A proof of the Multiplicative 1-2-3 Conjecture

Julien Bensmail ${ }^{1}$, Hervé Hocquard ${ }^{2}$, Dimitri Lajou ${ }^{2}$, Éric Sopena ${ }^{2}$

1: I3S/INRIA - Université Côte d'Azur, France
2: LaBRI - Université de Bordeaux, France

Séminaire G\&O, LaBRI

September 17th, 2021

Introduction

The 1-2-3 Conjecture, in few words

"Given a graph, can we assign $1,2,3$ to its edges, so that no two adjacent vertices are incident to the same sum of labels?"

The 1-2-3 Conjecture, in few words

"Given a graph, can we assign $1,2,3$ to its edges, so that no two adjacent vertices are incident to the same sum of labels?"

Edge weights and vertex colours

Michał Karoński and Tomasz Łuczak
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznarf, Poland
E-mail: karonski@amu.edu.pl and tomasz@amu.edu.pl
and
Andrew Thomason
DPMMS, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 OWB, England
E-mail: a.g.thomason@dpmms.cam.ac.uk
Received 24th September 2002
Can the edges of any non-trivial graph be assigned weights from $\{1,2,3\}$ so that adjacent vertices have different sums of incident edge weights?
We give a positive answer when the graph is 3 -colourable, or when a finite number of real weights is allowed.

Sample example

Sample example, 2nd try

Sample example, 2nd try (again)

Early remarks

- K_{2} is the only connected graph that does not admit such proper labellings

Early remarks

- K_{2} is the only connected graph that does not admit such proper labellings
- For all other graphs, assign $1, \ldots, k$ as desired, with k as small as possible?

Early remarks

- K_{2} is the only connected graph that does not admit such proper labellings

■ For all other graphs, assign $1, \ldots, k$ as desired, with k as small as possible?

1-2-3 Conjecture (Karoński, Łuczak, Thomason, 2004)

This is always possible with $k \leq 3$.

Most of what we know on the 1-2-3 Conjecture

- Verification of the conjecture:
- mainly for complete graphs and 3 -colourable graphs
- other partial classes...

Most of what we know on the 1-2-3 Conjecture

- Verification of the conjecture:
- mainly for complete graphs and 3-colourable graphs
- other partial classes...

■ Complexity aspects:

- Deciding if 1,2 suffice is NP-hard, but...
- ... polytime solvable for bipartite graphs
- bipartite graphs needing 1,2,3 are the so-called odd multi-cacti

Most of what we know on the 1-2-3 Conjecture

- Verification of the conjecture:
- mainly for complete graphs and 3-colourable graphs
- other partial classes...

■ Complexity aspects:
■ Deciding if 1,2 suffice is NP-hard, but...

- ... polytime solvable for bipartite graphs
- bipartite graphs needing 1,2,3 are the so-called odd multi-cacti
- Approaching the conjecture:

■ Best result to date: 1,2,3,4,5 suffice for all graphs
■ Better result: 1,2,3,4 suffice when regular or 4-chromatic

Most of what we know on the 1-2-3 Conjecture

- Verification of the conjecture:
- mainly for complete graphs and 3-colourable graphs
- other partial classes...

■ Complexity aspects:
■ Deciding if 1,2 suffice is NP-hard, but...
■ ... polytime solvable for bipartite graphs

- bipartite graphs needing 1,2,3 are the so-called odd multi-cacti
- Approaching the conjecture:

■ Best result to date: 1,2,3,4,5 suffice for all graphs

- Better result: 1,2,3,4 suffice when regular or 4-chromatic

Also, many side aspects, variants, etc.

Speaking of variants...

- Multiset variant

Speaking of variants...

- Multiset variant

1-2-3 Conjecture, multiset version (Addario-Berry et al., 2005)
Labels 1,2,3 suffice for all graphs.

Speaking of variants...

- Product variant

Speaking of variants...

- Product variant

1-2-3 Conjecture, product version (Skowronek-Kaziów, 2012)
Labels $1,2,3$ suffice for all graphs.

Comparing the three variants

Labels are anything in $\{1,2,3\}$

If I tell you:

Comparing the three variants

Labels are anything in $\{1,2,3\}$

If I tell you:

- sum is 10 웅웅

Comparing the three variants

Labels are anything in $\{1,2,3\}$

If I tell you:

- sum is 10 웅 웅
- product is $18 \odot \ldots$

Comparing the three variants

Labels are anything in $\{1,2,3\}$

If I tell you:

- sum is 10 웅 웅
- product is $18 \odot$...oh wait... ©

Comparing the three variants

Labels are anything in $\{1,2,3\}$

If I tell you:

- sum is 10 웅 웅
- product is $18 \odot \ldots$...oh wait... © ... but meh \odot

Comparing the three variants

Labels are anything in $\{1,2,3\}$

If I tell you:

- sum is 10 ㅇㅇ 웅
- product is $18 \odot \ldots$...oh wait... © ... but meh \odot
- multiset is $\{1,1,2,3,3\}\}$) ; ; ; ; ; ;

Comparing the three variants

Labels are anything in $\{1,2,3\}$

If I tell you:

- sum is 10 웅 웅
- product is $18 \odot \ldots$...oh wait... \odot... but meh \odot
- multiset is $\{1,1,2,3,3\}\}$) : ; ; ; ; ;

Nice stuff:

- different sums or products \Rightarrow different multisets

Comparing the three variants

Labels are anything in $\{1,2,3\}$

If I tell you:

- sum is 10 ㅇㅇ 웅
- product is $18 \odot \ldots$...oh wait... \odot... but meh \odot
- multiset is $\{1,1,2,3,3\}\}$) : ; ; ; ; ;

Nice stuff:

- different sums or products \Rightarrow different multisets
- different degrees \Rightarrow different multisets

Comparing the three variants

Labels are anything in $\{1,2,3\}$

If I tell you:

- sum is 10 웅 웅
- product is $18 \odot \ldots$...oh wait... \odot... but meh \odot
- multiset is $\{1,1,2,3,3\}\}$) : ; ; ; ; ;

