Addario-Berry et al. (2005): 1,2,3,4 work for multisets

Skowronek-Kaziéw (2012): same for products, 1,2,3 when y <3 (as for sums)

Vuckovi¢ (2018): multiset version is true! ©

B., Hocquard, Lajou, Sopena (2021): product version when regular or y =4

B., Hocquard, Lajou, Sopena (2021+): product version is true!! @

For today: most of the proof!
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For any 3-labelling ¢:
m /=1 /=2, /=3 (Note: / and / can be interchanged)

m 2-degree do(v) = number of 2's incident

m 3-degree d3(v) = number of 3's incident

m ® = l-monochromatic (product is 1)

m @ = 2-monochromatic (product is 2P for p>0)
m @ = 3-monochromatic (product is 39 for g >0)
m bichromatic = product is 2P39 for p,q>0

Remark: no conflict between
m /-monochromatic and j-monochromatic for i # j
m monochromatic and bichromatic

Actually, conflict between 2P39 and 2P'39 iff p=p’ and g=¢'
Q= (product is 22P3 for p>0)
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Sketch of the proof
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m the V;'s are independent
m every ve V; with i>1 has a neighbour in V; for every j<i

2. Relabel the upward edges of Vj3,..., V; to realise certain products
3. Get rid of conflicts in (V1, V)

15/62



The type of labelling we want by the end of Step 2

Vi | D ° |
Vo f ° K

Vs (I -

Vy o

Vs [6
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The type of labelling we want by the end of Step 2
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The type of labelling we want by the end of Step 2
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The type of labelling we want by the end of Step 2

Vi |/}» 1-mono or 3-mono
Vo 3 o/ 1-mono or 2-mono
V3 bichrom: R=1 and R+B even

YAV
L

Vs [ bichrom: R =2 and R+B even

bichrom: B =2 and R+B odd
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The type of labelling we want by the end of Step 2

Vi |/,'» 1-mono or 3-mono
Vo . o/ 1-mono or 2-mono
V3 bichrom: R=1 and R+B even

YAV
L

Vs [ bichrom: R=2 and R+5 even

bichrom: B =2 and R+B odd

Note:
m no conflict between odd layers; same for even layers

m same between odd layers and even layers (except for 1-mono across (Vi, V2))
m no (B=1and R+B odd)
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Getting rid of remaining conflicts in Step 3

Vi @ . . @ @ 1-mono or 3-mono

Vo . @ . @ @ 1-mono or 2-mono
© < ®
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Getting rid of remaining conflicts in Step 3

Vi @ . @ . 1-mono or 3-mono

Vo . @ . 1-mono or 2-mono
© © 08

Do not forget about Vj3,..., V;!!
= Keep vertices 1-mono, 2-mono, 3-mono,
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Main labelling steps — REVISITED

Start from all edges labelled 1
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Main labelling steps — REVISITED

Start from all edges labelled 1
1. Partition V(G) into V4 U---U V4 so that:

m the V;'s are independent
m every v e V; with i>1 has a neighbour in V; for every j<i

2. Relabel the upward edges of Vj,..., V; so that

m certain products are realised
m no isolated 1-mono edge in (V7, V5)

3. Get rid of conflicts in (V4, V2), playing with 1-mono, 2-mono, 3-mono,
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— Step 1 —
Getting a “good” partition Vju---u V; of V(G)
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Getting the upward edges property

m Pick V7 independent as big as possible
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Getting the upward edges property

m Pick V1 independent as big as possible
m In V(G)\ V4, pick V5 independent as big as possible
m In V(G)\ (V41U VW,), pick V3 independent as big as possible
m Etc.
\/1 L4
Va A
Vs I Y Y A
Vs e

Vs e 1
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Getting the upward edges property

m Pick V1 independent as big as possible
m In V(G)\ V4, pick V5 independent as big as possible
m In V(G)\ (V41U VW,), pick V3 independent as big as possible
m Etc.
Vi
Va
V3
Vs e

Vs e 1
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An additional swapping property

We can choose Vi U---UV; so that if e=(u,v) e (Vq, V) is isolated, then
u and v can be freely exchanged between V; and V5 without spoiling any
of the desired properties (independence, upward edges, etc.).
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An additional swapping property

We can choose Vi U---UV; so that if e=(u,v) e (Vq, V) is isolated, then
u and v can be freely exchanged between V; and V5 without spoiling any
of the desired properties (independence, upward edges, etc.).

