A proof of the Multiplicative 1-2-3 Conjecture

<u>Julien Bensmail</u>¹, Hervé Hocquard², Dimitri Lajou², Éric Sopena²

1: I3S/INRIA – Université Côte d'Azur, France 2: LaBRI – Université de Bordeaux, France

> Séminaire G&O, LaBRI September 17th, 2021

Introduction

The 1-2-3 Conjecture, in few words

"Given a graph, can we assign 1,2,3 to its edges, so that no two adjacent vertices are incident to the same sum of labels?"

The 1-2-3 Conjecture, in few words

"Given a graph, can we assign 1,2,3 to its edges, so that no two adjacent vertices are incident to the same sum of labels?"

Edge weights and vertex colours

Michał Karoński and Tomasz Łuczak

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland E-mail: karonski@amu.edu.pl and tomasz@amu.edu.pl

and

Andrew Thomason

DPMMS, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, England E-mail: a.g.thomason@domms.cam.ac.uk

Received 24th September 2002

Can the edges of any non-trivial graph be assigned weights from $\{1, 2, 3\}$ so that adjacent vertices have different sums of incident edge weights?

We give a positive answer when the graph is 3-colourable, or when a finite number of real weights is allowed.

Sample example

Sample example

Sample example

• K_2 is the **only** connected graph that does not admit such *proper labellings*

- K_2 is the **only** connected graph that does not admit such *proper labellings*
- For all other graphs, assign $1, \ldots, k$ as desired, with k as small as possible?

- K_2 is the **only** connected graph that does not admit such *proper labellings*
- For all other graphs, assign $1, \ldots, k$ as desired, with k as small as possible?

1-2-3 Conjecture (Karoński, Łuczak, Thomason, 2004)

This is always possible with $k \leq 3$.

- mainly for complete graphs and 3-colourable graphs
- other partial classes...

- mainly for complete graphs and 3-colourable graphs
- other partial classes...

Complexity aspects:

- Deciding if 1,2 suffice is NP-hard, but...
- ... polytime solvable for bipartite graphs
- bipartite graphs needing 1,2,3 are the so-called *odd multi-cacti*

- mainly for complete graphs and 3-colourable graphs
- other partial classes...

Complexity aspects:

- Deciding if 1,2 suffice is NP-hard, but...
- ... polytime solvable for bipartite graphs
- bipartite graphs needing 1,2,3 are the so-called *odd multi-cacti*

Approaching the conjecture:

- Best result to date: 1,2,3,4,5 suffice for all graphs
- Better result: 1,2,3,4 suffice when regular or 4-chromatic

- mainly for complete graphs and 3-colourable graphs
- other partial classes...

Complexity aspects:

- Deciding if 1,2 suffice is NP-hard, but...
- ... polytime solvable for bipartite graphs
- bipartite graphs needing 1,2,3 are the so-called *odd multi-cacti*

Approaching the conjecture:

- Best result to date: 1,2,3,4,5 suffice for all graphs
- Better result: 1,2,3,4 suffice when regular or 4-chromatic

Also, many side aspects, variants, etc.

Multiset variant

1-2-3 Conjecture, multiset version (Addario-Berry et al., 2005)

Labels 1,2,3 suffice for all graphs.

Product variant

Product variant

Speaking of variants...

Product variant

Speaking of variants...

Product variant

Speaking of variants...

Product variant

1-2-3 Conjecture, product version (Skowronek-Kaziów, 2012)

Labels 1,2,3 suffice for all graphs.

Labels are anything in $\{1, 2, 3\}$

If I tell you:

Labels are anything in {1,2,3}

If I tell you:

Labels are anything in {1,2,3}

If I tell you:

■ product is 18 ⊖...