Nice stuff:

- different sums or products \Rightarrow different multisets
- different degrees \Rightarrow different multisets
- in products, 2 and 3 are coprime, 1 is neutral:
- 2 and 3 act similarly in products and multisets
- 1 is like "skipping" labelling an edge

Comparing the three variants

Labels are anything in $\{1,2,3\}$

If I tell you:

- sum is 10 웅 웅
- product is $18 \odot \ldots$ oh wait... \odot... but meh \odot
- multiset is $\{1,1,2,3,3\}\}$) ; ; ; ; ;

Nice stuff:

- different sums or products \Rightarrow different multisets
- different degrees \Rightarrow different multisets
- in products, 2 and 3 are coprime, 1 is neutral:
- 2 and 3 act similarly in products and multisets
- 1 is like "skipping" labelling an edge
\Rightarrow product version \sim multiset version with a neutral label

Progress towards the multiset and product versions

sum version \gg product version $>$ multiset version

Progress towards the multiset and product versions

$$
\text { sum version } \gg \text { product version }>\text { multiset version }
$$

- everything in the sum or product version applies in the multiset version

Progress towards the multiset and product versions

sum version \gg product version $>$ multiset version

- everything in the sum or product version applies in the multiset version
- anything on the multiset version might give ideas for the product version

Progress towards the multiset and product versions

sum version \gg product version $>$ multiset version

- everything in the sum or product version applies in the multiset version
- anything on the multiset version might give ideas for the product version
- Addario-Berry et al. (2005): 1,2,3,4 work for multisets

Progress towards the multiset and product versions

sum version \gg product version $>$ multiset version

■ everything in the sum or product version applies in the multiset version
■ anything on the multiset version might give ideas for the product version
■ Addario-Berry et al. (2005): 1,2,3,4 work for multisets
■ Skowronek-Kaziów (2012): same for products, 1,2,3 when $\chi \leq 3$ (as for sums)

Progress towards the multiset and product versions

sum version \gg product version $>$ multiset version

■ everything in the sum or product version applies in the multiset version
■ anything on the multiset version might give ideas for the product version
■ Addario-Berry et al. (2005): 1,2,3,4 work for multisets
■ Skowronek-Kaziów (2012): same for products, 1,2,3 when $\chi \leq 3$ (as for sums)
■ ...

Progress towards the multiset and product versions

sum version \gg product version $>$ multiset version

- everything in the sum or product version applies in the multiset version
- anything on the multiset version might give ideas for the product version
- Addario-Berry et al. (2005): 1,2,3,4 work for multisets
- Skowronek-Kaziów (2012): same for products, 1,2,3 when $\chi \leq 3$ (as for sums)
- Vuc̄ković (2018): multiset version is true! ©

Progress towards the multiset and product versions

sum version \gg product version $>$ multiset version

- everything in the sum or product version applies in the multiset version
- anything on the multiset version might give ideas for the product version
- Addario-Berry et al. (2005): 1,2,3,4 work for multisets
- Skowronek-Kaziów (2012): same for products, 1,2,3 when $\chi \leq 3$ (as for sums)
- Vuc̄ković (2018): multiset version is true! ©
- B., Hocquard, Lajou, Sopena (2021): product version when regular or $\chi=4$

Progress towards the multiset and product versions

sum version \gg product version $>$ multiset version

- everything in the sum or product version applies in the multiset version
- anything on the multiset version might give ideas for the product version
- Addario-Berry et al. (2005): 1,2,3,4 work for multisets
- Skowronek-Kaziów (2012): same for products, 1,2,3 when $\chi \leq 3$ (as for sums)
- ...
- Vuc̄ković (2018): multiset version is true! ©
- B., Hocquard, Lajou, Sopena (2021): product version when regular or $\chi=4$
- B., Hocquard, Lajou, Sopena (2021+): product version is true!! ©

Progress towards the multiset and product versions

sum version \gg product version $>$ multiset version

- everything in the sum or product version applies in the multiset version
- anything on the multiset version might give ideas for the product version

■ Addario-Berry et al. (2005): 1,2,3,4 work for multisets
■ Skowronek-Kaziów (2012): same for products, 1,2,3 when $\chi \leq 3$ (as for sums)

- Vuc̄ković (2018): multiset version is true! ©
- B., Hocquard, Lajou, Sopena (2021): product version when regular or $\chi=4$
- B., Hocquard, Lajou, Sopena (2021+): product version is true!! ©

For today: most of the proof!

Some terminology and conventions

For any 3-labelling ℓ :
■ / = 1, / = 2, /=3 (Note: / and / can be interchanged)

Some terminology and conventions

For any 3-labelling ℓ :
■ / = $1, /=2, /=3$ (Note: / and / can be interchanged)

- 2-degree $d_{2}(v)=$ number of 2's incident
- 3 -degree $d_{3}(v)=$ number of 3 's incident

Some terminology and conventions

For any 3-labelling ℓ :
■ / = 1, / = 2, / = 3 (Note: / and / can be interchanged)

- 2-degree $d_{2}(v)=$ number of 2's incident
- 3 -degree $d_{3}(v)=$ number of 3 's incident
- © $=1$-monochromatic (product is 1)
- © $=2$-monochromatic (product is 2^{p} for $p>0$)
- (8) $=3$-monochromatic (product is 3^{q} for $q>0$)

Some terminology and conventions

For any 3-labelling ℓ :
■ / = 1, / = 2, / = 3 (Note: / and / can be interchanged)

- 2-degree $d_{2}(v)=$ number of 2's incident
- 3 -degree $d_{3}(v)=$ number of 3 's incident
- © = 1-monochromatic (product is 1)
- - 2-monochromatic (product is 2^{p} for $p>0$)
- (- $=3$-monochromatic (product is 3^{q} for $q>0$)
- bichromatic $=$ product is $2^{p} 3^{q}$ for $p, q>0$

Some terminology and conventions

For any 3-labelling ℓ :
■ / = 1, / = 2, / = 3 (Note: / and / can be interchanged)

