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The 1-2-3 Conjecture, in few words

“Given a graph, can we assign 1,2,3 to its edges, so that
no two adjacent vertices are incident to the same sum of labels?”
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Sample example, 2nd try
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Sample example, 2nd try (again)
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Early remarks

K2 is the only connected graph that does not admit such proper labellings

For all other graphs, assign 1, . . . ,k as desired, with k as small as possible?

1-2-3 Conjecture (Karoński, Łuczak, Thomason, 2004)

This is always possible with k ≤ 3.
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Most of what we know on the 1-2-3 Conjecture

Verification of the conjecture:
mainly for complete graphs and 3-colourable graphs
other partial classes...

Complexity aspects:
Deciding if 1,2 suffice is NP-hard, but...
... polytime solvable for bipartite graphs
bipartite graphs needing 1,2,3 are the so-called odd multi-cacti

Approaching the conjecture:
Best result to date: 1,2,3,4,5 suffice for all graphs
Better result: 1,2,3,4 suffice when regular or 4-chromatic

Also, many side aspects, variants, etc.
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Speaking of variants...

Multiset variant

{{1,1,1}}

{{1,2}}

{{1,1}}

{{1,1,2,3}}

{{2,3}}

{{2}}

1

1

1

2

1

3 2

1-2-3 Conjecture, multiset version (Addario-Berry et al., 2005)

Labels 1,2,3 suffice for all graphs.

9/62



Speaking of variants...

Multiset variant

{{1,1,1}}

{{1,2}}

{{1,1}}

{{1,1,2,3}}

{{2,3}}

{{2}}

1

1

1

2

1

3 2

1-2-3 Conjecture, multiset version (Addario-Berry et al., 2005)

Labels 1,2,3 suffice for all graphs.

9/62



Speaking of variants...

Multiset variant

{{1,1,1}}

{{1,2}}

{{1,1}}

{{1,1,2,3}}

{{2,3}}

{{2}}

1

1

1

2

1

3 2

1-2-3 Conjecture, multiset version (Addario-Berry et al., 2005)

Labels 1,2,3 suffice for all graphs.

9/62



Speaking of variants...

Multiset variant

{{1,1,1}}

{{1,2}}

{{1,1}}

{{1,1,2,3}}

{{2,3}}

{{2}}

1

1

1

2

1

3 2

1-2-3 Conjecture, multiset version (Addario-Berry et al., 2005)

Labels 1,2,3 suffice for all graphs.

9/62



Speaking of variants...

Multiset variant

{{1,1,1}}

{{1,2}}

{{1,1}}

{{1,1,2,3}}

{{2,3}}

{{2}}

1

1

1

2

1

3 2

1-2-3 Conjecture, multiset version (Addario-Berry et al., 2005)

Labels 1,2,3 suffice for all graphs.

9/62



Speaking of variants...

Product variant

1

2

2

12
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1

1

2

2

3 2

1-2-3 Conjecture, product version (Skowronek-Kaziów, 2012)

Labels 1,2,3 suffice for all graphs.
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Comparing the three variants

Labels are anything in {1,2,3}

?

?

?

?

?

If I tell you:

sum is 10
product is 18 ...oh wait... ... but meh
multiset is {{1,1,2,3,3}}

Nice stuff:
different sums or products ⇒ different multisets
different degrees ⇒ different multisets
in products, 2 and 3 are coprime, 1 is neutral:

2 and 3 act similarly in products and multisets
1 is like “skipping” labelling an edge

⇒ product version ∼ multiset version with a neutral label
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Progress towards the multiset and product versions

sum version À product version > multiset version

everything in the sum or product version applies in the multiset version
anything on the multiset version might give ideas for the product version

Addario-Berry et al. (2005): 1,2,3,4 work for multisets
Skowronek-Kaziów (2012): same for products, 1,2,3 when χ≤ 3 (as for sums)
...
Vučković (2018): multiset version is true!
B., Hocquard, Lajou, Sopena (2021): product version when regular or χ= 4
B., Hocquard, Lajou, Sopena (2021+): product version is true!!

