A proof of the Multiplicative 1-2-3 Conjecture

Julien Bensmaill, Hervé Hocquard2, Dimitri Lajou2, Eric Sopena2

1: 13S/INRIA — Université Céte d’Azur, France
2: LaBRI — Université de Bordeaux, France

Séminaire G&O, LaBRI
September 17th, 2021

1/62

Introduction

2/62

The 1-2-3 Conjecture, in few words

“Given a graph, can we assign 1,2,3 to its edges, so that
no two adjacent vertices are incident to the same sum of labels?”

3/62

The 1-2-3 Conjecture, in few words

“Given a graph, can we assign 1,2,3 to its edges, so that
no two adjacent vertices are incident to the same sum of labels?”

Edge weights and vertex colours

Michat Karoriski and Tomasz Luczak

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznari,
Poland
E-mail: karonski@amu.edu.pl and tomasz@amu.edu.p!

and
Andrew Thomason

DPMMS, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 OWB,
England
E-mail; a.g.thomason@dpmms,.cam.ac.uk

Received 24th September 2002

Can the edges of any non-trivial graph be assigned weights from {1,2,3} so that
adjacent vertices have different sums of incident cdge weights?

‘We give a positive answer when the graph is 3-colourable, or when a finite number of
real weights is allowed,

3/62

Sample example

4/62

Sample example

4/62

Sample example

4/62

Sample example

4/62

Sample example

4/62

Sample example

B
&('J
5

4/62

Sample example, 2nd try

5/62

Sample example, 2nd try

5/62

Sample example, 2nd try

5/62

Sample example, 2nd try

5/62

Sample example, 2nd try

=
o
[~]

5/62

Sample example, 2nd try

.f

5/62

Sample example, 2nd try (again)

6/62

Sample example, 2nd try (again)

6/62

Sample example, 2nd try (again)

6/62

Sample example, 2nd try (again)

6/62

Sample example, 2nd try (again)

=]
(-]

6/62

Sample example, 2nd try (again)

.f

6/62

Early remarks

m K> is the only connected graph that does not admit such proper labellings

7/62

Early remarks

m K> is the only connected graph that does not admit such proper labellings

m For all other graphs, assign 1,..., k as desired, with k as small as possible?

7/62

Early remarks

m K> is the only connected graph that does not admit such proper labellings
m For all other graphs, assign 1,..., k as desired, with k as small as possible?

1-2-3 Conjecture (Karonski, tuczak, Thomason, 2004)

This is always possible with k < 3.

7/62

Most of what we know on the 1-2-3 Conjecture

m Verification of the conjecture:

m mainly for complete graphs and 3-colourable graphs
m other partial classes...

8/62

Most of what we know on the 1-2-3 Conjecture

m Verification of the conjecture:

m mainly for complete graphs and 3-colourable graphs
m other partial classes...

m Complexity aspects:
m Deciding if 1,2 suffice is NP-hard, but...

m ... polytime solvable for bipartite graphs
m bipartite graphs needing 1,2,3 are the so-called odd multi-cacti

8/62

Most of what we know on the 1-2-3 Conjecture

m Verification of the conjecture:

m mainly for complete graphs and 3-colourable graphs
m other partial classes...

m Complexity aspects:

m Deciding if 1,2 suffice is NP-hard, but...

m ... polytime solvable for bipartite graphs

m bipartite graphs needing 1,2,3 are the so-called odd multi-cacti
m Approaching the conjecture:

m Best result to date: 1,2,3,4,5 suffice for all graphs
m Better result: 1,2,3,4 suffice when regular or 4-chromatic

8/62

Most of what we know on the 1-2-3 Conjecture

m Verification of the conjecture:

m mainly for complete graphs and 3-colourable graphs
m other partial classes...

m Complexity aspects:

m Deciding if 1,2 suffice is NP-hard, but...
m ... polytime solvable for bipartite graphs
m bipartite graphs needing 1,2,3 are the so-called odd multi-cacti

m Approaching the conjecture:

m Best result to date: 1,2,3,4,5 suffice for all graphs
m Better result: 1,2,3,4 suffice when regular or 4-chromatic

Also, many side aspects, variants, etc.

8/62

Speaking of variants...

m Multiset variant

9/62

Speaking of variants...

m Multiset variant

1,1,1}

9/62

Speaking of variants...

m Multiset variant

1,1,1}

/\
1 3 2
'\\\\}\\\\\\"””’;/,//'

9/62

Speaking of variants...

m Multiset variant

{i1,2}

WLy /\
\/

9/62

Speaking of variants...

m Multiset variant

\/

m—

1-2-3 Conjecture, multiset version (Addario-Berry et al., 2005)

Labels 1,2,3 suffice for all graphs.

9/62

Speaking of variants...

m Product variant

10/62

Speaking of variants...

m Product variant

N4

10/62

Speaking of variants...

m Product variant

10/62

Speaking of variants...

m Product variant

2

N
g

10/62

Speaking of variants...

m Product variant

2

N
g

1-2-3 Conjecture, product version (Skowronek-Kaziéw, 2012)

Labels 1,2,3 suffice for all graphs.

10/62

Comparing the three variants

Labels are anything in {1,2,3}

If | tell you:

11/62

Comparing the three variants

Labels are anything in {1,2,3}

If | tell you:
Esumisl0® @@

11/62

Comparing the three variants

Labels are anything in {1,2,3}

If | tell you:

Esumisl0® @@
m product is 18 ©...

11/62

Comparing the three variants

Labels are anything in {1,2,3}

If | tell you:

Esumisl0® @@
m product is 18 ©...oh wait... ©

11/62

Comparing the three variants

Labels are anything in {1,2,3}

If | tell you:

Esumis10®® @
m product is 18 ©...oh wait... © ... but meh ®

11/62

Comparing the three variants

Labels are anything in {1,2,3}

If | tell you:
Esumis10®® @
m product is 18 ©...oh wait... © ... but meh ®
m multiset is {1,1,2,3,31 ©© © © ©

11/62

Comparing the three variants

Labels are anything in {1,2,3}

If | tell you:
Esumis10®® @
m product is 18 ©...oh wait... © ... but meh ®
m multiset is {1,1,2,3,31 ©© © © ©
Nice stuff:
m different sums or products = different multisets

11/62

Comparing the three variants

Labels are anything in {1,2,3}

If | tell you:
Esumis 10 ® @
m product is 18 ©...oh wait... © ... but meh ®
m multiset is {1,1,2,3,31 ©© © © ©

Nice stuff:

m different sums or products = different multisets
m different degrees = different multisets

11/62

Comparing the three variants

Labels are anything in {1,2,3}

If | tell you:
Esumis10®® @
m product is 18 ©...oh wait... © ... but meh ®
m multiset is {1,1,2,3,31 ©© © © ©