- 2-degree $d_{2}(v)=$ number of 2 's incident
- 3 -degree $d_{3}(v)=$ number of 3 's incident
- © = 1-monochromatic (product is 1)
- © $=2$-monochromatic (product is 2^{p} for $p>0$)
- (- $=3$-monochromatic (product is 3^{q} for $q>0$)
- bichromatic $=$ product is $2^{p} 3^{q}$ for $p, q>0$

Remark: no conflict between

- i-monochromatic and j-monochromatic for $i \neq j$
- monochromatic and bichromatic

Actually, conflict between $2^{p} 3^{q}$ and $2^{p^{\prime}}{ }^{q^{\prime}}$ iff $p=p^{\prime}$ and $q=q^{\prime}$

Some terminology and conventions

For any 3-labelling ℓ :
■ / = 1, / = 2, / = 3 (Note: / and / can be interchanged)

- 2-degree $d_{2}(v)=$ number of 2 's incident
- 3 -degree $d_{3}(v)=$ number of 3 's incident
- © $=1$-monochromatic (product is 1)
- © $=2$-monochromatic (product is 2^{p} for $p>0$)
- (- $=3$-monochromatic (product is 3^{q} for $q>0$)
- bichromatic $=$ product is $2^{p} 3^{q}$ for $p, q>0$

Remark: no conflict between

- i-monochromatic and j-monochromatic for $i \neq j$
- monochromatic and bichromatic

Actually, conflict between $2^{p} 3^{q}$ and $2^{p^{\prime}}{ }^{\prime} q^{\prime}$ iff $p=p^{\prime}$ and $q=q^{\prime}$

- (5) $=$ special (product is $2^{2 p} 3$ for $p>0$)

Sketch of the proof

Main labelling steps

Start from all edges labelled 1

Main labelling steps

Start from all edges labelled 1

1. Partition $V(G)$ into $V_{1} \cup \cdots \cup V_{t}$ so that:

- the V_{i} 's are independent
- every $v \in V_{i}$ with $i>1$ has a neighbour in V_{j} for every $j<i$

Main labelling steps

Start from all edges labelled 1

1. Partition $V(G)$ into $V_{1} \cup \cdots \cup V_{t}$ so that:

- the V_{i} 's are independent
- every $v \in V_{i}$ with $i>1$ has a neighbour in V_{j} for every $j<i$

2. Relabel the upward edges of V_{3}, \ldots, V_{t} to realise certain products

Main labelling steps

Start from all edges labelled 1

1. Partition $V(G)$ into $V_{1} \cup \cdots \cup V_{t}$ so that:

- the V_{i} 's are independent
- every $v \in V_{i}$ with $i>1$ has a neighbour in V_{j} for every $j<i$

2. Relabel the upward edges of V_{3}, \ldots, V_{t} to realise certain products
3. Get rid of conflicts in $\left(V_{1}, V_{2}\right)$

The type of labelling we want by the end of Step 2

The type of labelling we want by the end of Step 2

1-mono or 3-mono

1-mono or 2-mono
bichrom: $R=1$ and $R+B$ even
bichrom: $B=2$ and $R+B$ odd
bichrom: $R=2$ and $R+B$ even

The type of labelling we want by the end of Step 2

1-mono or 3-mono

1-mono or 2-mono
bichrom: $R=1$ and $R+B$ even
bichrom: $B=2$ and $R+B$ odd
bichrom: $R=2$ and $R+B$ even

The type of labelling we want by the end of Step 2

1-mono or 3-mono

1-mono or 2-mono
bichrom: $R=1$ and $R+B$ even
bichrom: $B=2$ and $R+B$ odd
bichrom: $R=2$ and $R+B$ even

The type of labelling we want by the end of Step 2

1-mono or 3-mono

1-mono or 2-mono
bichrom: $R=1$ and $R+B$ even
bichrom: $B=2$ and $R+B$ odd
bichrom: $R=2$ and $R+B$ even

The type of labelling we want by the end of Step 2

1-mono or 3-mono

1-mono or 2-mono
bichrom: $R=1$ and $R+B$ even
bichrom: $B=2$ and $R+B$ odd
bichrom: $R=2$ and $R+B$ even

Note:

- no conflict between odd layers; same for even layers
- same between odd layers and even layers (except for 1-mono across (V_{1}, V_{2}))
- no special vertex ($B=1$ and $R+B$ odd $)$

Getting rid of remaining conflicts in Step 3

Getting rid of remaining conflicts in Step 3

Getting rid of remaining conflicts in Step 3

Getting rid of remaining conflicts in Step 3

Getting rid of remaining conflicts in Step 3

Do not forget about V_{3}, \ldots, V_{t} !!
\Rightarrow Keep vertices 1-mono, 2-mono, 3-mono, special

Main labelling steps - REVISITED

Start from all edges labelled 1

Main labelling steps - REVISITED

Start from all edges labelled 1

1. Partition $V(G)$ into $V_{1} \cup \cdots \cup V_{t}$ so that:

- the V_{i} 's are independent
- every $v \in V_{i}$ with $i>1$ has a neighbour in V_{j} for every $j<i$

Main labelling steps - REVISITED

Start from all edges labelled 1

1. Partition $V(G)$ into $V_{1} \cup \cdots \cup V_{t}$ so that:

- the V_{i} 's are independent
- every $v \in V_{i}$ with $i>1$ has a neighbour in V_{j} for every $j<i$

2. Relabel the upward edges of V_{3}, \ldots, V_{t} so that

- certain products are realised

Main labelling steps - REVISITED

Start from all edges labelled 1

1. Partition $V(G)$ into $V_{1} \cup \cdots \cup V_{t}$ so that:

- the V_{i} 's are independent
- every $v \in V_{i}$ with $i>1$ has a neighbour in V_{j} for every $j<i$

2. Relabel the upward edges of V_{3}, \ldots, V_{t} so that

- certain products are realised
- no isolated 1-mono edge in $\left(V_{1}, V_{2}\right)$

Main labelling steps - REVISITED

Start from all edges labelled 1

1. Partition $V(G)$ into $V_{1} \cup \cdots \cup V_{t}$ so that:

- the V_{i} 's are independent
- every $v \in V_{i}$ with $i>1$ has a neighbour in V_{j} for every $j<i$