For today: most of the proof!
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Some terminology and conventions

For any 3-labelling `:

= 1, = 2, = 3 (Note: and can be interchanged)

2-degree d2(v) = number of 2’s incident
3-degree d3(v) = number of 3’s incident

G = 1-monochromatic (product is 1)
R = 2-monochromatic (product is 2p for p > 0)
B = 3-monochromatic (product is 3q for q > 0)
bichromatic = product is 2p3q for p,q > 0

Remark: no conflict between
i-monochromatic and j-monochromatic for i 6= j

monochromatic and bichromatic
Actually, conflict between 2p3q and 2p

′
3q

′
iff p = p′ and q = q′

S = special (product is 22p3 for p > 0)
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Sketch of the proof
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Main labelling steps

Start from all edges labelled 1

1. Partition V (G ) into V1∪·· ·∪Vt so that:
the Vi ’s are independent
every v ∈Vi with i > 1 has a neighbour in Vj for every j < i

2. Relabel the upward edges of V3, . . . ,Vt to realise certain products
3. Get rid of conflicts in (V1,V2)
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The type of labelling we want by the end of Step 2

V1

V2

V3

V4

V5

1-mono or 3-mono

1-mono or 2-mono

bichrom: R = 1 and R+B even

bichrom: B = 2 and R+B odd

bichrom: R = 2 and R+B even

Note:
no conflict between odd layers; same for even layers
same between odd layers and even layers (except for 1-mono across (V1,V2))

no special vertex (B = 1 and R+B odd)
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Getting rid of remaining conflicts in Step 3

V1

V2

1-mono or 3-mono

1-mono or 2-mono

G B B G G

R G R G G
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Main labelling steps – REVISITED

Start from all edges labelled 1

1. Partition V (G ) into V1∪·· ·∪Vt so that:
the Vi ’s are independent
every v ∈Vi with i > 1 has a neighbour in Vj for every j < i

2. Relabel the upward edges of V3, . . . ,Vt so that
certain products are realised
no isolated 1-mono edge in (V1,V2)

3. Get rid of conflicts in (V1,V2), playing with 1-mono, 2-mono, 3-mono, special
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– Step 1 –
Getting a “good” partition V1∪·· ·∪Vt of V (G )
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Getting the upward edges property

Pick V1 independent as big as possible

In V (G )\V1, pick V2 independent as big as possible
In V (G )\ (V1∪V2), pick V3 independent as big as possible
Etc.

V1

V2

V3

V4

V5
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An additional swapping property

Lemma

We can choose V1∪·· ·∪Vt so that if e = (u,v) ∈ (V1,V2) is isolated, then
u and v can be freely exchanged between V1 and V2 without spoiling any
of the desired properties (independence, upward edges, etc.).

Just choose V1 and V2 so that V1∪V2 as large as possible

V1

V2

Vi
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– Step 2 –
Relabelling the upward edges of V3, . . . ,Vt
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Recap of what is desired

V1

V2

V3

V4

V5

1-mono or 3-mono

1-mono or 2-mono

bichrom: R = 1 and R+B even

bichrom: B = 2 and R+B odd

bichrom: R = 2 and R+B even

Watch out: even (odd, resp.) layers require a bounded number of 3’s (2’s, resp.)

⇒ even (odd, resp.) layers produce their 3’s (2’s, resp.) upwards
⇒ assume even (odd, resp.) layers do not receive 3’s (2’s, resp.) from below
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Case of a vertex in some V2n

V1

V2

V3

V4

V2n−1

V2n

1-mono or 3-mono

1-mono or 2-mono

bichrom: R = 1 and R+B even

bichrom: B = 2 and R+B odd

bichrom: R = n−1 and R+B even

bichrom: B = n and R+B odd
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Case of a vertex in some V2n – fixing parity

V1

V2

V3

V4

V2n−1

V2n n

1-mono or 3-mono

1-mono or 2-mono

bichrom: R = 1 and R+B even

bichrom: B = 2 and R+B odd

bichrom: R = n−1 and R+B even

bichrom: B = n and R+B odd
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Works because...

Always have exactly the desired number of layers with distinct parity above
⇒ get the required fixed number of labels (3 for even layers, 2 for odd layers)

Deep enough layers always have at least two layers with the same parity above
⇒ make sure vertices are bichrom and/or adjust parity of R+B
... only V3 and V4 might be problematic...
... but actually things are (luckily!) fine!

1-mono or 3-mono

1-mono or 2-mono

bichrom: R = 1 and R+B even

bichrom: B = 2 and R+B odd
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Watch out for adjacent isolated edges in (V1,V2)!