Labels are anything in {1,2,3}

If I tell you:

- sum is 10 😕 😕
- product is 18 😐...oh wait... 🙂

Labels are anything in {1,2,3}

- sum is 10 😕 😕
- product is 18 ⊖...oh wait... 🙂 ... but meh 😑

Labels are anything in $\{1, 2, 3\}$

If I tell you:

- sum is 10 😕 😕
- product is 18 ⊖...oh wait... 🙂 ... but meh 😑
- multiset is {{1,1,2,3,3}}

Labels are anything in {1,2,3}

If I tell you:

- sum is 10 8 8 8
- product is 18 ⊖...oh wait... 🙂 ... but meh 😑
- multiset is {{1,1,2,3,3}}

Nice stuff:

• different sums or products \Rightarrow different multisets

Labels are anything in {1,2,3}

If I tell you:

- sum is 10 8 8 8
- product is 18 ⊖...oh wait... 🙂 ... but meh 😑
- multiset is {{1,1,2,3,3}}

Nice stuff:

- different sums or products \Rightarrow different multisets
- different degrees ⇒ different multisets

Labels are anything in {1,2,3}

If I tell you:

- sum is 10 8 8 8
- product is 18 ⊖...oh wait... 🙂 ... but meh 😑
- multiset is {{1,1,2,3,3}}

Nice stuff:

- different sums or products \Rightarrow different multisets
- different degrees ⇒ different multisets
- in products, 2 and 3 are coprime, 1 is neutral:
 - 2 and 3 act similarly in products and multisets
 - 1 is like "skipping" labelling an edge

Labels are anything in $\{1, 2, 3\}$

If I tell you:

- sum is 10 8 8 8
- product is 18 ⊖...oh wait... 🙂 ... but meh 😑
- multiset is {{1,1,2,3,3}}

Nice stuff:

- different sums or products \Rightarrow different multisets
- different degrees ⇒ different multisets
- in products, 2 and 3 are coprime, 1 is neutral:
 - 2 and 3 act similarly in products and multisets
 - 1 is like "skipping" labelling an edge
 - \Rightarrow product version \sim multiset version with a neutral label

sum version >> product version > multiset version

everything in the sum or product version applies in the multiset version

- everything in the sum or product version applies in the multiset version
- anything on the multiset version might give ideas for the product version

- everything in the sum or product version applies in the multiset version
- anything on the multiset version might give ideas for the product version
- Addario-Berry et al. (2005): 1,2,3,4 work for multisets

- everything in the sum or product version applies in the multiset version
- anything on the multiset version might give ideas for the product version
- Addario-Berry et al. (2005): 1,2,3,4 work for multisets
- Skowronek-Kaziów (2012): same for products, 1,2,3 when $\chi \leq 3$ (as for sums)

sum version \gg product version > multiset version

- everything in the sum or product version applies in the multiset version
- anything on the multiset version might give ideas for the product version
- Addario-Berry et al. (2005): 1,2,3,4 work for multisets

....

Skowronek-Kaziów (2012): same for products, 1,2,3 when $\chi \leq 3$ (as for sums)

sum version \gg product version > multiset version

- everything in the sum or product version applies in the multiset version
- anything on the multiset version might give ideas for the product version
- Addario-Berry et al. (2005): 1,2,3,4 work for multisets
- Skowronek-Kaziów (2012): same for products, 1,2,3 when $\chi \leq 3$ (as for sums)

Vučković (2018): multiset version is true!

· ...

sum version \gg product version > multiset version

- everything in the sum or product version applies in the multiset version
- anything on the multiset version might give ideas for the product version
- Addario-Berry et al. (2005): 1,2,3,4 work for multisets
- Skowronek-Kaziów (2012): same for products, 1,2,3 when $\chi \leq 3$ (as for sums)
- Vučković (2018): multiset version is true! ^O

...

B., Hocquard, Lajou, Sopena (2021): product version when regular or $\chi = 4$

sum version \gg product version > multiset version

- everything in the sum or product version applies in the multiset version
- anything on the multiset version might give ideas for the product version
- Addario-Berry et al. (2005): 1,2,3,4 work for multisets
- Skowronek-Kaziów (2012): same for products, 1,2,3 when $\chi \leq 3$ (as for sums)
- Vučković (2018): multiset version is true! ^O

...

- B., Hocquard, Lajou, Sopena (2021): product version when regular or $\chi = 4$
- B., Hocquard, Lajou, Sopena (2021+): product version is true!!

sum version \gg product version > multiset version

- everything in the sum or product version applies in the multiset version
- anything on the multiset version might give ideas for the product version
- Addario-Berry et al. (2005): 1,2,3,4 work for multisets
- Skowronek-Kaziów (2012): same for products, 1,2,3 when $\chi \leq 3$ (as for sums)
- Vučković (2018): multiset version is true! ^O

...