2. Relabel the upward edges of V_{3}, \ldots, V_{t} so that

- certain products are realised
- no isolated 1-mono edge in $\left(V_{1}, V_{2}\right)$

3. Get rid of conflicts in (V_{1}, V_{2}), playing with 1-mono, 2-mono, 3-mono, special

- Step 1 -

Getting a "good" partition $V_{1} \cup \cdots \cup V_{t}$ of $V(G)$

Getting the upward edges property

- Pick V_{1} independent as big as possible

Getting the upward edges property

- Pick V_{1} independent as big as possible
- $\ln V(G) \backslash V_{1}$, pick V_{2} independent as big as possible

Getting the upward edges property

- Pick V_{1} independent as big as possible
- In $V(G) \backslash V_{1}$, pick V_{2} independent as big as possible
- In $V(G) \backslash\left(V_{1} \cup V_{2}\right)$, pick V_{3} independent as big as possible

Getting the upward edges property

- Pick V_{1} independent as big as possible
- In $V(G) \backslash V_{1}$, pick V_{2} independent as big as possible
- In $V(G) \backslash\left(V_{1} \cup V_{2}\right)$, pick V_{3} independent as big as possible
- Etc.

Getting the upward edges property

- Pick V_{1} independent as big as possible
- In $V(G) \backslash V_{1}$, pick V_{2} independent as big as possible
- In $V(G) \backslash\left(V_{1} \cup V_{2}\right)$, pick V_{3} independent as big as possible
- Etc.

Getting the upward edges property

- Pick V_{1} independent as big as possible
- In $V(G) \backslash V_{1}$, pick V_{2} independent as big as possible
- In $V(G) \backslash\left(V_{1} \cup V_{2}\right)$, pick V_{3} independent as big as possible
- Etc.

An additional swapping property

Lemma

We can choose $V_{1} \cup \cdots \cup V_{t}$ so that if $e=(u, v) \in\left(V_{1}, V_{2}\right)$ is isolated, then u and v can be freely exchanged between V_{1} and V_{2} without spoiling any of the desired properties (independence, upward edges, etc.).

An additional swapping property

Lemma

We can choose $V_{1} \cup \cdots \cup V_{t}$ so that if $e=(u, v) \in\left(V_{1}, V_{2}\right)$ is isolated, then u and v can be freely exchanged between V_{1} and V_{2} without spoiling any of the desired properties (independence, upward edges, etc.).

Just choose V_{1} and V_{2} so that $V_{1} \cup V_{2}$ as large as possible

v_{i}

An additional swapping property

Lemma

We can choose $V_{1} \cup \cdots \cup V_{t}$ so that if $e=(u, v) \in\left(V_{1}, V_{2}\right)$ is isolated, then u and v can be freely exchanged between V_{1} and V_{2} without spoiling any of the desired properties (independence, upward edges, etc.).

Just choose V_{1} and V_{2} so that $V_{1} \cup V_{2}$ as large as possible

An additional swapping property

Lemma

We can choose $V_{1} \cup \cdots \cup V_{t}$ so that if $e=(u, v) \in\left(V_{1}, V_{2}\right)$ is isolated, then u and v can be freely exchanged between V_{1} and V_{2} without spoiling any of the desired properties (independence, upward edges, etc.).

Just choose V_{1} and V_{2} so that $V_{1} \cup V_{2}$ as large as possible

An additional swapping property

Lemma

We can choose $V_{1} \cup \cdots \cup V_{t}$ so that if $e=(u, v) \in\left(V_{1}, V_{2}\right)$ is isolated, then u and v can be freely exchanged between V_{1} and V_{2} without spoiling any of the desired properties (independence, upward edges, etc.).

Just choose V_{1} and V_{2} so that $V_{1} \cup V_{2}$ as large as possible

An additional swapping property

Lemma

We can choose $V_{1} \cup \cdots \cup V_{t}$ so that if $e=(u, v) \in\left(V_{1}, V_{2}\right)$ is isolated, then u and v can be freely exchanged between V_{1} and V_{2} without spoiling any of the desired properties (independence, upward edges, etc.).

Just choose V_{1} and V_{2} so that $V_{1} \cup V_{2}$ as large as possible

- Step 2 -

Relabelling the upward edges of V_{3}, \ldots, V_{t}

Recap of what is desired

Recap of what is desired

1-mono or 3-mono

1-mono or 2-mono
bichrom: $R=1$ and $R+B$ even
bichrom: $B=2$ and $R+B$ odd
bichrom: $R=2$ and $R+B$ even

Recap of what is desired

Watch out: even (odd, resp.) layers require a bounded number of 3's (2's, resp.) \Rightarrow even (odd, resp.) layers produce their 3's (2's, resp.) upwards
\Rightarrow assume even (odd, resp.) layers do not receive 3's (2's, resp.) from below

Case of a vertex in some $V_{2 n}$

Case of a vertex in some $V_{2 n}$

Case of a vertex in some $V_{2 n}$ - fixing parity

Works because...

- Always have exactly the desired number of layers with distinct parity above \Rightarrow get the required fixed number of labels (3 for even layers, 2 for odd layers)

Works because...

- Always have exactly the desired number of layers with distinct parity above \Rightarrow get the required fixed number of labels (3 for even layers, 2 for odd layers)
- Deep enough layers always have at least two layers with the same parity above \Rightarrow make sure vertices are bichrom and/or adjust parity of $R+B$

Works because...

- Always have exactly the desired number of layers with distinct parity above \Rightarrow get the required fixed number of labels (3 for even layers, 2 for odd layers)
- Deep enough layers always have at least two layers with the same parity above \Rightarrow make sure vertices are bichrom and/or adjust parity of $R+B$
- ... only V_{3} and V_{4} might be problematic... ... but actually things are (luckily!) fine!

Works because...