Nice stuff:
m different sums or products = different multisets
m different degrees = different multisets
m in products, 2 and 3 are coprime, 1 is neutral:
m 2 and 3 act similarly in products and multisets
m 1 is like “skipping” labelling an edge

11/62

Comparing the three variants

Labels are anything in {1,2,3}

If | tell you:
Esumis10®® @
m product is 18 ©...oh wait... © ... but meh ®
m multiset is {1,1,2,3,31 ©© © © ©

Nice stuff:

m different sums or products = different multisets
m different degrees = different multisets
m in products, 2 and 3 are coprime, 1 is neutral:
m 2 and 3 act similarly in products and multisets
m 1 is like “skipping” labelling an edge
= product version ~ multiset version with a neutral label

11/62

Progress towards the multiset and product versions

sum version > product version > multiset version

12/62

Progress towards the multiset and product versions

sum version > product version > multiset version

m everything in the sum or product version applies in the multiset version

12/62

Progress towards the multiset and product versions

sum version > product version > multiset version

m everything in the sum or product version applies in the multiset version

m anything on the multiset version might give ideas for the product version

12/62

Progress towards the multiset and product versions

sum version > product version > multiset version

m everything in the sum or product version applies in the multiset version

m anything on the multiset version might give ideas for the product version

m Addario-Berry et al. (2005): 1,2,3,4 work for multisets

12/62

Progress towards the multiset and product versions

sum version > product version > multiset version

m everything in the sum or product version applies in the multiset version

m anything on the multiset version might give ideas for the product version

m Addario-Berry et al. (2005): 1,2,3,4 work for multisets

m Skowronek-Kaziéw (2012): same for products, 1,2,3 when y <3 (as for sums)

12/62

Progress towards the multiset and product versions

sum version > product version > multiset version

everything in the sum or product version applies in the multiset version

anything on the multiset version might give ideas for the product version

Addario-Berry et al. (2005): 1,2,3,4 work for multisets

Skowronek-Kaziéw (2012): same for products, 1,2,3 when y <3 (as for sums)

12/62

Progress towards the multiset and product versions

sum version > product version > multiset version

everything in the sum or product version applies in the multiset version

anything on the multiset version might give ideas for the product version

Addario-Berry et al. (2005): 1,2,3,4 work for multisets

Skowronek-Kaziéw (2012): same for products, 1,2,3 when y <3 (as for sums)

Vuckovi¢ (2018): multiset version is true! ©

12/62

Progress towards the multiset and product versions

sum version > product version > multiset version

everything in the sum or product version applies in the multiset version

anything on the multiset version might give ideas for the product version

Addario-Berry et al. (2005): 1,2,3,4 work for multisets

Skowronek-Kaziéw (2012): same for products, 1,2,3 when y <3 (as for sums)

Vuckovi¢ (2018): multiset version is true! ©

B., Hocquard, Lajou, Sopena (2021): product version when regular or y =4

12/62

Progress towards the multiset and product versions

sum version > product version > multiset version

everything in the sum or product version applies in the multiset version

anything on the multiset version might give ideas for the product version

Addario-Berry et al. (2005): 1,2,3,4 work for multisets

Skowronek-Kaziéw (2012): same for products, 1,2,3 when y <3 (as for sums)

Vuckovi¢ (2018): multiset version is true! ©

B., Hocquard, Lajou, Sopena (2021): product version when regular or y =4

B., Hocquard, Lajou, Sopena (2021+): product version is true!! @

12/62

Progress towards the multiset and product versions

sum version > product version > multiset version

everything in the sum or product version applies in the multiset version

anything on the multiset version might give ideas for the product version

Addario-Berry et al. (2005): 1,2,3,4 work for multisets

Skowronek-Kaziéw (2012): same for products, 1,2,3 when y <3 (as for sums)

Vuckovi¢ (2018): multiset version is true! ©

B., Hocquard, Lajou, Sopena (2021): product version when regular or y =4

B., Hocquard, Lajou, Sopena (2021+): product version is true!! @

For today: most of the proof!

12/62

Some terminology and conventions

For any 3-labelling ¢:
m /=1 /=2, /=3 (Note: / and / can be interchanged)

13/62

Some terminology and conventions

For any 3-labelling ¢:
m /=1 /=2, /=3 (Note: / and / can be interchanged)

m 2-degree do(v) = number of 2's incident
m 3-degree d3(v) = number of 3's incident

13/62

Some terminology and conventions

For any 3-labelling ¢:
m /=1 /=2, /=3 (Note: / and / can be interchanged)

m 2-degree do(v) = number of 2's incident
m 3-degree d3(v) = number of 3's incident

m ® = l-monochromatic (product is 1)
m @ = 2-monochromatic (product is 2P for p>0)

m @ = 3-monochromatic (product is 39 for g >0)

13/62

Some terminology and conventions

For any 3-labelling ¢:
m /=1 /=2, /=3 (Note: / and / can be interchanged)

m 2-degree do(v) = number of 2's incident
m 3-degree d3(v) = number of 3's incident

m ® = l-monochromatic (product is 1)

m @ = 2-monochromatic (product is 2P for p>0)
m @ = 3-monochromatic (product is 39 for g >0)
m bichromatic = product is 2P39 for p,q>0

13/62

Some terminology and conventions

For any 3-labelling ¢:
m /=1 /=2, /=3 (Note: / and / can be interchanged)

m 2-degree do(v) = number of 2's incident

m 3-degree d3(v) = number of 3's incident

m ® = l-monochromatic (product is 1)

m @ = 2-monochromatic (product is 2P for p>0)
m @ = 3-monochromatic (product is 39 for g >0)
m bichromatic = product is 2P39 for p,q>0

Remark: no conflict between
m /-monochromatic and j-monochromatic for i # j
m monochromatic and bichromatic
Actually, conflict between 2P39 and 2P'39 iff p=p’ and g=¢'

13/62

Some terminology and conventions

For any 3-labelling ¢:
m /=1 /=2, /=3 (Note: / and / can be interchanged)

m 2-degree do(v) = number of 2's incident

m 3-degree d3(v) = number of 3's incident

m ® = l-monochromatic (product is 1)

m @ = 2-monochromatic (product is 2P for p>0)
m @ = 3-monochromatic (product is 39 for g >0)
m bichromatic = product is 2P39 for p,q>0

Remark: no conflict between
m /-monochromatic and j-monochromatic for i # j
m monochromatic and bichromatic

Actually, conflict between 2P39 and 2P'39 iff p=p’ and g=¢'
Q= (product is 22P3 for p>0)

13/62

Sketch of the proof

14/62

Main labelling steps

Start from all edges labelled 1

15/62

Main labelling steps

Start from all edges labelled 1

1. Partition V(G) into V4 U---U V4 so that:

m the V;'s are independent
m every ve V; with i>1 has a neighbour in V; for every j<i