Just choose V7 and V5 so that Vj u V5 as large as possible

Vi [ " o

\
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— Step 2 —
Relabelling the upward edges of V3,..., V;
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Recap of what is desired

Vi [ N ° 1-mono or 3-mono
Vo [ . _O_: 1-mono or 2-mono
V3 [z e ° bichrom: R=1 and R+5 even
A [ o bichrom: B =2 and R+B odd
Vs [o” ° o . bichrom: R=2 and R+B even
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A V3 [z e ° bichrom: R=1 and R+5 even
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Recap of what is desired

Vi

Va

V3

Vy

Vs

eccee

eccee

1-mono or 3-mono

1-mono or 2-mono

bichrom: R=1 and R+B even

bichrom: B=2 and R+B odd

bichrom: R=2 and R+B even

Watch out: even (odd, resp.) layers require a bounded number of 3's (2's, resp.)
= even (odd, resp.) layers produce their 3's (2's, resp.) upwards
= assume even (odd, resp.) layers do not receive 3's (2's, resp.) from below
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ex in some V5,

Vi ° 1-mono or 3-mono

Vo [ 1-mono or 2-mono

V3 [} bichrom: R=1 and R+B even
A . bichrom: B =2 and R+B5 odd
. . .

. . .

. . .

. . .

. . .

Von-1 [ bichrom: R=n-1 and R+B even

Van \ bichrom: B =n and R+B odd
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Case of a vertex in some

Vi 1-mono or 3-mono
Vo 1-mono or 2-mono
V3 bichrom: R=1 and R+B even
A bichrom: B =2 and R+B5 odd
. .
. .
. .
. .
. .
Vap-1 bichrom: R=n-1 and R+B even
Van bichrom: B =n and R+B odd
. . .
. . .
. . .
. . .
. . .
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Case of a vertex in some V5, — fixing parity

Vi 1-mono or 3-mono
Vo 1-mono or 2-mono
V3 bichrom: R=1 and R+B even
A bichrom: B =2 and R+B5 odd
. : .
. .
. .
. .
. .
Von-1 bichrom: R=n-1 and R+B even
Van bichrom: B =n and R+B odd
. . .
. . .
. . .
. . .
. . .
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Works because...

m Always have exactly the desired number of layers with distinct parity above
= get the required fixed number of labels (3 for even layers, 2 for odd layers)
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Works because...

m Always have exactly the desired number of layers with distinct parity above
= get the required fixed number of labels (3 for even layers, 2 for odd layers)

m Deep enough layers always have at least two layers with the same parity above
= make sure vertices are bichrom and/or adjust parity of R+B

m ... only V3 and V4 might be problematic...
... but actually things are (luckily!) fine!
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Watch out for adjacent

Vi . o [ [ 1-mono or 3-mono

Vo [} ] . . 1-mono or 2-mono

V3 ° bichrom: R=1 and R+B even
Vi [ bichrom: B=2 and R+B odd
. . .

. . .

. . .

. . .

. . .

Van-1 L] bichrom: R=n-1 and R+B even

Van \ bichrom: B=n and R+B odd
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Swapping adjacent
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. . .

. . .

. . .

. . .
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Van \ bichrom: B=n and R+B odd
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Making adjacent
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Making adjacent
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Making adjacent happy — fixing parity

Vi . 1-mono or 3-mono
Vo [ 1-mono or 2-mono
V3 bichrom: R=1 and R+B even
Vi bichrom: B=2 and R+B odd
. .
. .
. .
. .
. .
Von-1 bichrom: R=n-1 and R+B even
Van n" bichrom: B=n and R+B odd
. . .
. . .
. . .
. . .
. . .
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Making adjacent happy — fixing parity

Vi . 1-mono or 3-mono

Vo . 1-mono or 2-mono

V3 bichrom: R=1 and R+B even

A bichrom: B =2 and R+B odd

. .