- Always have exactly the desired number of layers with distinct parity above \Rightarrow get the required fixed number of labels (3 for even layers, 2 for odd layers)
- Deep enough layers always have at least two layers with the same parity above \Rightarrow make sure vertices are bichrom and/or adjust parity of $R+B$
- ... only V_{3} and V_{4} might be problematic... ... but actually things are (luckily!) fine!

Works because...

- Always have exactly the desired number of layers with distinct parity above \Rightarrow get the required fixed number of labels (3 for even layers, 2 for odd layers)
- Deep enough layers always have at least two layers with the same parity above \Rightarrow make sure vertices are bichrom and/or adjust parity of $R+B$
- ... only V_{3} and V_{4} might be problematic... ... but actually things are (luckily!) fine!

Watch out for adjacent isolated edges in $\left(V_{1}, V_{2}\right)$!

Swapping adjacent isolated edges

Making adjacent isolated edges happy

Making adjacent isolated edges happy

Making adjacent isolated edges happy

Making adjacent isolated edges happy - fixing parity

Making adjacent isolated edges happy - fixing parity

Making adjacent isolated edges happy - fixing parity

Making adjacent isolated edges happy - fixing parity

Making adjacent isolated edges happy - fixing parity

Making adjacent isolated edges happy - fixing parity

Making adjacent isolated edges happy - fixing parity

Making adjacent isolated edges happy - fixing parity

Making adjacent isolated edges happy - fixing parity

More examples - The (slightly more) intricate case of V_{3}

Want: bichrom: $R=1$ and $R+B$ even

More examples - The (slightly more) intricate case of V_{3}

Want: bichrom: $R=1$ and $R+B$ even

More examples - The (slightly more) intricate case of V_{3}

Want: bichrom: $R=1$ and $R+B$ even

More examples - The (slightly more) intricate case of V_{3}

Want: bichrom: $R=1$ and $R+B$ even

More examples - The (slightly more) intricate case of V_{3}

Want: bichrom: $R=1$ and $R+B$ even

More examples - The (slightly more) intricate case of V_{3}

Want: bichrom: $R=1$ and $R+B$ even

- Step 3 -

Getting rid of conflicts in $\left(V_{1}, V_{2}\right)$

Getting rid of conflicts one by one

$\mathscr{H}:$ components of $G\left[V_{1} \cup V_{2}\right]$ having conflicting (1-mono) vertices

Getting rid of conflicts one by one

$\mathscr{H}:$ components of $G\left[V_{1} \cup V_{2}\right]$ having conflicting (1-mono) vertices

Getting rid of conflicts one by one

$\mathscr{H}:$ components of $G\left[V_{1} \cup V_{2}\right]$ having conflicting (1-mono) vertices

Getting rid of conflicts one by one

\mathscr{H} : components of $G\left[V_{1} \cup V_{2}\right]$ having conflicting (1-mono) vertices

Deal with every $H \in \mathscr{H}$:

- 1-mono, 2-mono, 3-mono, special \Rightarrow no conflicts with V_{3}, \ldots, V_{t}
- Remark: H's can be treated independently

Getting rid of conflicts one by one

\mathscr{H} : components of $G\left[V_{1} \cup V_{2}\right]$ having conflicting (1-mono) vertices

Deal with every $H \in \mathscr{H}$:

- 1-mono, 2-mono, 3-mono, special \Rightarrow no conflicts with V_{3}, \ldots, V_{t}
- Remark: H's can be treated independently

Several cases:

1. H contains either:

- a 1-mono $v_{1} \in V_{1}$ with two 1 -mono degre-1 neighbours $u_{1}, u_{2} \in V_{2}$, or
- a 3 -mono $v \in V_{1}$

Getting rid of conflicts one by one

\mathscr{H} : components of $G\left[V_{1} \cup V_{2}\right]$ having conflicting (1-mono) vertices

Deal with every $H \in \mathscr{H}$:

- 1-mono, 2-mono, 3-mono, special \Rightarrow no conflicts with V_{3}, \ldots, V_{t}
- Remark: H's can be treated independently

Several cases:

1. H contains either:

- a 1-mono $v_{1} \in V_{1}$ with two 1 -mono degre-1 neighbours $u_{1}, u_{2} \in V_{2}$, or
- a 3 -mono $v \in V_{1}$

2. H contains a 1-mono $u \in V_{2}$ with at least two neighbours in H

Getting rid of conflicts one by one

\mathscr{H} : components of $G\left[V_{1} \cup V_{2}\right]$ having conflicting (1-mono) vertices

Deal with every $H \in \mathscr{H}$:

- 1-mono, 2-mono, 3-mono, special \Rightarrow no conflicts with V_{3}, \ldots, V_{t}
- Remark: H's can be treated independently

Several cases:

1. H contains either:

- a 1-mono $v_{1} \in V_{1}$ with two 1 -mono degre-1 neighbours $u_{1}, u_{2} \in V_{2}$, or
- a 3 -mono $v \in V_{1}$

2. H contains a 1-mono $u \in V_{2}$ with at least two neighbours in H
3. H contains none of the previous

A useful lemma

Lemma

Let $s \in\{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_{i} \in\left\{V_{1}, V_{2}\right\}$ of H. We can relabel the edges of H with 1 and s so that:
$\square d_{s}(u)$ is odd (even, resp.) for every $u \in V_{i} \backslash\{v\}$, and

- $d_{s}(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Note: Remains true, even if some "contribution" from outside

A useful lemma

Lemma

Let $s \in\{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_{i} \in\left\{V_{1}, V_{2}\right\}$ of H. We can relabel the edges of H with 1 and s so that:
$\square d_{s}(u)$ is odd (even, resp.) for every $u \in V_{i} \backslash\{v\}$, and

- $d_{s}(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Note: Remains true, even if some "contribution" from outside

A useful lemma

Lemma

Let $s \in\{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_{i} \in\left\{V_{1}, V_{2}\right\}$ of H. We can relabel the edges of H with 1 and s so that:
$\square d_{s}(u)$ is odd (even, resp.) for every $u \in V_{i} \backslash\{v\}$, and

- $d_{s}(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Note: Remains true, even if some "contribution" from outside