15/62

Main labelling steps

Start from all edges labelled 1

1. Partition V(G) into V4 U---U V4 so that:

m the V;'s are independent
m every ve V; with i>1 has a neighbour in V; for every j<i

2. Relabel the upward edges of Vj3,..., V; to realise certain products

15/62

Main labelling steps

Start from all edges labelled 1

1. Partition V(G) into V4 U---U V4 so that:

m the V;'s are independent
m every ve V; with i>1 has a neighbour in V; for every j<i

2. Relabel the upward edges of Vj3,..., V; to realise certain products
3. Get rid of conflicts in (V1, V)

15/62

The type of labelling we want by the end of Step 2

Vi | D ° |
Vo f ° K

Vs (I -

Vy o

Vs [6

16/62

The type of labelling we want by the end of Step 2

Vi [° °] 1-mono or 3-mono

Vo f 1-mono or 2-mono

V3 L s bichrom: R=1 and R+5 even
Vi 3 bichrom: B =2 and R+B odd
Vs [o bichrom: R=2 and R+5 even

16/62

The type of labelling we want by the end of Step 2

Vi [N °] 1-mono or 3-mono
/
Vo) 2 _._: 1-mono or 2-mono
/
V3 L/ [bichrom: R=1 and R+B even
/
Vi / » bichrom: B =2 and R+B odd
/
Vs [bichrom: R=2 and R+B even

16/62

The type of labelling we want by the end of Step 2

Vi [2]] 1-mono or 3-mono
/ |
Vo) 4 y.3 KN | 1-mono or 2-mono
/
V3 L/ L / | bichrom: R=1 and R+B even
[N/
Vs / p 4 | bichrom: B =2 and R+B5 odd

Vs [bichrom: R=2 and R+5 even

16/62

The type of labelling we want by the end of Step 2

Vi |/}» 1-mono or 3-mono
Vo 3 o/ 1-mono or 2-mono
V3 bichrom: R=1 and R+B even

YAV
L

Vs [bichrom: R =2 and R+B even

bichrom: B =2 and R+B odd

16/62

The type of labelling we want by the end of Step 2

Vi |/,'» 1-mono or 3-mono
Vo . o/ 1-mono or 2-mono
V3 bichrom: R=1 and R+B even

YAV
L

Vs [bichrom: R=2 and R+5 even

bichrom: B =2 and R+B odd

Note:
m no conflict between odd layers; same for even layers

m same between odd layers and even layers (except for 1-mono across (Vi, V2))
m no (B=1and R+B odd)

16/62

Getting rid of remaining conflicts in Step 3

Vi @ . . @ @ 1-mono or 3-mono

Vo . @ . @ @ 1-mono or 2-mono
© < ®

17/62

Getting rid of remaining conflicts in Step 3

Vi @ . @ @ 1-mono or 3-mono

Vo . @ . @ 1-mono or 2-mono
© © ®

17/62

Getting rid of remaining conflicts in Step 3

Vi @ . @ 1-mono or 3-mono

Vo . @ . 1-mono or 2-mono

17/62

Getting rid of remaining conflicts in Step 3

Vi @ . @ . 1-mono or 3-mono

Vo . @ . 1-mono or 2-mono
© © 08

17/62

Getting rid of remaining conflicts in Step 3

Vi @ . @ . 1-mono or 3-mono

Vo . @ . 1-mono or 2-mono
© © 08

Do not forget about Vj3,..., V;!!
= Keep vertices 1-mono, 2-mono, 3-mono,

17/62

Main labelling steps — REVISITED

Start from all edges labelled 1

18/62

Main labelling steps — REVISITED

Start from all edges labelled 1
1. Partition V(G) into V4 U---U V4 so that:

m the V;'s are independent
m every v e V; with i>1 has a neighbour in V; for every j<i

18/62

Main labelling steps — REVISITED

Start from all edges labelled 1
1. Partition V(G) into V4 U---U V4 so that:

m the V;'s are independent
m every v e V; with i>1 has a neighbour in V; for every j<i

2. Relabel the upward edges of Vj,..., V; so that
m certain products are realised

18/62

Main labelling steps — REVISITED

Start from all edges labelled 1
1. Partition V(G) into V4 U---U V4 so that:

m the V;'s are independent
m every v e V; with i>1 has a neighbour in V; for every j<i

2. Relabel the upward edges of Vj,..., V; so that

m certain products are realised
m no isolated 1-mono edge in (V7, V5)

18/62

Main labelling steps — REVISITED

Start from all edges labelled 1
1. Partition V(G) into V4 U---U V4 so that:

m the V;'s are independent
m every v e V; with i>1 has a neighbour in V; for every j<i

2. Relabel the upward edges of Vj,..., V; so that

m certain products are realised
m no isolated 1-mono edge in (V7, V5)

3. Get rid of conflicts in (V4, V2), playing with 1-mono, 2-mono, 3-mono,

18/62

— Step 1 —
Getting a “good” partition Vju---u V; of V(G)

19/62

Getting the upward edges property

m Pick V7 independent as big as possible

20/62

Getting the upward edges property

m Pick V1 independent as big as possible
m In V(G)\ V4, pick V5 independent as big as possible

20/62

Getting the upward edges property

m Pick V1 independent as big as possible
m In V(G)\ V4, pick V5 independent as big as possible
m In V(G)\ (V41U VW,), pick V3 independent as big as possible

20/62

Getting the upward edges property

Pick V1 independent as big as possible

In V(G)\ Vi, pick V» independent as big as possible

In V(G)\ (ViU Va), pick V3 independent as big as possible
Etc.

20/62

Getting the upward edges property

m Pick V1 independent as big as possible
m In V(G)\ V4, pick V5 independent as big as possible
m In V(G)\ (V41U VW,), pick V3 independent as big as possible
m Etc.
\/1 L4
Va A
Vs I Y Y A
Vs e

Vs e 1

20/62

Getting the upward edges property

m Pick V1 independent as big as possible
m In V(G)\ V4, pick V5 independent as big as possible
m In V(G)\ (V41U VW,), pick V3 independent as big as possible
m Etc.
Vi
Va
V3
Vs e

Vs e 1

20/62

An additional swapping property

We can choose Vi U---UV; so that if e=(u,v) e (Vq, V) is isolated, then
u and v can be freely exchanged between V; and V5 without spoiling any
of the desired properties (independence, upward edges, etc.).

21/62

An additional swapping property

We can choose Vi U---UV; so that if e=(u,v) e (Vq, V) is isolated, then
u and v can be freely exchanged between V; and V5 without spoiling any
of the desired properties (independence, upward edges, etc.).