V1

V2

V3

V4

V2n−1

V2n

1-mono or 3-mono

1-mono or 2-mono

bichrom: R = 1 and R+B even

bichrom: B = 2 and R+B odd

bichrom: R = n−1 and R+B even

bichrom: B = n and R+B odd
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Swapping adjacent isolated edges

V1

V2

V3

V4

V2n−1

V2n

1-mono or 3-mono

1-mono or 2-mono

bichrom: R = 1 and R+B even

bichrom: B = 2 and R+B odd

bichrom: R = n−1 and R+B even

bichrom: B = n and R+B odd
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Making adjacent isolated edges happy

V1

V2

V3

V4

V2n−1

V2n

1-mono or 3-mono

1-mono or 2-mono

bichrom: R = 1 and R+B even

bichrom: B = 2 and R+B odd

bichrom: R = n−1 and R+B even

bichrom: B = n and R+B odd
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Making adjacent isolated edges happy – fixing parity

V1

V2
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Making adjacent isolated edges happy – fixing parity
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V3

V4

V2n−1

V2n n
odd

1-mono or 3-mono
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bichrom: R = 1 and R+B even

bichrom: B = 2 and R+B odd

bichrom: R = n−1 and R+B even

bichrom: B = n and R+B odd

31/62



Making adjacent isolated edges happy – fixing parity

V1

V2

V3

V4

V2n−1

V2n n
odd

1-mono or 3-mono

1-mono or 2-mono

bichrom: R = 1 and R+B even

bichrom: B = 2 and R+B odd

bichrom: R = n−1 and R+B even

bichrom: B = n and R+B odd

31/62



Making adjacent isolated edges happy – fixing parity

V1

V2

V3

V4

V2n−1

V2n n
odd

1-mono or 3-mono

1-mono or 2-mono

bichrom: R = 1 and R+B even

bichrom: B = 2 and R+B odd

bichrom: R = n−1 and R+B even

bichrom: B = n and R+B odd

31/62



Making adjacent isolated edges happy – fixing parity

V1

V2

V3

V4

V2n−1
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More examples – The (slightly more) intricate case of V3

Want: bichrom: R = 1 and R+B even
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– Step 3 –
Getting rid of conflicts in (V1,V2)
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Getting rid of conflicts one by one

H : components of G [V1∪V2] having conflicting (1-mono) vertices

V1

V2

B G G G G B

R R G G R

7 3

Deal with every H ∈H :
1-mono, 2-mono, 3-mono, special ⇒ no conflicts with V3, . . . ,Vt

Remark: H’s can be treated independently

Several cases:
1. H contains either:

a 1-mono v1 ∈V1 with two 1-mono degre-1 neighbours u1,u2 ∈V2, or
a 3-mono v ∈V1

2. H contains a 1-mono u ∈V2 with at least two neighbours in H

3. H contains none of the previous
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A useful lemma

Lemma

Let s ∈ {2,3}, and let H be a connected bipartite graph whose edges are
labelled 1 or s. Consider any vertex v in any part Vi ∈ {V1,V2} of H.
We can relabel the edges of H with 1 and s so that:

ds(u) is odd (even, resp.) for every u ∈Vi \ {v }, and
ds(u) is even (odd, resp.) for every u ∈V3−i .

Note: Remains true, even if some “contribution” from outside

v
even

odd

7 7 3

7 7 3 3
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Case 1: H has either 1) a 1-mono v1 ∈V1 with two 1-mono
degre-1 neighbours u1,u2 ∈V2, or 2) a 3-mono v ∈V1

First situation:

V1

V2

G

v1

G

u1

G

u2

R R G
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Case 1: H has either 1) a 1-mono v1 ∈V1 with two 1-mono
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Second situation:
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Second situation:
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Case 2: H contains a 1-mono u ∈V2 with at least two
neighbours in H

V2

V1

V2

G

u

G G G G

38/62



Looking closer at components of H −u

V1

V2

V1

G

R G G odd

even
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Looking closer at components of H −u

V1

V2

V1

G

R G G odd

even
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Nice components

Nice component: no conflict, or at least two neighbours with even 2-degree, or
only one neighbour with even 2-degree at least 2
⇒ can make sure no conflict in the component!