- B., Hocquard, Lajou, Sopena (2021): product version when regular or $\chi = 4$
- B., Hocquard, Lajou, Sopena (2021+): product version is true!!

For today: most of the proof!

For any 3-labelling ℓ :

 \blacksquare / = 1, / = 2, / = 3 (**Note:** / and / can be interchanged)

For any 3-labelling ℓ :

 \blacksquare / = 1, / = 2, / = 3 (Note: / and / can be interchanged)

• 2-degree $d_2(v)$ = number of 2's incident

■ 3-degree $d_3(v)$ = number of 3's incident

For any 3-labelling ℓ :

 \blacksquare / = 1, / = 2, / = 3 (Note: / and / can be interchanged)

• 2-degree $d_2(v)$ = number of 2's incident

■ 3-degree $d_3(v)$ = number of 3's incident

- ⓒ = 1-monochromatic (product is 1)
- • = 2-monochromatic (product is 2^p for p > 0)
- • = 3-monochromatic (product is 3^q for q > 0)

For any 3-labelling ℓ :

 \blacksquare / = 1, / = 2, / = 3 (Note: / and / can be interchanged)

• 2-degree $d_2(v)$ = number of 2's incident

■ 3-degree $d_3(v)$ = number of 3's incident

- ⓒ = 1-monochromatic (product is 1)
- • = 2-monochromatic (product is 2^p for p > 0)
- *bichromatic* = product is $2^p 3^q$ for p, q > 0

For any 3-labelling ℓ :

 \blacksquare / = 1, / = 2, / = 3 (Note: / and / can be interchanged)

• 2-degree $d_2(v)$ = number of 2's incident

■ 3-degree $d_3(v)$ = number of 3's incident

- ⓒ = 1-monochromatic (product is 1)
- • = 2-monochromatic (product is 2^p for p > 0)
- *bichromatic* = product is $2^p 3^q$ for p, q > 0

Remark: no conflict between

- *i*-monochromatic and *j*-monochromatic for $i \neq j$
- monochromatic and bichromatic

Actually, conflict between $2^{p}3^{q}$ and $2^{p'}3^{q'}$ iff p = p' and q = q'

For any 3-labelling ℓ :

 \blacksquare / = 1, / = 2, / = 3 (**Note:** / and / can be interchanged)

• 2-degree $d_2(v)$ = number of 2's incident

■ 3-degree $d_3(v)$ = number of 3's incident

- ⓒ = 1-monochromatic (product is 1)
- • = 2-monochromatic (product is 2^p for p > 0)
- *bichromatic* = product is $2^p 3^q$ for p, q > 0

Remark: no conflict between

- *i*-monochromatic and *j*-monochromatic for $i \neq j$
- monochromatic and bichromatic

Actually, conflict between $2^{p}3^{q}$ and $2^{p'}3^{q'}$ iff p = p' and q = q'

• • = special (product is
$$2^{2p}3$$
 for $p > 0$)

Sketch of the proof

Start from all edges labelled $1 \$

Start from all edges labelled $1 \$

- 1. Partition V(G) into $V_1 \cup \cdots \cup V_t$ so that:
 - the V_i's are independent
 - every $v \in V_i$ with i > 1 has a neighbour in V_i for every j < i

Start from all edges labelled 1

- 1. Partition V(G) into $V_1 \cup \cdots \cup V_t$ so that:
 - the V_i's are independent
 - every $v \in V_i$ with i > 1 has a neighbour in V_j for every j < i
- 2. Relabel the upward edges of V_3, \ldots, V_t to realise certain products

Start from all edges labelled 1

- 1. Partition V(G) into $V_1 \cup \cdots \cup V_t$ so that:
 - the V_i's are independent
 - every $v \in V_i$ with i > 1 has a neighbour in V_j for every j < i
- 2. Relabel the upward edges of V_3, \ldots, V_t to realise certain products
- 3. Get rid of conflicts in (V_1, V_2)

The type of labelling we want by the end of Step 2

The type of labelling we want by the end of Step 2

Note:

- no conflict between odd layers; same for even layers
- same between odd layers and even layers (except for 1-mono across (V_1, V_2))
- no special vertex (B = 1 and R + B odd)

Do not forget about $V_3, ..., V_t$!! \Rightarrow Keep vertices 1-mono, 2-mono, 3-mono, special Start from all edges labelled $\boldsymbol{1}$

- 1. Partition V(G) into $V_1 \cup \cdots \cup V_t$ so that:
 - the V_i's are independent
 - every $v \in V_i$ with i > 1 has a neighbour in V_i for every j < i

- 1. Partition V(G) into $V_1 \cup \cdots \cup V_t$ so that:
 - the V_i's are independent
 - every $v \in V_i$ with i > 1 has a neighbour in V_j for every j < i
- 2. Relabel the upward edges of V_3, \ldots, V_t so that
 - certain products are realised

- 1. Partition V(G) into $V_1 \cup \cdots \cup V_t$ so that:
 - the V_i's are independent
 - every $v \in V_i$ with i > 1 has a neighbour in V_j for every j < i
- 2. Relabel the upward edges of V_3, \ldots, V_t so that
 - certain products are realised
 - **no isolated** 1-mono edge in (V_1, V_2)

- 1. Partition V(G) into $V_1 \cup \cdots \cup V_t$ so that:
 - the V_i's are independent
 - every $v \in V_i$ with i > 1 has a neighbour in V_j for every j < i
- 2. Relabel the upward edges of V_3, \ldots, V_t so that
 - certain products are realised
 - **no isolated** 1-mono edge in (V_1, V_2)
- 3. Get rid of conflicts in (V_1, V_2) , playing with 1-mono, 2-mono, 3-mono, special

- Step 1 - Getting a "good" partition $V_1 \cup \cdots \cup V_t$ of V(G)

• Pick V_1 independent as big as possible

- Pick V₁ independent as big as possible
- In $V(G) \setminus V_1$, pick V_2 independent as big as possible

- Pick V_1 independent as big as possible
- In $V(G) \setminus V_1$, pick V_2 independent as big as possible
- In $V(G) \setminus (V_1 \cup V_2)$, pick V_3 independent as big as possible

- Pick V₁ independent as big as possible
- In $V(G) \setminus V_1$, pick V_2 independent as big as possible
- In V(G)\(V₁ ∪ V₂), pick V₃ independent as big as possible
 Etc.

- Pick V₁ independent as big as possible
- In $V(G) \setminus V_1$, pick V_2 independent as big as possible
- In V(G)\(V₁ ∪ V₂), pick V₃ independent as big as possible
 Etc.

- Pick V₁ independent as big as possible
- In $V(G) \setminus V_1$, pick V_2 independent as big as possible
- In V(G)\(V₁ ∪ V₂), pick V₃ independent as big as possible
 Etc.

Lemma

We can choose $V_1 \cup \cdots \cup V_t$ so that if $e = (u, v) \in (V_1, V_2)$ is isolated, then u and v can be freely exchanged between V_1 and V_2 without spoiling any of the desired properties (independence, upward edges, etc.).

Lemma

We can choose $V_1 \cup \cdots \cup V_t$ so that if $e = (u, v) \in (V_1, V_2)$ is isolated, then u and v can be freely exchanged between V_1 and V_2 without spoiling any of the desired properties (independence, upward edges, etc.).

Lemma

We can choose $V_1 \cup \cdots \cup V_t$ so that if $e = (u, v) \in (V_1, V_2)$ is isolated, then u and v can be freely exchanged between V_1 and V_2 without spoiling any of the desired properties (independence, upward edges, etc.).

Lemma

We can choose $V_1 \cup \cdots \cup V_t$ so that if $e = (u, v) \in (V_1, V_2)$ is isolated, then u and v can be freely exchanged between V_1 and V_2 without spoiling any of the desired properties (independence, upward edges, etc.).

Lemma

We can choose $V_1 \cup \cdots \cup V_t$ so that if $e = (u, v) \in (V_1, V_2)$ is isolated, then u and v can be freely exchanged between V_1 and V_2 without spoiling any of the desired properties (independence, upward edges, etc.).