Just choose V7 and V5 so that Vj u V5 as large as possible

%1 [o

Vo °

21/62

An additional swapping property

We can choose Vi U---UV; so that if e=(u,v) e (Vq, V) is isolated, then
u and v can be freely exchanged between V; and V5 without spoiling any
of the desired properties (independence, upward edges, etc.).

Just choose V7 and V5 so that Vj u V5 as large as possible

Vi [o

Vo 5

22/62

An additional swapping property

We can choose Vi U---UV; so that if e=(u,v) e (Vq, V) is isolated, then
u and v can be freely exchanged between V; and V5 without spoiling any
of the desired properties (independence, upward edges, etc.).

Just choose V7 and V5 so that Vj u V5 as large as possible

Vi [o

Vo 5

22/62

An additional swapping property

We can choose Vi U---UV; so that if e=(u,v) e (Vq, V) is isolated, then
u and v can be freely exchanged between V; and V5 without spoiling any
of the desired properties (independence, upward edges, etc.).

Just choose V7 and V5 so that Vj u V5 as large as possible

Vi [o

Vo 6]

22/62

An additional swapping property

We can choose Vi U---UV; so that if e=(u,v) e (Vq, V) is isolated, then
u and v can be freely exchanged between V; and V5 without spoiling any
of the desired properties (independence, upward edges, etc.).

Just choose V7 and V5 so that Vj u V5 as large as possible

Vi [" o

\

22/62

— Step 2 —
Relabelling the upward edges of V3,..., V;

23/62

Recap of what is desired

Vi [N ° 1-mono or 3-mono
Vo [. _O_: 1-mono or 2-mono
V3 [z e ° bichrom: R=1 and R+5 even
A [o bichrom: B =2 and R+B odd
Vs [o” ° o . bichrom: R=2 and R+B even

24/62

Recap of what is desired

Vi [N ° 1-mono or 3-mono
Vo [. _O_: 1-mono or 2-mono

A V3 [z e ° bichrom: R=1 and R+5 even
A [o bichrom: B =2 and R+B odd
Vs [o” ° o . bichrom: R=2 and R+B even

24/62

Recap of what is desired

Vi

Va

V3

Vy

Vs

eccee

eccee

1-mono or 3-mono

1-mono or 2-mono

bichrom: R=1 and R+B even

bichrom: B=2 and R+B odd

bichrom: R=2 and R+B even

Watch out: even (odd, resp.) layers require a bounded number of 3's (2's, resp.)
= even (odd, resp.) layers produce their 3's (2's, resp.) upwards
= assume even (odd, resp.) layers do not receive 3's (2's, resp.) from below

24/62

ex in some V5,

Vi ° 1-mono or 3-mono

Vo [1-mono or 2-mono

V3 [} bichrom: R=1 and R+B even
A . bichrom: B =2 and R+B5 odd
. . .

. . .

. . .

. . .

. . .

Von-1 [bichrom: R=n-1 and R+B even

Van \ bichrom: B =n and R+B odd

25/62

Case of a vertex in some

Vi 1-mono or 3-mono
Vo 1-mono or 2-mono
V3 bichrom: R=1 and R+B even
A bichrom: B =2 and R+B5 odd
. .
. .
. .
. .
. .
Vap-1 bichrom: R=n-1 and R+B even
Van bichrom: B =n and R+B odd
. . .
. . .
. . .
. . .
. . .

25/62

Case of a vertex in some V5, — fixing parity

Vi 1-mono or 3-mono
Vo 1-mono or 2-mono
V3 bichrom: R=1 and R+B even
A bichrom: B =2 and R+B5 odd
. : .
. .
. .
. .
. .
Von-1 bichrom: R=n-1 and R+B even
Van bichrom: B =n and R+B odd
. . .
. . .
. . .
. . .
. . .

26/62

Works because...

m Always have exactly the desired number of layers with distinct parity above
= get the required fixed number of labels (3 for even layers, 2 for odd layers)

27/62

Works because...

m Always have exactly the desired number of layers with distinct parity above
= get the required fixed number of labels (3 for even layers, 2 for odd layers)

m Deep enough layers always have at least two layers with the same parity above
= make sure vertices are bichrom and/or adjust parity of R+B

27/62

Works because...

m Always have exactly the desired number of layers with distinct parity above
= get the required fixed number of labels (3 for even layers, 2 for odd layers)

m Deep enough layers always have at least two layers with the same parity above
= make sure vertices are bichrom and/or adjust parity of R+B

m ... only V3 and V4 might be problematic...
... but actually things are (luckily!) fine!

. 1-mono or 3-mono L]
[] 1-mono or 2-mono L4
. bichrom: R=1 and R+B even L3

bichrom: B =2 and R+B odd L]

27/62

Works because...

m Always have exactly the desired number of layers with distinct parity above
= get the required fixed number of labels (3 for even layers, 2 for odd layers)

m Deep enough layers always have at least two layers with the same parity above
= make sure vertices are bichrom and/or adjust parity of R+B

m ... only V3 and V4 might be problematic...
... but actually things are (luckily!) fine!

1-mono or 3-mono L]
1-mono or 2-mono L4
bichrom: R=1 and R+B even L3
bichrom: B =2 and R+B odd L]

27/62

Works because...

m Always have exactly the desired number of layers with distinct parity above
= get the required fixed number of labels (3 for even layers, 2 for odd layers)

m Deep enough layers always have at least two layers with the same parity above
= make sure vertices are bichrom and/or adjust parity of R+B

m ... only V3 and V4 might be problematic...
... but actually things are (luckily!) fine!

1-mono or 3-mono

1-mono or 2-mono
bichrom: R=1 and R+B even [3
bichrom: B =2 and R+B odd

27/62

Watch out for adjacent

Vi . o [[1-mono or 3-mono

Vo [}] . . 1-mono or 2-mono

V3 ° bichrom: R=1 and R+B even
Vi [bichrom: B=2 and R+B odd
. . .

. . .

. . .

. . .

. . .

Van-1 L] bichrom: R=n-1 and R+B even

Van \ bichrom: B=n and R+B odd

28/62

Swapping adjacent

Vi . o [} [1-mono or 3-mono

Vo [}] . . 1-mono or 2-mono

V3 ° bichrom: R=1 and R+B even
Vi [bichrom: B=2 and R+B odd
. . .

. . .

. . .

. . .

. . .

Van-1 L] bichrom: R=n-1 and R+B even

Van \ bichrom: B=n and R+B odd

20/62

Making adjacent

Vi . o [} [1-mono or 3-mono

Vo [}] . . 1-mono or 2-mono

V3 ° bichrom: R=1 and R+B even
Vi [bichrom: B=2 and R+B odd
. . .

. . .

. . .

. . .

. . .