. .

. .

. .

. .
Van-1 bichrom: R=n-1 and R+B even
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. . .
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. . .
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Making adjacent happy — fixing parity
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More examples — The (slightly more) intricate case of V3

Want: bichrom: R=1 and R+B even
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More examples — The (slightly more) intricate case of V3

Want: bichrom: R=1 and R+B even

¥
Y
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— Step 3 —
Getting rid of conflicts in (V4, V,)
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Getting rid of conflicts one by one

. components of G[V1 U V5] having conflicting (1-mono) vertices

2 e & & e o e

V2 ® & & © ©
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Getting rid of conflicts one by one

. components of G[V1 U V5] having conflicting (1-mono) vertices

Vi e & & e o e

Vo . . @ @ .
X v

Deal with every H e #:
m 1-mono, 2-mono, 3-mono, = no conflicts with V3,...,\;
m Remark: H's can be treated independently
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m a 3-mono veV;
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Getting rid of conflicts one by one

. components of G[V1 U V5] having conflicting (1-mono) vertices

Vi e & & e o e

Vo . . @ @ .
X v

Deal with every H e #:
m 1-mono, 2-mono, 3-mono, = no conflicts with V3,...,\;
m Remark: H's can be treated independently

Several cases:
1. H contains either:

m a 1-mono vq € V4 with two 1-mono degre-1 neighbours uy,us € V5, or
m a 3-mono veV;

2. H contains a 1-mono v e V5 with at least two neighbours in H
3. H contains none of the previous

34/62



A useful lemma

Lemma

Let s€{2,3}, and let H be a connected bipartite graph whose edges are
labelled 1 or s. Consider any vertex v in any part V; e {Vq, Vo} of H.
We can relabel the edges of H with 1 and s so that:

m ds(u) is odd (even, resp.) for every ue V;\{v}, and

m ds(u) is even (odd, resp.) for every ue V3_;.

Note: Remains true, even if some “contribution” from outside

v
[ ) even

o odd
X
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A useful lemma
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Case 1: H has either 1) a with two

First situation:

va . & & 0 6

Vi O)
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Case 1: H has either 1) a with two

, or 2)

First situation:

u1 u2

V2 ® 0 ©

i
vi

36/62



Case 1: H has either 1) a with two

, or 2)

First situation:

u1 u2

V2 ® 0 ©

i
vi

.. and then 2nd situation, keeping in mind that the only 3-mono in V5 are u1,up
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Case 1: H has either 1) a with two

,or2)a

Second situation:

“ ® ®
" e o [@ |
v (@ e e e lo le

v @ e @

37/62



Case 1: H has either 1) a with two

,or2)a

Second situation:

v ® ® odd
2 @ © [0 | -
Va (‘ g) (] ©O) ® ©)] odd

v @ e @
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Case 1: H has either 1) a with two

,or2)a

Second situation:

Va odd

Vl @ @ even
up up

Va (. .) (] ® odd

v @ e @
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Case 1: H has either 1) a with two

,or2)a

Second situation:

Vo odd

Vl @ @ even
up up

Vo (. .) () ® ®) odd

v & © ©
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Case 1: H has either 1) a with two

@)@ 6 6
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Case 1: H has either 1) a with two

NCRCRCRCONC

va @ ©) O] ® ® odd

v ®@ e o
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Second situation:
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Case 1: H has either 1) a with two

Second situation:

Vs @oid=3  odd

Vi . odd =3 even
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Case 1: H has either 1) a with two

Second situation:

Vs @odd=3  odd

Vi . even even
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Case 1: H has either 1) a with two

Second situation:
N ©)

Vs @oid=3  odd

Vi . odd =3 even
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Case 1: H has either 1) a with two

Second situation:

Vs @odd=5  odd

Vi . even even
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Case 2: H contains a with at least two

neighbours in H

L 0Q QC

Vs @
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Looking closer at components of H—u

%1

2 ©)

Vi (o)
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Looking closer at components of H—u

Vl even

Vs @ odd

Vi (o)
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Nice components

Nice component: no conflict, or at least two neighbours with even 2-degree, or
only one neighbour with even 2-degree at least 2
= can make sure no conflict in the component!