Lemma

We can choose $V_1 \cup \cdots \cup V_t$ so that if $e = (u, v) \in (V_1, V_2)$ is isolated, then u and v can be freely exchanged between V_1 and V_2 without spoiling any of the desired properties (independence, upward edges, etc.).

- Step 2 -

Relabelling the upward edges of V_3, \ldots, V_t

Recap of what is desired

Recap of what is desired

Recap of what is desired

Watch out: even (odd, resp.) layers require a bounded number of 3's (2's, resp.) ⇒ even (odd, resp.) layers produce their 3's (2's, resp.) upwards ⇒ assume even (odd, resp.) layers do not receive 3's (2's, resp.) from below

Case of a vertex in some V_{2n}

Case of a vertex in some V_{2n}

Case of a vertex in some V_{2n} – fixing parity

Works because...

■ Always have exactly the desired number of layers with distinct parity above ⇒ get the required fixed number of labels (3 for even layers, 2 for odd layers)

Works because ...

- Always have exactly the desired number of layers with distinct parity above ⇒ get the required fixed number of labels (3 for even layers, 2 for odd layers)
- Deep enough layers always have at least two layers with the same parity above \Rightarrow make sure vertices are bichrom and/or adjust parity of R+B

Works because...

- Always have exactly the desired number of layers with distinct parity above ⇒ get the required fixed number of labels (3 for even layers, 2 for odd layers)
- Deep enough layers always have at least two layers with the same parity above ⇒ make sure vertices are bichrom and/or adjust parity of R+B
- ... only V₃ and V₄ might be problematic...
 ... but actually things are (luckily!) fine!
 - 1-mono or 3-mono
 1-mono or 2-mono
 bichrom: R = 1 and R+B even
 bichrom: B = 2 and R+B odd

Works because...

- Always have exactly the desired number of layers with distinct parity above ⇒ get the required fixed number of labels (3 for even layers, 2 for odd layers)
- Deep enough layers always have at least two layers with the same parity above ⇒ make sure vertices are bichrom and/or adjust parity of R+B
- ... only V₃ and V₄ might be problematic...
 ... but actually things are (luckily!) fine!
 - 1-mono or 3-mono 1-mono or 2-mono bichrom: R = 1 and R+B even bichrom: B = 2 and R+B odd

Works because...

- Always have exactly the desired number of layers with distinct parity above ⇒ get the required fixed number of labels (3 for even layers, 2 for odd layers)
- Deep enough layers always have at least two layers with the same parity above ⇒ make sure vertices are bichrom and/or adjust parity of R+B
- ... only V₃ and V₄ might be problematic...
 ... but actually things are (luckily!) fine!
 - 1-mono or 3-mono 1-mono or 2-mono bichrom: R = 1 and R+B even bichrom: B = 2 and R+B odd

Watch out for adjacent isolated edges in $(V_1, V_2)!$

Swapping adjacent isolated edges

Making adjacent isolated edges happy

Making adjacent isolated edges happy

Making adjacent isolated edges happy

- Step 3 - Getting rid of conflicts in (V_1, V_2)

 \mathscr{H} : components of $G[V_1 \cup V_2]$ having conflicting (1-mono) vertices

 \mathscr{H} : components of $G[V_1 \cup V_2]$ having conflicting (1-mono) vertices

 \mathscr{H} : components of $G[V_1 \cup V_2]$ having conflicting (1-mono) vertices

 \mathscr{H} : components of $G[V_1 \cup V_2]$ having conflicting (1-mono) vertices

Deal with every $H \in \mathcal{H}$:

- 1-mono, 2-mono, 3-mono, special \Rightarrow no conflicts with $V_3, ..., V_t$
- **Remark:** *H*'s can be treated independently

 \mathscr{H} : components of $G[V_1 \cup V_2]$ having conflicting (1-mono) vertices

Deal with every $H \in \mathcal{H}$:

- 1-mono, 2-mono, 3-mono, special \Rightarrow no conflicts with $V_3, ..., V_t$
- **Remark:** *H*'s can be treated independently

Several cases:

- 1. H contains either:
 - **a** 1-mono $v_1 \in V_1$ with two 1-mono degre-1 neighbours $u_1, u_2 \in V_2$, or
 - **a** 3-mono $v \in V_1$