Van-1 L] bichrom: R=n-1 and R+B even

Van \ bichrom: B=n and R+B odd

30/62

Making adjacent

Vi . o [} [1-mono or 3-mono

1-mono or 2-mono

V3 bichrom: R=1 and R+B even
Vi bichrom: B=2 and R+B odd
. .
. .
. .
. .
. .
Van-1 bichrom: R=n-1 and R+B even
Van bichrom: B=n and R+B odd
. . .
. . .
. . .
. . .
. . .

30/62

Making adjacent

Vi . 1-mono or 3-mono
Vo ° 1-mono or 2-mono
V3 bichrom: R=1 and R+B even
Vi bichrom: B=2 and R+B odd
. .
. .
. .
. .
. .
Van-1 bichrom: R=n-1 and R+B even
Van n bichrom: B =n and R+B odd
. . .
. . .
. . .
. . .
. . .

30/62

Making adjacent happy — fixing parity

Vi . 1-mono or 3-mono
Vo [1-mono or 2-mono
V3 bichrom: R=1 and R+B even
Vi bichrom: B=2 and R+B odd
. .
. .
. .
. .
. .
Von-1 bichrom: R=n-1 and R+B even
Van n" bichrom: B=n and R+B odd
. . .
. . .
. . .
. . .
. . .

31/62

Making adjacent happy — fixing parity

Vi . 1-mono or 3-mono

Vo [1-mono or 2-mono

V3 bichrom: R=1 and R+B even
Vi bichrom: B=2 and R+B odd

. .

. .

. .

. .

. .
Van-1 bichrom: R=n-1 and R+B even
Van n" bichrom: B=n and R+B odd

even =2

. . .

. . .

. . .

. . .

. . .

31/62

Making adjacent happy — fixing parity

Vi 1-mono or 3-mono

Vo 1-mono or 2-mono

V3 bichrom: R=1 and R+B even
Vi bichrom: B=2 and R+B odd

. .

. .

. .

. .

. .
Van-1 bichrom: R=n-1 and R+B even
Van n bichrom: B =n and R+B odd

even =2

. . .

. . .

. . .

. . .

. . .

31/62

Making adjacent happy — fixing parity

Vi . 1-mono or 3-mono

Vo [1-mono or 2-mono

V3 bichrom: R=1 and R+B even
Vi bichrom: B=2 and R+B odd

. .

. .

. .

. .

. .
Van-1 bichrom: R=n-1 and R+B even
Van n" bichrom: B=n and R+B odd

odd

. . .

. . .

. . .

. . .

. . .

31/62

Making adjacent happy — fixing parity

Vi . 1-mono or 3-mono

Vo . 1-mono or 2-mono

V3 bichrom: R=1 and R+B even
Vi bichrom: B=2 and R+B odd

. .

. .

. .

. .

. .
Van-1 bichrom: R=n-1 and R+B even
Van n bichrom: B =n and R+B odd

odd

. . .

. . .

. . .

. . .

. . .

31/62

Making adjacent happy — fixing parity

Vi 1-mono or 3-mono
Vo 1-mono or 2-mono
V3 bichrom: R=1 and R+B even
Vi bichrom: B=2 and R+B odd
. .
. .
. .
. .
. .
Van-1 bichrom: R=n-1 and R+B even
Van bichrom: B=n and R+B odd
. . .
. . .
. . .
. . .
. . .

31/62

Making adjacent happy — fixing parity

Vi . 1-mono or 3-mono

Vo . 1-mono or 2-mono

V3 bichrom: R=1 and R+B even

A bichrom: B =2 and R+B odd

. .

. .

. .

. .

. .
Van-1 bichrom: R=n-1 and R+B even
Van n bichrom: B =n and R+B odd

0

. . .

. . .

. . .

. . .

. . .

31/62

Making adjacent happy — fixing parity

Vi 1-mono or 3-mono
Vs 1-mono or 2-mono
V3 bichrom: R=1 and R+B even
A bichrom: B =2 and R+B odd
. .
. .
. .
. .
. .
Von-1 bichrom: R=n-1 and R+B even
Van bichrom: B =n and R+B odd
. . .
. . .
. . .
. . .
. . .

31/62

Making adjacent happy — fixing parity

Vi 1-mono or 3-mono
Vs 1-mono or 2-mono
V3 bichrom: R=1 and R+B even
A bichrom: B =2 and R+B odd
. .
. .
. .
. .
. .
Von-1 bichrom: R=n-1 and R+B even
Van bichrom: B =n and R+B odd
. . .
. . .
. . .
. . .
. . .

31/62

More examples — The (slightly more) intricate case of V3

Want: bichrom: R=1 and R+B even

32/62

More examples — The (slightly more) intricate case of V3

Want: bichrom: R=1 and R+B even

32/62

More examples — The (slightly more) intricate case of V3

Want: bichrom: R=1 and R+B even

i

32/62

More examples — The (slightly more) intricate case of V3

(A

Want: bichrom: R=1 and R+B even

32/62

More examples — The (slightly more) intricate case of V3

Want: bichrom: R=1 and R+B even

32/62

More examples — The (slightly more) intricate case of V3

Want: bichrom: R=1 and R+B even

¥
Y

32/62

— Step 3 —
Getting rid of conflicts in (V4, V,)

33/62

Getting rid of conflicts one by one

. components of G[V1 U V5] having conflicting (1-mono) vertices

2 e & & e o e

V2 ® & & © ©

34/62

Getting rid of conflicts one by one

. components of G[V1 U V5] having conflicting (1-mono) vertices

2 e & & e o e

V2 ® & & © ©

34/62

Getting rid of conflicts one by one

. components of G[V1 U V5] having conflicting (1-mono) vertices

2 e & & e o e

V2 ® & & © ©

34/62

Getting rid of conflicts one by one

. components of G[V1 U V5] having conflicting (1-mono) vertices

Vi e & & e o e

Vo . . @ @ .
X v

Deal with every H e #:
m 1-mono, 2-mono, 3-mono, = no conflicts with V3,...,\;
m Remark: H's can be treated independently

34/62

Getting rid of conflicts one by one

. components of G[V1 U V5] having conflicting (1-mono) vertices

Vi e & & e o e

Vo . . @ @ .
X v

Deal with every H e #:
m 1-mono, 2-mono, 3-mono, = no conflicts with V3,...,\;
m Remark: H's can be treated independently

Several cases:
1. H contains either:

m a 1-mono vq € V4 with two 1-mono degre-1 neighbours uy,us € V5, or
m a 3-mono veV;

34/62

Getting rid of conflicts one by one

. components of G[V1 U V5] having conflicting (1-mono) vertices

Vi e & & e o e

Vo . . @ @ .
X v

Deal with every H e #:
m 1-mono, 2-mono, 3-mono, = no conflicts with V3,...,\;
m Remark: H's can be treated independently