Vi even

Vo odd od od odd

Vi (=)
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Vi even
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Nice components

Nice component: no conflict, or at least two neighbours with even 2-degree, or
only one neighbour with even 2-degree at least 2
= can make sure no conflict in the component!

Vi even
Vs 8dd / odd
i
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Bad and tricky components

Bad component: exactly one neighbour with even 2-degree, being 1-mono
Tricky component: that 1-mono neighbour is adjacent to a 1-mono neighbour

Vi even
Vo odd od odd od odd

v @® @®

bad component tricky component
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Global picture

nice tricky
Vi even
@ @© @ ©
Vo
Vi
Vo @
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Global picture

nice tricky

Vi even
E )....@@.@@

Va ®

u

N

<

Some terminology:

m N,: number of nice components
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Global picture

nice bad tricky
Vi even
‘EE::;;_;;::E"“llll‘\lll" ‘||||‘\||l) 83 ¥
V2 @ @ odd
2 J © © © ©
Va ®

Some terminology:
m N,: number of nice components

m Np: number of bad components
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Global picture

nice bad tricky

© e\ /@ @
“" ® ® odd
! © © © ©

Vo @

N

<

Some terminology:
m N,: number of nice components
m Np: number of bad components

m N;: number of tricky components
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Global picture

nice tricky

1 ( ). .. .@@ .@@

Vo @

<

N

<

Some terminology:
m N,: number of nice components
m Np: number of bad components
m N;: number of tricky components
[

Nap: number of neighbours with 2-degree 0 in nice components (N,, = Np,)
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First case: N;>0

nice tricky
Vi even
@ ©) @ ©)
Vo
Vi
Vy O
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First case: N;>0

nice tncky
Vo
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First case: N;>0

nice tricky
Vi even
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Vi
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Second case: N,,=N,=0

bad

Vi even
V2 odd
Vi © ©

Vo ©)

45/62



Second case: N,,=N,=0

bad

Vi even
V2 odd
Vi ©

Vo ®

45/62



Second case: N,,=N,=0
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Second case: N,,=N,=0

Vi
V2

Vi
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bad
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Third case: N,,=1

nice bad
Vl even
Vo odd
v 7 \e ®
Vo ©)
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Third case: N,,=1

i
Va

Vi

Va

e
even =2

even

odd
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Third case: N,,=1

nice
Vi even
] odd
Vi
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Third case: N,,=1
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Vl even
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Third case: N,,=1
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Third case: N,,=1
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Third case: N,,=1

nice bad
\/1 even
Va odd
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Va odd
u

48/62



Third case: N,,=1
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Va odd
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Third case: N,,=1

nice bad
Vi even

Va odd

Vs 0|
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Third case: N,,=1

nice bad
Vi even
Va odd
Vi
va O)
u
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Fourth (and last) case: N,,=?2

A={a1,...,a,}: neighbours with 2-degree 0 not “main neighbour” in a bad comp.

nice bad
Vi even
llllalll' ® o
% / (s)

Vs @

N
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Fourth (and last) case: N,,=?2

A={a1,...,a,}: neighbours with 2-degree 0 not “main neighbour” in a bad comp.

Vi

N

=

V2

nice bad

KDY -
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Fourth (and last) case: N,,=?2

A={a1,...,a,}: neighbours with 2-degree 0 not “main neighbour” in a bad comp.

nice
even

odd

V2

For every i€{1,...,r}, set n;:=d3(3))
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Fourth (and last) case: N,,=?2

A={a1,...,a,}: neighbours with 2-degree 0 not “main neighbour” in a bad comp.

nice
even

odd

V2

For every i€{1,...,r}, set n;:=d3(3))