 \mathscr{H} : components of $G[V_1 \cup V_2]$ having conflicting (1-mono) vertices

Deal with every $H \in \mathcal{H}$:

■ 1-mono, 2-mono, 3-mono, special \Rightarrow no conflicts with $V_3, ..., V_t$

Remark: *H*'s can be treated independently

Several cases:

- 1. *H* contains either:
 - a 1-mono $v_1 \in V_1$ with two 1-mono degre-1 neighbours $u_1, u_2 \in V_2$, or ■ a 3-mono $v \in V_1$
- 2. *H* contains a 1-mono $u \in V_2$ with at least two neighbours in *H*

 \mathscr{H} : components of $G[V_1 \cup V_2]$ having conflicting (1-mono) vertices

Deal with every $H \in \mathcal{H}$:

■ 1-mono, 2-mono, 3-mono, special \Rightarrow no conflicts with $V_3, ..., V_t$

Remark: *H*'s can be treated independently

Several cases:

- 1. *H* contains either:
 - a 1-mono $v_1 \in V_1$ with two 1-mono degre-1 neighbours $u_1, u_2 \in V_2$, or ■ a 3-mono $v \in V_1$
- 2. *H* contains a 1-mono $u \in V_2$ with at least two neighbours in *H*
- 3. H contains none of the previous

Lemma

Let $s \in \{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_i \in \{V_1, V_2\}$ of H. We can relabel the edges of H with 1 and s so that:

- $d_s(u)$ is odd (even, resp.) for every $u \in V_i \setminus \{v\}$, and
- $d_s(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Lemma

Let $s \in \{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_i \in \{V_1, V_2\}$ of H. We can relabel the edges of H with 1 and s so that:

- $d_s(u)$ is odd (even, resp.) for every $u \in V_i \setminus \{v\}$, and
- $d_s(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Lemma

Let $s \in \{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_i \in \{V_1, V_2\}$ of H. We can relabel the edges of H with 1 and s so that:

- $d_s(u)$ is odd (even, resp.) for every $u \in V_i \setminus \{v\}$, and
- $d_s(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Lemma

Let $s \in \{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_i \in \{V_1, V_2\}$ of H. We can relabel the edges of H with 1 and s so that:

- $d_s(u)$ is odd (even, resp.) for every $u \in V_i \setminus \{v\}$, and
- $d_s(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Lemma

Let $s \in \{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_i \in \{V_1, V_2\}$ of H. We can relabel the edges of H with 1 and s so that:

- $d_s(u)$ is odd (even, resp.) for every $u \in V_i \setminus \{v\}$, and
- $d_s(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Lemma

Let $s \in \{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_i \in \{V_1, V_2\}$ of H. We can relabel the edges of H with 1 and s so that:

- $d_s(u)$ is odd (even, resp.) for every $u \in V_i \setminus \{v\}$, and
- $d_s(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Lemma

Let $s \in \{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_i \in \{V_1, V_2\}$ of H. We can relabel the edges of H with 1 and s so that:

- $d_s(u)$ is odd (even, resp.) for every $u \in V_i \setminus \{v\}$, and
- $d_s(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Lemma

Let $s \in \{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_i \in \{V_1, V_2\}$ of H. We can relabel the edges of H with 1 and s so that:

- $d_s(u)$ is odd (even, resp.) for every $u \in V_i \setminus \{v\}$, and
- $d_s(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Lemma

Let $s \in \{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_i \in \{V_1, V_2\}$ of H. We can relabel the edges of H with 1 and s so that:

- $d_s(u)$ is odd (even, resp.) for every $u \in V_i \setminus \{v\}$, and
- $d_s(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Lemma

Let $s \in \{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_i \in \{V_1, V_2\}$ of H. We can relabel the edges of H with 1 and s so that:

- $d_s(u)$ is odd (even, resp.) for every $u \in V_i \setminus \{v\}$, and
- $d_s(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Lemma

Let $s \in \{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_i \in \{V_1, V_2\}$ of H. We can relabel the edges of H with 1 and s so that:

