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Augmentation = Bigger matching.
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Berge and Edmonds’ results

Maximum matching = Biggest matching.
1(G) = Cardinality of a maximum matching of G.

Theorem [Berge, 1957]

Maximum matching < No augmenting path.

Finding augmenting paths?

Theorem [Edmonds’ Blossom Algorithm, 1965]

Detection in polynomial time.

Hence, 1(G) can be determined in poly-time.



Today's motivation

Plane — Suitable landing slot times (edges) + Scheduled one (matching).

[@ 9h20-9h40] [®9h40-10h] [@ 10h-10h20] [@ 10h20—10h40]
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> > > o

How to fix that??
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More formally

For practical reasons, only
@ 1-paths (= pick a free slot), and
@ 3-paths (= shift a busy slot)
should actually be augmented. Hence (< 3)-paths.

For odd k > 1, attain a largest matching via (< k)-augmentations?

p<k(G, M): Its cardinality for G equipped with M.
Note: /1<1(G.0) = u(G).



Note: order matters

k = 5. First attempt.
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First dichotomy

(< k)-MATCHING PROBLEM — (< k)-MP
Input: A graph G, and a matching M of G.
Question: What is the value of p<,(G, M)?
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First dichotomy

(< k)-MATCHING PROBLEM — (< k)-MP
Input: A graph G, and a matching M of G.
Question: What is the value of p<,(G, M)?

Dichotomy on k:

Theorem [Nisse, Salch, Weber, 2015+]

(£ k)-MP is
@ inPfor k=1,3;
@ NP-hard for every odd k > 5.

Latter statement true for planar bipartite graphs with A < 3 and arb. large girth.
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o For odd k > 5, NP-hard for graphs close to trees.
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Towards a second dichotomy

Summary:
@ For k =1, 3, the problem is settled.
o For odd k > 5, NP-hard for graphs close to trees.

Complexity of (< k)-MP for trees?

Today’s talk:
o (< k)-MP is in P for caterpillars, subdivided stars, “sparse trees”, etc.

@ A modified version is NP-complete for trees.
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Positive results
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Easy case: paths

Theorem [Nisse, Salch, Weber, 2015+]

(< k)-MP is in P for paths.

1st key idea: Consider exposed vertices joined only once by an augmenting path.
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Easy case: paths

Theorem [Nisse, Salch, Weber, 2015+]

(< k)-MP is in P for paths.

1st key idea: Consider exposed vertices joined only once by an augmenting path.

A
\Y%
==

R 4

= Decompose the problem into two sub-problems.
In a path = Exposed vertices have one on the left/right at distance < k.
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Easy case: paths

Theorem [Nisse, Salch, Weber, 2015+]

(< k)-MP is in P for paths.

2nd key idea: We can augment paths joining “consecutive” exposed vertices only.
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Easy case: paths

Theorem [Nisse, Salch, Weber, 2015+]

(< k)-MP is in P for paths.

2nd key idea: We can augment paths joining “consecutive” exposed vertices only.

\%1 Vo V3 Va Vs Ve
Oummmmm== O mmmm=== Oummmmm== Oemmmmm== O mmmm=== o)
] —) 2 —)

& 3 S
) L4

\%1 %) V3 Va Vs Ve
Oummmmm== O mmmm=== Oummmmm== Oemmmmm== O mmmm=== o)
] —) 2 —) e 3 —)

yield the same matching.

= In a path, just go from left to right, and augment paths when possible. |
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Caterpillars

Theorem [B., Garnero, Nisse, 2017+]

(< k)-MP is in P for caterpillars.

Remark: Matched leaf edge = Simplification.

17 /35



Caterpillars

Theorem [B., Garnero, Nisse, 2017+]

(< k)-MP is in P for caterpillars.

Remark: Matched leaf edge = Simplification.

..... [V

17 /35



Caterpillars

Theorem [B., Garnero, Nisse, 2017+]

(< k)-MP is in P for caterpillars.

Remark: Matched leaf edge = Simplification.

..... [V

= Being adjacent to two leaves is useless.

17 /35



Caterpillars

Theorem [B., Garnero, Nisse, 2017+]

(< k)-MP is in P for caterpillars.

Remark: Matched leaf edge = Simplification.