V1

V2

V1

G

R R R odd

even

odd odd odd
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Nice components

Nice component: no conflict, or at least two neighbours with even 2-degree, or
only one neighbour with even 2-degree at least 2
⇒ can make sure no conflict in the component!
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Bad and tricky components

Bad component: exactly one neighbour with even 2-degree, being 1-mono
Tricky component: that 1-mono neighbour is adjacent to a 1-mono neighbour

V1

V2

V1

G

R R G odd

even

odd odd

R R R

bad component

G

R R G

G R R

odd odd

tricky component
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Global picture

V2
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odd

even
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u

G

RRR

B

R S B

G

G

RR

G

G

R R

G

G

G G

G

G

G G

nice bad tricky

Some terminology:
Nn: number of nice components
Nb: number of bad components
Nt : number of tricky components
Nan: number of neighbours with 2-degree 0 in nice components (Nan ≥Nn)
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First case: Nt > 0
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Second case: Nan =Nn = 0
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Third case: Nan = 1
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Third case: Nan = 1

V2

V1

V2

V1

odd

even

G

u

B

R S B

R
even ≥ 2

nice

47/62



Third case: Nan = 1

V2

V1

V2

V1

odd

even

G

u

G

R R R

R
even ≥ 2

nice

47/62



Third case: Nan = 1

V2

V1

V2

V1

odd

even

B

u

G

R R R

S

nice

47/62



Third case: Nan = 1

V2

V1

V2

V1

odd

even

G

u

B

R S B

G

G

RR

G

G

R R

nice bad

48/62



Third case: Nan = 1

V2

V1

V2

V1

odd

even

R

u

B

R S B

R

R

RR

R

R

R R

nice bad

48/62



Third case: Nan = 1

V2

V1

V2

V1

odd

even

R

u

B

R S B

R

R

RR

nice bad

odd

48/62



Third case: Nan = 1

V2

V1

V2

V1

odd

even

R

u

G

R R R

R

R

RR

nice bad

odd

48/62



Third case: Nan = 1

V2

V1

V2

V1

odd

even

R

u

B

R S B

R

R

RR

R

R

R R

nice bad

even ≥ 2

48/62



Third case: Nan = 1

V2

V1

V2

V1

odd

even

S

u

B

R S B

R

R

RR

R

R

R R

nice bad

48/62



Third case: Nan = 1

V2

V1

V2

V1

odd

even

S

u

B

R R R

R

R

RR

R

R

R R

nice bad

48/62



Fourth (and last) case: Nan ≥ 2

A= {a1, . . . ,ar }: neighbours with 2-degree 0 not “main neighbour” in a bad comp.
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For every i ∈ {1, . . . ,r }, set ni := d3(ai )

Goal: Relabel some uai ’s with 3 so that u is not in conflict with the ai ’s
⇒ possible because Nan ≥ 2
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Polynomial representation

For every i ∈ {1, . . . ,r }, let Xi be a variable taking value in {0,1}
Xi = 0 means label 1 on uai , while Xi = 1 means label 3 on uai

Model the constraints by the following polynomial:

P(X1, . . . ,Xr )=
r∏

i=1

 r∑
j=1
j 6=i

Xi +Nb−ni


For x1, . . . ,xr ∈ {0,1}, have P(x1, . . . ,xr ) 6= 0 iff none of the mentioned conflicts

Combinatorial Nullstellensatz (Alon, 1999)

Let F be an arbitrary field, and let f = f (x1, . . . ,xn) be a polynomial in
F[x1, . . . ,xn]. Suppose the total degree of f is

∑n
i=1 ti , where each ti is a

non-negative integer, and suppose the coefficient of
∏n

i=1 x
ti
i is non-zero.

If S1, . . . ,Sn are subsets of F with |Si | > ti , then there are s1 ∈ S1,s2 ∈
S2, . . . ,sn ∈ Sn so that f (s1, . . . ,sn) 6= 0.

Here, just consider the monomial
∏r

i=1Xi ⇒ the desired xi ’s exist!
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Fourth (and last) case: Nan ≥ 2
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Case 3: None of Cases 1 and 2 applies

1. H contains either:
a 1-mono v1 ∈V1 with two 1-mono degre-1 neighbours u1,u2 ∈V2, or
a 3-mono v ∈V1

2. H contains a 1-mono u ∈V2 with at least two neighbours in H

V1

V2

V1

G

G R R R( )

odd

even
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Case 3: None of Cases 1 and 2 applies

1. H contains either:
a 1-mono v1 ∈V1 with two 1-mono degre-1 neighbours u1,u2 ∈V2, or
a 3-mono v ∈V1
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Case 3: None of Cases 1 and 2 applies
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End of the proof, phew...

Thank you for your attention!
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