Several cases:
1. H contains either:

m a 1-mono vq € V4 with two 1-mono degre-1 neighbours uy,us € V5, or
m a 3-mono veV;

2. H contains a 1-mono v e V5 with at least two neighbours in H

34/62

Getting rid of conflicts one by one

. components of G[V1 U V5] having conflicting (1-mono) vertices

Vi e & & e o e

Vo . . @ @ .
X v

Deal with every H e #:
m 1-mono, 2-mono, 3-mono, = no conflicts with V3,...,\;
m Remark: H's can be treated independently

Several cases:
1. H contains either:

m a 1-mono vq € V4 with two 1-mono degre-1 neighbours uy,us € V5, or
m a 3-mono veV;

2. H contains a 1-mono v e V5 with at least two neighbours in H
3. H contains none of the previous

34/62

A useful lemma

Lemma

Let s€{2,3}, and let H be a connected bipartite graph whose edges are
labelled 1 or s. Consider any vertex v in any part V; e {Vq, Vo} of H.
We can relabel the edges of H with 1 and s so that:

m ds(u) is odd (even, resp.) for every ue V;\{v}, and

m ds(u) is even (odd, resp.) for every ue V3_;.

Note: Remains true, even if some “contribution” from outside

v
[) even

o odd
X

35/62

A useful lemma

Lemma

Let s€{2,3}, and let H be a connected bipartite graph whose edges are
labelled 1 or s. Consider any vertex v in any part V; e {Vq, Vo} of H.
We can relabel the edges of H with 1 and s so that:

m ds(u) is odd (even, resp.) for every ue V;\{v}, and

m ds(u) is even (odd, resp.) for every ue V3_;.

Note: Remains true, even if some “contribution” from outside

v
T [) even

] odd
X

35/62

A useful lemma

Lemma

Let s€{2,3}, and let H be a connected bipartite graph whose edges are
labelled 1 or s. Consider any vertex v in any part V; e {Vq, Vo} of H.
We can relabel the edges of H with 1 and s so that:

m ds(u) is odd (even, resp.) for every ue V;\{v}, and

m ds(u) is even (odd, resp.) for every ue V3_;.

Note: Remains true, even if some “contribution” from outside

v
[) even

odd

35/62

A useful lemma

Lemma

Let s€{2,3}, and let H be a connected bipartite graph whose edges are
labelled 1 or s. Consider any vertex v in any part V; e {Vq, Vo} of H.
We can relabel the edges of H with 1 and s so that:

m ds(u) is odd (even, resp.) for every ue V;\{v}, and

m ds(u) is even (odd, resp.) for every ue V3_;.

Note: Remains true, even if some “contribution” from outside

v
[) even

odd

35/62

A useful lemma

Lemma

Let s€{2,3}, and let H be a connected bipartite graph whose edges are
labelled 1 or s. Consider any vertex v in any part V; e {Vq, Vo} of H.
We can relabel the edges of H with 1 and s so that:

m ds(u) is odd (even, resp.) for every ue V;\{v}, and

m ds(u) is even (odd, resp.) for every ue V3_;.

Note: Remains true, even if some “contribution” from outside

[) even

odd

35/62

A useful lemma

Lemma

Let s€{2,3}, and let H be a connected bipartite graph whose edges are
labelled 1 or s. Consider any vertex v in any part V; e {Vq, Vo} of H.
We can relabel the edges of H with 1 and s so that:

m ds(u) is odd (even, resp.) for every ue V;\{v}, and

m ds(u) is even (odd, resp.) for every ue V3_;.

Note: Remains true, even if some “contribution” from outside

v X 14 v
() [) even

odd

35/62

A useful lemma

Lemma

Let s€{2,3}, and let H be a connected bipartite graph whose edges are
labelled 1 or s. Consider any vertex v in any part V; e {Vq, Vo} of H.
We can relabel the edges of H with 1 and s so that:

m ds(u) is odd (even, resp.) for every ue V;\{v}, and

m ds(u) is even (odd, resp.) for every ue V3_;.

Note: Remains true, even if some “contribution” from outside

v X 14 v
(] [) even

odd

35/62

A useful lemma

Lemma

Let s€{2,3}, and let H be a connected bipartite graph whose edges are
labelled 1 or s. Consider any vertex v in any part V; e {Vq, Vo} of H.
We can relabel the edges of H with 1 and s so that:

m ds(u) is odd (even, resp.) for every ue V;\{v}, and

m ds(u) is even (odd, resp.) for every ue V3_;.

Note: Remains true, even if some “contribution” from outside

v X 14 v
{] [) even

\0 odd

v X v v

35/62

A useful lemma

Lemma

Let s€{2,3}, and let H be a connected bipartite graph whose edges are
labelled 1 or s. Consider any vertex v in any part V; e {Vq, Vo} of H.
We can relabel the edges of H with 1 and s so that:

m ds(u) is odd (even, resp.) for every ue V;\{v}, and

m ds(u) is even (odd, resp.) for every ue V3_;.

Note: Remains true, even if some “contribution” from outside

[AN

even

l odd

35/62

A useful lemma

Lemma

Let s€{2,3}, and let H be a connected bipartite graph whose edges are
labelled 1 or s. Consider any vertex v in any part V; e {Vq, Vo} of H.
We can relabel the edges of H with 1 and s so that:

m ds(u) is odd (even, resp.) for every ue V;\{v}, and

m ds(u) is even (odd, resp.) for every ue V3_;.

Note: Remains true, even if some “contribution” from outside

v X 14

[AN

even

odd

35/62

A useful lemma

Lemma

Let s€{2,3}, and let H be a connected bipartite graph whose edges are
labelled 1 or s. Consider any vertex v in any part V; e {Vq, Vo} of H.
We can relabel the edges of H with 1 and s so that:

m ds(u) is odd (even, resp.) for every ue V;\{v}, and

m ds(u) is even (odd, resp.) for every ue V3_;.

Note: Remains true, even if some “contribution” from outside

v
[) even

odd

35/62

A useful lemma

Lemma

Let s€{2,3}, and let H be a connected bipartite graph whose edges are
labelled 1 or s. Consider any vertex v in any part V; e {Vq, Vo} of H.
We can relabel the edges of H with 1 and s so that:

m ds(u) is odd (even, resp.) for every ue V;\{v}, and

m ds(u) is even (odd, resp.) for every ue V3_;.

Note: Remains true, even if some “contribution” from outside

v 4 14 v
{] [) even

\0 odd

v v v v

35/62

A useful lemma

Lemma

Let s€{2,3}, and let H be a connected bipartite graph whose edges are
labelled 1 or s. Consider any vertex v in any part V; e {Vq, Vo} of H.
We can relabel the edges of H with 1 and s so that:

m ds(u) is odd (even, resp.) for every ue V;\{v}, and

m ds(u) is even (odd, resp.) for every ue V3_;.