- $d_s(u)$ is odd (even, resp.) for every $u \in V_i \setminus \{v\}$, and
- $d_s(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Lemma

Let $s \in \{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_i \in \{V_1, V_2\}$ of H. We can relabel the edges of H with 1 and s so that:

- $d_s(u)$ is odd (even, resp.) for every $u \in V_i \setminus \{v\}$, and
- $d_s(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Lemma

Let $s \in \{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_i \in \{V_1, V_2\}$ of H. We can relabel the edges of H with 1 and s so that:

- $d_s(u)$ is odd (even, resp.) for every $u \in V_i \setminus \{v\}$, and
- $d_s(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

First situation:

First situation:

First situation:

... and then 2nd situation, keeping in mind that the only 3-mono in V_2 are u_1, u_2

Case 2: H contains a 1-mono $u \in V_2$ with at least two neighbours in H

Looking closer at components of H - u

Looking closer at components of H - u

Nice component: no conflict, or at least two neighbours with even 2-degree, or only one neighbour with even 2-degree at least 2 \Rightarrow can make sure no conflict in the component!

Nice component: no conflict, or at least two neighbours with even 2-degree, or only one neighbour with even 2-degree at least 2 \Rightarrow can make sure no conflict in the component!

Nice component: no conflict, or at least two neighbours with even 2-degree, or only one neighbour with even 2-degree at least 2 \Rightarrow can make sure no conflict in the component!

Bad component: exactly one neighbour with even 2-degree, being 1-mono **Tricky component:** that 1-mono neighbour is adjacent to a 1-mono neighbour

Some terminology:

• N_n : number of nice components

Some terminology:

- N_n : number of nice components
- N_b : number of bad components

Some terminology:

- N_n : number of nice components
- N_b : number of bad components
- *N_t*: number of tricky components

Some terminology:

- *N_n*: number of nice components
- N_b : number of bad components
- *N*_t: number of tricky components
- N_{an} : number of neighbours with 2-degree 0 in nice components $(N_{an} \ge N_n)$

For every $i \in \{1, ..., r\}$, set $n_i := d_3(a_i)$

For every $i \in \{1, ..., r\}$, set $n_i := d_3(a_i)$

Goal: Relabel some ua_i 's with 3 so that u is not in conflict with the a_i 's

For every $i \in \{1, \ldots, r\}$, set $n_i := d_3(a_i)$

Goal: Relabel some ua_i 's with 3 so that u is not in conflict with the a_i 's \Rightarrow possible because $N_{an} \ge 2$

For every *i* ∈ {1,...,*r*}, let X_i be a variable taking value in {0,1}
 X_i = 0 means label 1 on ua_i, while X_i = 1 means label 3 on ua_i

- For every $i \in \{1, ..., r\}$, let X_i be a variable taking value in $\{0, 1\}$
- X_i = 0 means label 1 on ua_i, while X_i = 1 means label 3 on ua_i
 Model the constraints by the following polynomial:

$$P(X_1,...,X_r) = \prod_{i=1}^r \left(\sum_{\substack{j=1\\j\neq i}}^r X_i + N_b - n_i \right)$$

- For every $i \in \{1, ..., r\}$, let X_i be a variable taking value in $\{0, 1\}$
- $X_i = 0$ means label 1 on ua_i , while $X_i = 1$ means label 3 on ua_i
- Model the constraints by the following polynomial:

$$P(X_1,\ldots,X_r) = \prod_{i=1}^r \left(\sum_{\substack{j=1\\j\neq i}}^r X_i + N_b - n_i \right)$$

For $x_1, \ldots, x_r \in \{0, 1\}$, have $P(x_1, \ldots, x_r) \neq 0$ iff none of the mentioned conflicts

- For every $i \in \{1, ..., r\}$, let X_i be a variable taking value in $\{0, 1\}$
- $X_i = 0$ means label 1 on ua_i , while $X_i = 1$ means label 3 on ua_i
- Model the constraints by the following polynomial:

$$P(X_1,\ldots,X_r) = \prod_{i=1}^r \left(\sum_{\substack{j=1\\j\neq i}}^r X_i + N_b - n_i \right)$$

For $x_1, \ldots, x_r \in \{0, 1\}$, have $P(x_1, \ldots, x_r) \neq 0$ iff none of the mentioned conflicts