A useful lemma

Lemma

Let $s \in\{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_{i} \in\left\{V_{1}, V_{2}\right\}$ of H. We can relabel the edges of H with 1 and s so that:
$\square d_{s}(u)$ is odd (even, resp.) for every $u \in V_{i} \backslash\{v\}$, and

- $d_{s}(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Note: Remains true, even if some "contribution" from outside

A useful lemma

Lemma

Let $s \in\{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_{i} \in\left\{V_{1}, V_{2}\right\}$ of H. We can relabel the edges of H with 1 and s so that:
$\square d_{s}(u)$ is odd (even, resp.) for every $u \in V_{i} \backslash\{v\}$, and

- $d_{s}(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Note: Remains true, even if some "contribution" from outside

A useful lemma

Lemma

Let $s \in\{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_{i} \in\left\{V_{1}, V_{2}\right\}$ of H. We can relabel the edges of H with 1 and s so that:
$\square d_{s}(u)$ is odd (even, resp.) for every $u \in V_{i} \backslash\{v\}$, and

- $d_{s}(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Note: Remains true, even if some "contribution" from outside

A useful lemma

Lemma

Let $s \in\{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_{i} \in\left\{V_{1}, V_{2}\right\}$ of H. We can relabel the edges of H with 1 and s so that:
$\square d_{s}(u)$ is odd (even, resp.) for every $u \in V_{i} \backslash\{v\}$, and

- $d_{s}(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Note: Remains true, even if some "contribution" from outside

A useful lemma

Lemma

Let $s \in\{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_{i} \in\left\{V_{1}, V_{2}\right\}$ of H. We can relabel the edges of H with 1 and s so that:
$\square d_{s}(u)$ is odd (even, resp.) for every $u \in V_{i} \backslash\{v\}$, and

- $d_{s}(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Note: Remains true, even if some "contribution" from outside

A useful lemma

Lemma

Let $s \in\{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_{i} \in\left\{V_{1}, V_{2}\right\}$ of H. We can relabel the edges of H with 1 and s so that:
$\square d_{s}(u)$ is odd (even, resp.) for every $u \in V_{i} \backslash\{v\}$, and

- $d_{s}(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Note: Remains true, even if some "contribution" from outside

A useful lemma

Lemma

Let $s \in\{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_{i} \in\left\{V_{1}, V_{2}\right\}$ of H. We can relabel the edges of H with 1 and s so that:
$\square d_{s}(u)$ is odd (even, resp.) for every $u \in V_{i} \backslash\{v\}$, and

- $d_{s}(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Note: Remains true, even if some "contribution" from outside

A useful lemma

Lemma

Let $s \in\{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_{i} \in\left\{V_{1}, V_{2}\right\}$ of H. We can relabel the edges of H with 1 and s so that:
$\square d_{s}(u)$ is odd (even, resp.) for every $u \in V_{i} \backslash\{v\}$, and

- $d_{s}(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Note: Remains true, even if some "contribution" from outside

A useful lemma

Lemma

Let $s \in\{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_{i} \in\left\{V_{1}, V_{2}\right\}$ of H. We can relabel the edges of H with 1 and s so that:
$\square d_{s}(u)$ is odd (even, resp.) for every $u \in V_{i} \backslash\{v\}$, and

- $d_{s}(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Note: Remains true, even if some "contribution" from outside

A useful lemma

Lemma

Let $s \in\{2,3\}$, and let H be a connected bipartite graph whose edges are labelled 1 or s. Consider any vertex v in any part $V_{i} \in\left\{V_{1}, V_{2}\right\}$ of H. We can relabel the edges of H with 1 and s so that:
$\square d_{s}(u)$ is odd (even, resp.) for every $u \in V_{i} \backslash\{v\}$, and

- $d_{s}(u)$ is even (odd, resp.) for every $u \in V_{3-i}$.

Note: Remains true, even if some "contribution" from outside

Case 1: H has either 1) a 1 -mono $v_{1} \in V_{1}$ with two 1 -mono degre-1 neighbours $u_{1}, u_{2} \in V_{2}$, or 2) a 3 -mono $~ v \in V_{1}$

First situation:

Case 1: H has either 1) a 1 -mono $v_{1} \in V_{1}$ with two 1 -mono degre-1 neighbours $u_{1}, u_{2} \in V_{2}$, or 2) a 3 -mono $v \in V_{1}$

First situation:

Case 1: H has either 1) a 1 -mono $v_{1} \in V_{1}$ with two 1 -mono degre-1 neighbours $u_{1}, u_{2} \in V_{2}$, or 2) a 3 -mono $~ v \in V_{1}$

First situation:

\ldots and then 2 nd situation, keeping in mind that the only 3 -mono in V_{2} are u_{1}, u_{2}

Case 1: H has either 1) a 1 -mono $v_{1} \in V_{1}$ with two 1 -mono degre-1 neighbours $u_{1}, u_{2} \in V_{2}$, or 2) a 3 -mono $v \in V_{1}$

Second situation:

Case 1: H has either 1) a 1 -mono $v_{1} \in V_{1}$ with two 1 -mono degre-1 neighbours $u_{1}, u_{2} \in V_{2}$, or 2) a 3 -mono $v \in V_{1}$

Second situation:

Case 1: H has either 1) a 1 -mono $v_{1} \in V_{1}$ with two 1 -mono degre-1 neighbours $u_{1}, u_{2} \in V_{2}$, or 2) a 3 -mono $v \in V_{1}$

Second situation:

Case 1: H has either 1) a 1 -mono $v_{1} \in V_{1}$ with two 1 -mono degre-1 neighbours $u_{1}, u_{2} \in V_{2}$, or 2) a 3 -mono $v \in V_{1}$

Second situation:

Case 1: H has either 1) a 1 -mono $v_{1} \in V_{1}$ with two 1 -mono

 degre-1 neighbours $u_{1}, u_{2} \in V_{2}$, or 2) a 3 -mono $v \in V_{1}$Second situation:

Case 1: H has either 1) a 1 -mono $v_{1} \in V_{1}$ with two 1 -mono

 degre-1 neighbours $u_{1}, u_{2} \in V_{2}$, or 2) a 3 -mono $v \in V_{1}$Second situation:

Case 1: H has either 1) a 1 -mono $v_{1} \in V_{1}$ with two 1 -mono

 degre-1 neighbours $u_{1}, u_{2} \in V_{2}$, or 2) a 3 -mono $v \in V_{1}$Second situation:

Case 1: H has either 1) a 1 -mono $v_{1} \in V_{1}$ with two 1 -mono

 degre-1 neighbours $u_{1}, u_{2} \in V_{2}$, or 2) a 3 -mono $v \in V_{1}$Second situation:

Case 1: H has either 1) a 1 -mono $v_{1} \in V_{1}$ with two 1 -mono

 degre-1 neighbours $u_{1}, u_{2} \in V_{2}$, or 2) a 3 -mono $v \in V_{1}$Second situation:

Case 1: H has either 1) a 1 -mono $v_{1} \in V_{1}$ with two 1 -mono

 degre-1 neighbours $u_{1}, u_{2} \in V_{2}$, or 2) a 3 -mono $v \in V_{1}$Second situation:

Case 1: H has either 1) a 1 -mono $v_{1} \in V_{1}$ with two 1 -mono

 degre-1 neighbours $u_{1}, u_{2} \in V_{2}$, or 2) a 3 -mono $v \in V_{1}$Second situation:

Case 2: H contains a 1 -mono $u \in V_{2}$ with at least two neighbours in H

Looking closer at components of $H-u$

Looking closer at components of $H-u$

Nice components

Nice component: no conflict, or at least two neighbours with even 2-degree, or only one neighbour with even 2 -degree at least 2
\Rightarrow can make sure no conflict in the component!

Nice components

Nice component: no conflict, or at least two neighbours with even 2-degree, or only one neighbour with even 2 -degree at least 2
\Rightarrow can make sure no conflict in the component!

Nice components

Nice component: no conflict, or at least two neighbours with even 2-degree, or only one neighbour with even 2 -degree at least 2
\Rightarrow can make sure no conflict in the component!

Bad and tricky components

Bad component: exactly one neighbour with even 2-degree, being 1-mono Tricky component: that 1-mono neighbour is adjacent to a 1-mono neighbour

bad component

tricky component

Global picture

Global picture

\vdots
\vdots
\vdots

Some terminology:

- N_{n} : number of nice components

Global picture

:

Some terminology:

- N_{n} : number of nice components
- N_{b} : number of bad components

Global picture

....

Some terminology:

- N_{n} : number of nice components
- N_{b} : number of bad components
- N_{t} : number of tricky components

Global picture

Some terminology:

- N_{n} : number of nice components
- N_{b} : number of bad components
- N_{t} : number of tricky components
- $N_{a n}$: number of neighbours with 2-degree 0 in nice components $\left(N_{a n} \geq N_{n}\right)$

First case: $N_{t}>0$

Second case: $N_{a n}=N_{n}=0$

Third case: $N_{a n}=1$

Fourth (and last) case: $N_{a n} \geq 2$

$A=\left\{a_{1}, \ldots, a_{r}\right\}$: neighbours with 2-degree 0 not "main neighbour" in a bad comp.

Fourth (and last) case: $N_{a n} \geq 2$

$A=\left\{a_{1}, \ldots, a_{r}\right\}$: neighbours with 2-degree 0 not "main neighbour" in a bad comp.

Fourth (and last) case: $N_{a n} \geq 2$

$A=\left\{a_{1}, \ldots, a_{r}\right\}$: neighbours with 2-degree 0 not "main neighbour" in a bad comp.

Fourth (and last) case: $N_{a n} \geq 2$

$A=\left\{a_{1}, \ldots, a_{r}\right\}$: neighbours with 2 -degree 0 not "main neighbour" in a bad comp.

For every $i \in\{1, \ldots, r\}$, set $n_{i}:=d_{3}\left(a_{i}\right)$

Fourth (and last) case: $N_{a n} \geq 2$

$A=\left\{a_{1}, \ldots, a_{r}\right\}$: neighbours with 2 -degree 0 not "main neighbour" in a bad comp.

For every $i \in\{1, \ldots, r\}$, set $n_{i}:=d_{3}\left(a_{i}\right)$
Goal: Relabel some ua; 's with 3 so that u is not in conflict with the a_{i} 's

Fourth (and last) case: $N_{a n} \geq 2$

$A=\left\{a_{1}, \ldots, a_{r}\right\}$: neighbours with 2 -degree 0 not "main neighbour" in a bad comp.

For every $i \in\{1, \ldots, r\}$, set $n_{i}:=d_{3}\left(a_{i}\right)$
Goal: Relabel some ua;'s with 3 so that u is not in conflict with the a_{i} 's \Rightarrow possible because $N_{a n} \geq 2$

Polynomial representation

- For every $i \in\{1, \ldots, r\}$, let X_{i} be a variable taking value in $\{0,1\}$
- $X_{i}=0$ means label 1 on $u a_{i}$, while $X_{i}=1$ means label 3 on $u a_{i}$

Polynomial representation

- For every $i \in\{1, \ldots, r\}$, let X_{i} be a variable taking value in $\{0,1\}$
- $X_{i}=0$ means label 1 on $u a_{i}$, while $X_{i}=1$ means label 3 on $u a_{i}$
- Model the constraints by the following polynomial:

$$
P\left(X_{1}, \ldots, X_{r}\right)=\prod_{i=1}^{r}\left(\sum_{\substack{j=1 \\ j \neq i}}^{r} X_{i}+N_{b}-n_{i}\right)
$$

Polynomial representation

- For every $i \in\{1, \ldots, r\}$, let X_{i} be a variable taking value in $\{0,1\}$
- $X_{i}=0$ means label 1 on $u a_{i}$, while $X_{i}=1$ means label 3 on $u a_{i}$
- Model the constraints by the following polynomial:

$$
P\left(X_{1}, \ldots, X_{r}\right)=\prod_{i=1}^{r}\left(\sum_{\substack{j=1 \\ j \neq i}}^{r} X_{i}+N_{b}-n_{i}\right)
$$