Note: Remains true, even if some “contribution” from outside

v v 14

L]
o~

even

odd

35/62

Case 1: H has either 1) a with two

First situation:

va . & & 0 6

Vi O)

36/62

Case 1: H has either 1) a with two

, or 2)

First situation:

u1 u2

V2 ® 0 ©

i
vi

36/62

Case 1: H has either 1) a with two

, or 2)

First situation:

u1 u2

V2 ® 0 ©

i
vi

.. and then 2nd situation, keeping in mind that the only 3-mono in V5 are u1,up

36/62

Case 1: H has either 1) a with two

,or2)a

Second situation:

“ ® ®
" e o [@ |
v (@ e e e lo le

v @ e @

37/62

Case 1: H has either 1) a with two

,or2)a

Second situation:

v ® ® odd
2 @ © [0 | -
Va (‘ g) (] ©O) ® ©)] odd

v @ e @

37/62

Case 1: H has either 1) a with two

,or2)a

Second situation:

Va odd

Vl @ @ even
up up

Va (. .) (] ® odd

v @ e @

37/62

Case 1: H has either 1) a with two

,or2)a

Second situation:

Vo odd

Vl @ @ even
up up

Vo (. .) () ® ®) odd

v & © ©

37/62

Case 1: H has either 1) a with two

@)@ 6 6

Ve e ® & e e

Vi ® & e

Case 1: H has either 1) a with two

NCRCRCRCONC

va @ ©) O] ® ® odd

v ®@ e o

Case 1: H has either 1) a with two

Second situation:

@) © @ @ @

Case 1: H has either 1) a with two

Second situation:

Vs @oid=3 odd

Vi . odd =3 even

37/62

Case 1: H has either 1) a with two

Second situation:

Vs @odd=3 odd

Vi . even even

37/62

Case 1: H has either 1) a with two

Second situation:
N ©)

Vs @oid=3 odd

Vi . odd =3 even

37/62

Case 1: H has either 1) a with two

Second situation:

Vs @odd=5 odd

Vi . even even

37/62

Case 2: H contains a with at least two

neighbours in H

L 0Q QC

Vs @

38/62

Looking closer at components of H—u

%1

2 ©)

Vi (o)

39/62

Looking closer at components of H—u

Vl even

Vs @ odd

Vi (o)

40/62

Nice components

Nice component: no conflict, or at least two neighbours with even 2-degree, or
only one neighbour with even 2-degree at least 2
= can make sure no conflict in the component!

Vi even

Vo odd od od odd

Vi (=)

41/62

Nice components

Nice component: no conflict, or at least two neighbours with even 2-degree, or
only one neighbour with even 2-degree at least 2
= can make sure no conflict in the component!

Vi even

Va odd gven =2 @ odd

Vi O

41/62

Nice components

Nice component: no conflict, or at least two neighbours with even 2-degree, or
only one neighbour with even 2-degree at least 2
= can make sure no conflict in the component!

Vi even
Vs 8dd / odd
i

41/62

Bad and tricky components

Bad component: exactly one neighbour with even 2-degree, being 1-mono
Tricky component: that 1-mono neighbour is adjacent to a 1-mono neighbour

Vi even
Vo odd od odd od odd

v @® @®

bad component tricky component

42/62

Global picture

nice tricky
Vi even
@ @© @ ©
Vo
Vi
Vo @

43/62

Global picture

nice tricky

Vi even
E)....@@.@@

Va ®

u

N

<

Some terminology:

m N,: number of nice components

43/62

Global picture

nice bad tricky
Vi even
‘EE::;;_;;::E"“llll‘\lll" ‘||||‘\||l) 83 ¥
V2 @ @ odd
2 J © © © ©
Va ®

Some terminology:
m N,: number of nice components

m Np: number of bad components

43/62

Global picture

nice bad tricky

© e\ /@ @
“" ® ® odd
! © © © ©

Vo @

N

<

Some terminology:
m N,: number of nice components
m Np: number of bad components

m N;: number of tricky components

43/62

Global picture

nice tricky

1 (). .. .@@ .@@

Vo @

<

N

<

Some terminology:
m N,: number of nice components
m Np: number of bad components
m N;: number of tricky components
[

Nap: number of neighbours with 2-degree 0 in nice components (N,, = Np,)

43/62

First case: N;>0

nice tricky
Vi even
@ ©) @ ©)
Vo
Vi
Vy O

44/62

First case: N;>0

nice tncky
Vo

44/62

<

N

<

First case: N;>0

nice tricky
Vi even
© @ @ ©)
Va
Vi
Vo
evenu

44/62

First case: N;>0

nice bad tricky
Vi even
@®© e\ /0 @
V2 odd
Vi “' s
V2
odd

44/62

First case: N;>0

nice bad tricky
Vi even
© @ @ ©)
Va
Vi
Vo
odd

44/62

First case: N;>0

nice bad tricky
Vi even
© @
Va
Vi
V2
odd

44/62

Second case: N,,=N,=0

bad

Vi even
V2 odd
Vi © ©

Vo ©)

45/62

Second case: N,,=N,=0

bad

Vi even
V2 odd
Vi ©

Vo ®

45/62

Second case: N,,=N,=0

Vi
V2

Vi

V2

bad

even

odd

45/62

Second case: N,,=N,=0

bad

Vi even
V2 odd
Vi © ©

Vo ©)

45/62

Second case: N,,=N,=0

Vi
V2

Vi

V2

bad

even

odd

45/62

Third case: N,,=1

nice bad
Vl even
Vo odd
v 7 \e ®
Vo ©)

46/62

Third case: N,,=1

i
Va

Vi

Va

e
even =2

even

odd

47/62

Third case: N,,=1

i
Va

Vi

Va

e
even =2

even

odd

47/62

Third case: N,,=1

nice
Vi even
] odd
Vi
V2

47/62

Third case: N,,=1

nice bad
Vl even
Vo odd
v 7 \e ®
Vo ©)

48/62

Third case: N,,=1

nice bad
Vl even

Va odd

48/62

Third case: N,,=1

nice bad
Vi even

48/62

Third case: N,,=1

nice bad
\/1 even
Va odd
Vi
Va odd
u

48/62

Third case: N,,=1

nice bad
Vl even

Va odd

Vo even =2

48/62

Third case: N,,=1

nice bad
Vi even

Va odd

Vs 0|

48/62

Third case: N,,=1

nice bad
Vi even
Va odd
Vi
va O)
u

48/62

Fourth (and last) case: N,,=?2

A={a1,...,a,}: neighbours with 2-degree 0 not “main neighbour” in a bad comp.

nice bad
Vi even
llllalll' ® o
% / (s)

Vs @

N

49/62

Fourth (and last) case: N,,=?2

A={a1,...,a,}: neighbours with 2-degree 0 not “main neighbour” in a bad comp.