Goal: Relabel some ua;'s with 3 so that v is not in conflict with the a;’s
= possible because N,, =2
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Polynomial representation

m For every j€{l1,...,r}, let X; be a variable taking value in {0,1}
m X; =0 means label 1 on wua;, while X; =1 means label 3 on ua;
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r
P(Xl,...,Xr)Z H ZXi"'Nb_ni
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m For every j€{l1,...,r}, let X; be a variable taking value in {0,1}
m X; =0 means label 1 on wua;, while X; =1 means label 3 on ua;
m Model the constraints by the following polynomial:

r
P(Xl,...,Xr)Z H ZXi"'Nb_ni

m For x1,...,x, €{0,1}, have P(xy,...,x,) # 0 iff none of the mentioned conflicts
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Polynomial representation

m For every j€{l1,...,r}, let X; be a variable taking value in {0,1}
m X; =0 means label 1 on wua;, while X; =1 means label 3 on ua;
m Model the constraints by the following polynomial:

r

.
P(X4,..., X ]‘[ ZX+Nb ni
=\
m For x1,...,x, €{0,1}, have P(xy,...,x,) # 0 iff none of the mentioned conflicts

Combinatorial Nullstellensatz (Alon, 1999)

Let F be an arbitrary field, and let £ = f(xy,...,x,) be a polynomial in
F[x1,...,xn]- Suppose the total degree of f is Y7, ti, where each t; is a

non-negative integer, and suppose the coefficient of []7_; x’.t" is non-zero.
If 51,...,S, are subsets of F with |S;| > t;, then there are s; € S1,5 €
So,...,5n €Sy so that f(sy,...,s,) #0.
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Polynomial representation

m For every j€{l1,...,r}, let X; be a variable taking value in {0,1}
m X; =0 means label 1 on wua;, while X; =1 means label 3 on ua;
m Model the constraints by the following polynomial:

r

.
P(X4,..., X ]‘[ ZX+Nb ni
=\
m For x1,...,x, €{0,1}, have P(xy,...,x,) # 0 iff none of the mentioned conflicts

Combinatorial Nullstellensatz (Alon, 1999)

Let F be an arbitrary field, and let £ = f(xy,...,x,) be a polynomial in
F[x1,...,xn]- Suppose the total degree of f is Y7, ti, where each t; is a

non-negative integer, and suppose the coefficient of []7_; x’.t" is non-zero.
If 51,...,S, are subsets of F with |S;| > t;, then there are s; € S1,5 €
So,...,5n €Sy so that f(sy,...,s,) #0.

m Here, just consider the monomial []7_; X; = the desired x;'s exist!
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Fourth (and last) case: N,,=?2

nice
even

odd

V2
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Case 3: None of Cases 1 and 2 applies

1. H contains either:

m a 1-mono vq € V4 with two 1-mono degre-1 neighbours uy,us € V5, or
m a 3-mono veV;

2. H contains a 1-mono v € V5 with at least two neighbours in H

21

v (@) ®  ® @

Vi ®
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1. H contains either:

m a 1-mono vq € V4 with two 1-mono degre-1 neighbours uy,us € V5, or
m a 3-mono veV;

2. H contains a 1-mono v e V5 with at least two neighbours in H

Vi odd

Vs (@) ® 0 o -

Vi O] odd
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Case 3: None of Cases 1 and 2 applies

1. H contains either:

m a 1-mono vq € V4 with two 1-mono degre-1 neighbours uy,us € V5, or
m a 3-mono veV;

2. H contains a 1-mono v e V5 with at least two neighbours in H

Vi odd
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i odd
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Case 3: None of Cases 1 and 2 applies

1. H contains either:

m a 1-mono vq € V4 with two 1-mono degre-1 neighbours uy,us € V5, or
m a 3-mono veV;

2. H contains a 1-mono v € V5 with at least two neighbours in H

Vi odd

V2 @ . even

i even =2
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Case 3: None of Cases 1 and 2 applies
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Case 3: None of Cases 1 and 2 applies

1. H contains either:

m a 1-mono vq € V4 with two 1-mono degre-1 neighbours uy,us € V5, or
m a 3-mono veV;

2. H contains a 1-mono v € V5 with at least two neighbours in H

Vi odd

V2 @ . . even

i
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End of the proof, phew...
©0000

Thank you for your attention!
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