■ For $x_{1}, \ldots, x_{r} \in\{0,1\}$, have $P\left(x_{1}, \ldots, x_{r}\right) \neq 0$ iff none of the mentioned conflicts

Polynomial representation

- For every $i \in\{1, \ldots, r\}$, let X_{i} be a variable taking value in $\{0,1\}$
- $X_{i}=0$ means label 1 on $u a_{i}$, while $X_{i}=1$ means label 3 on $u a_{i}$
- Model the constraints by the following polynomial:

$$
P\left(X_{1}, \ldots, X_{r}\right)=\prod_{i=1}^{r}\left(\sum_{\substack{j=1 \\ j \neq i}}^{r} X_{i}+N_{b}-n_{i}\right)
$$

- For $x_{1}, \ldots, x_{r} \in\{0,1\}$, have $P\left(x_{1}, \ldots, x_{r}\right) \neq 0$ iff none of the mentioned conflicts

Combinatorial Nullstellensatz (Alon, 1999)

Let \mathbb{F} be an arbitrary field, and let $f=f\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. Suppose the total degree of f is $\sum_{i=1}^{n} t_{i}$, where each t_{i} is a non-negative integer, and suppose the coefficient of $\prod_{i=1}^{n} x_{i}^{t_{i}}$ is non-zero. If S_{1}, \ldots, S_{n} are subsets of \mathbb{F} with $\left|S_{i}\right|>t_{i}$, then there are $s_{1} \in S_{1}, s_{2} \in$ $S_{2}, \ldots, s_{n} \in S_{n}$ so that $f\left(s_{1}, \ldots, s_{n}\right) \neq 0$.

Polynomial representation

- For every $i \in\{1, \ldots, r\}$, let X_{i} be a variable taking value in $\{0,1\}$
- $X_{i}=0$ means label 1 on $u a_{i}$, while $X_{i}=1$ means label 3 on $u a_{i}$
- Model the constraints by the following polynomial:

$$
P\left(X_{1}, \ldots, X_{r}\right)=\prod_{i=1}^{r}\left(\underset{\substack{j=1 \\ j \neq i}}{r} X_{i}+N_{b}-n_{i}\right)
$$

- For $x_{1}, \ldots, x_{r} \in\{0,1\}$, have $P\left(x_{1}, \ldots, x_{r}\right) \neq 0$ iff none of the mentioned conflicts

Combinatorial Nullstellensatz (Alon, 1999)

Let \mathbb{F} be an arbitrary field, and let $f=f\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. Suppose the total degree of f is $\sum_{i=1}^{n} t_{i}$, where each t_{i} is a non-negative integer, and suppose the coefficient of $\prod_{i=1}^{n} x_{i}^{t_{i}}$ is non-zero. If S_{1}, \ldots, S_{n} are subsets of \mathbb{F} with $\left|S_{i}\right|>t_{i}$, then there are $s_{1} \in S_{1}, s_{2} \in$ $S_{2}, \ldots, s_{n} \in S_{n}$ so that $f\left(s_{1}, \ldots, s_{n}\right) \neq 0$.

■ Here, just consider the monomial $\prod_{i=1}^{r} X_{i} \Rightarrow$ the desired x_{i} 's exist!

Fourth (and last) case: $N_{a n} \geq 2$

Fourth (and last) case: $N_{a n} \geq 2$

Fourth (and last) case: $N_{a n} \geq 2$

Fourth (and last) case: $N_{a n} \geq 2$

Case 3: None of Cases 1 and 2 applies

1. H contains either:

- a 1-mono $v_{1} \in V_{1}$ with two 1 -mono degre-1 neighbours $u_{1}, u_{2} \in V_{2}$, or
- a 3-mono $v \in V_{1}$

2. H contains a 1-mono $u \in V_{2}$ with at least two neighbours in H

Case 3: None of Cases 1 and 2 applies

1. H contains either:

- a 1-mono $v_{1} \in V_{1}$ with two 1-mono degre-1 neighbours $u_{1}, u_{2} \in V_{2}$, or
- a 3 -mono $v \in V_{1}$

2. H contains a 1-mono $u \in V_{2}$ with at least two neighbours in H

Case 3: None of Cases 1 and 2 applies

1. H contains either:

- a 1-mono $v_{1} \in V_{1}$ with two 1-mono degre-1 neighbours $u_{1}, u_{2} \in V_{2}$, or
- a 3-mono $v \in V_{1}$

2. H contains a 1-mono $u \in V_{2}$ with at least two neighbours in H

Case 3: None of Cases 1 and 2 applies

1. H contains either:

- a 1-mono $v_{1} \in V_{1}$ with two 1 -mono degre-1 neighbours $u_{1}, u_{2} \in V_{2}$, or
- a 3-mono $v \in V_{1}$

2. H contains a 1-mono $u \in V_{2}$ with at least two neighbours in H

Case 3: None of Cases 1 and 2 applies

1. H contains either:

- a 1-mono $v_{1} \in V_{1}$ with two 1 -mono degre-1 neighbours $u_{1}, u_{2} \in V_{2}$, or
- a 3-mono $v \in V_{1}$

2. H contains a 1-mono $u \in V_{2}$ with at least two neighbours in H

Case 3: None of Cases 1 and 2 applies

1. H contains either:

- a 1-mono $v_{1} \in V_{1}$ with two 1 -mono degre-1 neighbours $u_{1}, u_{2} \in V_{2}$, or
- a 3-mono $v \in V_{1}$

2. H contains a 1-mono $u \in V_{2}$ with at least two neighbours in H

Case 3: None of Cases 1 and 2 applies

1. H contains either:

- a 1-mono $v_{1} \in V_{1}$ with two 1 -mono degre-1 neighbours $u_{1}, u_{2} \in V_{2}$, or
- a 3-mono $v \in V_{1}$

2. H contains a 1-mono $u \in V_{2}$ with at least two neighbours in H

End of the proof, phew... © © © © © ©

Thank you for your attention!