Vi

N

=

V2

nice bad

KDY -

49/62

Fourth (and last) case: N,,=?2

A={a1,...,a,}: neighbours with 2-degree 0 not “main neighbour” in a bad comp.

nice bad
Vi even
®
V2 @ odd
Vi “"
Va

49/62

Fourth (and last) case: N,,=?2

A={a1,...,a,}: neighbours with 2-degree 0 not “main neighbour” in a bad comp.

nice
even

odd

V2

For every i€{1,...,r}, set n;:=d3(3))

49/62

Fourth (and last) case: N,,=?2

A={a1,...,a,}: neighbours with 2-degree 0 not “main neighbour” in a bad comp.

nice
even

odd

V2

For every i€{1,...,r}, set n;:=d3(3))

Goal: Relabel some ua;'s with 3 so that v is not in conflict with the a;’s

49/62

Fourth (and last) case: N,,=?2

A={a1,...,a,}: neighbours with 2-degree 0 not “main neighbour” in a bad comp.

nice
even

odd

V2

For every i€{1,...,r}, set n;:=d3(3))

Goal: Relabel some ua;'s with 3 so that v is not in conflict with the a;’s
= possible because N,, =2

49/62

Polynomial representation

m For every j€{l1,...,r}, let X; be a variable taking value in {0,1}
m X; =0 means label 1 on wua;, while X; =1 means label 3 on ua;

50/62

Polynomial representation

m For every j€{l1,...,r}, let X; be a variable taking value in {0,1}
m X; =0 means label 1 on wua;, while X; =1 means label 3 on ua;
m Model the constraints by the following polynomial:

r
P(Xl,...,Xr)Z H ZXi"'Nb_ni

50/62

Polynomial representation

m For every j€{l1,...,r}, let X; be a variable taking value in {0,1}
m X; =0 means label 1 on wua;, while X; =1 means label 3 on ua;
m Model the constraints by the following polynomial:

r
P(Xl,...,Xr)Z H ZXi"'Nb_ni

m For x1,...,x, €{0,1}, have P(xy,...,x,) # 0 iff none of the mentioned conflicts

50/62

Polynomial representation

m For every j€{l1,...,r}, let X; be a variable taking value in {0,1}
m X; =0 means label 1 on wua;, while X; =1 means label 3 on ua;
m Model the constraints by the following polynomial:

r

.
P(X4,..., X]‘[ZX+Nb ni
=\
m For x1,...,x, €{0,1}, have P(xy,...,x,) # 0 iff none of the mentioned conflicts

Combinatorial Nullstellensatz (Alon, 1999)

Let F be an arbitrary field, and let £ = f(xy,...,x,) be a polynomial in
F[x1,...,xn]- Suppose the total degree of f is Y7, ti, where each t; is a

non-negative integer, and suppose the coefficient of []7_; x’.t" is non-zero.
If 51,...,S, are subsets of F with |S;| > t;, then there are s; € S1,5 €
So,...,5n €Sy so that f(sy,...,s,) #0.

50/62

Polynomial representation

m For every j€{l1,...,r}, let X; be a variable taking value in {0,1}
m X; =0 means label 1 on wua;, while X; =1 means label 3 on ua;
m Model the constraints by the following polynomial:

r

.
P(X4,..., X]‘[ZX+Nb ni
=\
m For x1,...,x, €{0,1}, have P(xy,...,x,) # 0 iff none of the mentioned conflicts

Combinatorial Nullstellensatz (Alon, 1999)

Let F be an arbitrary field, and let £ = f(xy,...,x,) be a polynomial in
F[x1,...,xn]- Suppose the total degree of f is Y7, ti, where each t; is a

non-negative integer, and suppose the coefficient of []7_; x’.t" is non-zero.
If 51,...,S, are subsets of F with |S;| > t;, then there are s; € S1,5 €
So,...,5n €Sy so that f(sy,...,s,) #0.

m Here, just consider the monomial []7_; X; = the desired x;'s exist!

50/62

Fourth (and last) case: N,,=?2

nice
even

odd

V2

51/62

Fourth (and last) case: N,,=?2

52/62

Fourth (and last) case: N,,=?2

Va

nice

HY

bad

even

odd

53/62

Fourth (and last) case: N,,=?2

Va

nice

HY

bad

even

odd

54/62

Case 3: None of Cases 1 and 2 applies

1. H contains either:

m a 1-mono vq € V4 with two 1-mono degre-1 neighbours uy,us € V5, or
m a 3-mono veV;

2. H contains a 1-mono v € V5 with at least two neighbours in H

21

v (@) ® ® @

Vi ®

55/62

Case 3: None of Cases 1 and 2 applies

1. H contains either:

m a 1-mono vq € V4 with two 1-mono degre-1 neighbours uy,us € V5, or
m a 3-mono veV;

2. H contains a 1-mono v e V5 with at least two neighbours in H

Vi odd

Vs (@) ® 0 o -

Vi O] odd

56/62

Case 3: None of Cases 1 and 2 applies

1. H contains either:

m a 1-mono vq € V4 with two 1-mono degre-1 neighbours uy,us € V5, or
m a 3-mono veV;

2. H contains a 1-mono v e V5 with at least two neighbours in H

Vi odd

Vs (@) ®

i odd

57/62

Case 3: None of Cases 1 and 2 applies

1. H contains either:

m a 1-mono vq € V4 with two 1-mono degre-1 neighbours uy,us € V5, or
m a 3-mono veV;

2. H contains a 1-mono v € V5 with at least two neighbours in H

Vi odd

V2 @ . even

i even =2

58/62

Case 3: None of Cases 1 and 2 applies

1. H contains either:

m a 1-mono vq € V4 with two 1-mono degre-1 neighbours uy,us € V5, or
m a 3-mono veV;

2. H contains a 1-mono v € V5 with at least two neighbours in H

Vi odd

%3 . even

i

59/62

Case 3: None of Cases 1 and 2 applies

1. H contains either:

m a 1-mono vq € V4 with two 1-mono degre-1 neighbours uy,us € V5, or
m a 3-mono veV;

2. H contains a 1-mono v € V5 with at least two neighbours in H

21 odd

Va @ . . . even

Vi ®

60/62

Case 3: None of Cases 1 and 2 applies

1. H contains either:

m a 1-mono vq € V4 with two 1-mono degre-1 neighbours uy,us € V5, or
m a 3-mono veV;

2. H contains a 1-mono v € V5 with at least two neighbours in H

Vi odd

V2 @ . . even

i

61/62

End of the proof, phew...
©0000

Thank you for your attention!

62/62