Combinatorial Nullstellensatz (Alon, 1999)

Let \mathbb{F} be an arbitrary field, and let $f = f(x_1, \ldots, x_n)$ be a polynomial in $\mathbb{F}[x_1, \ldots, x_n]$. Suppose the total degree of f is $\sum_{i=1}^n t_i$, where each t_i is a non-negative integer, and suppose the coefficient of $\prod_{i=1}^n x_i^{t_i}$ is non-zero. If S_1, \ldots, S_n are subsets of \mathbb{F} with $|S_i| > t_i$, then there are $s_1 \in S_1, s_2 \in S_2, \ldots, s_n \in S_n$ so that $f(s_1, \ldots, s_n) \neq 0$.

- For every $i \in \{1, ..., r\}$, let X_i be a variable taking value in $\{0, 1\}$
- $X_i = 0$ means label 1 on ua_i , while $X_i = 1$ means label 3 on ua_i
- Model the constraints by the following polynomial:

$$P(X_1,\ldots,X_r) = \prod_{i=1}^r \left(\sum_{\substack{j=1\\j\neq i}}^r X_i + N_b - n_i \right)$$

For $x_1, \ldots, x_r \in \{0, 1\}$, have $P(x_1, \ldots, x_r) \neq 0$ iff none of the mentioned conflicts

Combinatorial Nullstellensatz (Alon, 1999)

Let \mathbb{F} be an arbitrary field, and let $f = f(x_1, \ldots, x_n)$ be a polynomial in $\mathbb{F}[x_1, \ldots, x_n]$. Suppose the total degree of f is $\sum_{i=1}^n t_i$, where each t_i is a non-negative integer, and suppose the coefficient of $\prod_{i=1}^n x_i^{t_i}$ is non-zero. If S_1, \ldots, S_n are subsets of \mathbb{F} with $|S_i| > t_i$, then there are $s_1 \in S_1, s_2 \in S_2, \ldots, s_n \in S_n$ so that $f(s_1, \ldots, s_n) \neq 0$.

• Here, just consider the monomial $\prod_{i=1}^{r} X_i \Rightarrow$ the desired x_i 's exist!

- **a** 1-mono $v_1 \in V_1$ with two 1-mono degre-1 neighbours $u_1, u_2 \in V_2$, or
- **a** 3-mono $v \in V_1$
- 2. *H* contains a 1-mono $u \in V_2$ with at least two neighbours in *H*

- **a** 1-mono $v_1 \in V_1$ with two 1-mono degre-1 neighbours $u_1, u_2 \in V_2$, or
- **a** 3-mono $v \in V_1$
- 2. *H* contains a 1-mono $u \in V_2$ with at least two neighbours in *H*

- **a** 1-mono $v_1 \in V_1$ with two 1-mono degre-1 neighbours $u_1, u_2 \in V_2$, or
- **a** 3-mono $v \in V_1$
- 2. *H* contains a 1-mono $u \in V_2$ with at least two neighbours in *H*

- **a** 1-mono $v_1 \in V_1$ with two 1-mono degre-1 neighbours $u_1, u_2 \in V_2$, or
- **a** 3-mono $v \in V_1$
- 2. *H* contains a 1-mono $u \in V_2$ with at least two neighbours in *H*

- **a** 1-mono $v_1 \in V_1$ with two 1-mono degre-1 neighbours $u_1, u_2 \in V_2$, or
- **a** 3-mono $v \in V_1$
- 2. *H* contains a 1-mono $u \in V_2$ with at least two neighbours in *H*

- **a** 1-mono $v_1 \in V_1$ with two 1-mono degre-1 neighbours $u_1, u_2 \in V_2$, or
- **a** 3-mono $v \in V_1$
- 2. *H* contains a 1-mono $u \in V_2$ with at least two neighbours in *H*

- **a** 1-mono $v_1 \in V_1$ with two 1-mono degre-1 neighbours $u_1, u_2 \in V_2$, or
- **a** 3-mono $v \in V_1$
- 2. *H* contains a 1-mono $u \in V_2$ with at least two neighbours in *H*

End of the proof, phew...

Thank you for your attention!