..... [V

= Being adjacent to two leaves is useless.

Focus on caterpillars with A = 3 (~ paths).

17 /35



Caterpillars

Theorem [B., Garnero, Nisse, 2017+]

(< k)-MP is in P for caterpillars.

Remark: Matched leaf edge = Simplification.

..... [V

= Being adjacent to two leaves is useless.
Focus on caterpillars with A = 3 (~ paths).

Essentially, again go from left to right. |
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Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(< k)-MP is in P for subdivided stars.

Claim: Augmentations through the root should behave in a path way:
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Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(< k)-MP is in P for subdivided stars.

Claim: Augmentations through the root should behave in a path way:
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(because 1, 2, 3 and 4 are augmenting (< k)-paths.)
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.. and it retains the parity of the number of exposed vertices along that branch.
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Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(< k)-MP is in P for subdivided stars.

For an inner-branch, an equivalent augmentation can be performed

*"¢ -
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.. and it retains the parity of the number of exposed vertices along that branch.

Augmentations through the root — Alter the parity of the end-branches only.

Along a branch with « exp. vertices, |«/2| augmentations can be done (path):
@ « even: all exposed can be matched along.
@ otherwise: all but one.
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Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(< k)-MP is in P for subdivided stars.

So, we can reach a maximum matching by essentially:
@ Augment root paths to match two vertices from different branches;
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Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(< k)-MP is in P for subdivided stars.

To summarize:
@ If necessary, do an augmentation involving the root.
@ If possible, join two odd branches via root augmentations.
© Finally, match the remaining exposed vertices on the branches.

= Polynomial-time algorithm. |
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Going to sparse trees

k-sparse tree: Vertices with degree > 3 are at distance > k.

mmmE S mmm--

o----é----o
o----?----o
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(< k)-MP for k-sparse trees

Theorem [B., Garnero, Nisse, 2017+]

(< k)-MP is in P for k-sparse trees.

Idea: Consider subdivided stars, and build a solution from bottom to top. ]

Jreenneeve
.------.?.------..
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Negative results
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NP-hardness proof: Need some forcing mechanisms.
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Original intention

NP-hardness proof: Need some forcing mechanisms.
For (< k)-MP in trees, sounds hard because of the “< k" requirement.

= What if we augment k-paths only?

(= k)-MATCHING PROBLEM — (= k)-MP
Input: A graph G, and a matching M of G.
Question: What is the value of u_x(G, M)?

Good news: Some properties of (< k)-MP derive to (= k)-MP:
@ NP-hardness for odd k > 5;

@ all polynomial-time algorithms for classes of trees.
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On (< 3)-MP and (= 3)-MP

Recall that (< 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Proof: Reduction from 3-SAT. Just need variable gadget:
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On (< 3)-MP and (= 3)-MP

Recall that (< 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Proof: Reduction from 3-SAT. Just need variable gadget:

SEENEE

Longest sequence: Matched edges on all spikes of a single side.
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On (< 3)-MP and (= 3)-MP

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Attach a leaf to the base of every spike. Previous remark still applies.
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On (< 3)-MP and (= 3)-MP

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Add a variable gadget G; for each x;. Pushing left=True. Pushing right=False.

Next add a clause vertex ¢; for every clause C;, and, for every distinct literal ¢; it
contains, join ¢; and one non-used spike of G; (left if positive, right otherwise).

G
Gy G, G

= One additional augmentation covering ¢; can be done.
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On (< 3)-MP and (= 3)-MP

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Maximum # of 3-augmentations:
@ For every G;, push the matching to the left (x; true) or to the right (x; false).

@ For every ¢;, do an additional augmentation (if made true by a literal).
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On (< 3)-MP and (= 3)-MP

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Maximum # of 3-augmentations:
@ For every G;, push the matching to the left (x; true) or to the right (x; false).

@ For every ¢;, do an additional augmentation (if made true by a literal).
= Maximum p—3 achievable is

(#variables - #spikes) + #clauses,

which is attainable iff F is satisfiable. | |
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About the reduction

We have A < 4 in the reduction.
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About the reduction

We have A < 4 in the reduction. Furthermore:
o If F planar, then the reduced graph is planar.

@ All cycles go through c¢;'s and variables gadgets:

e Conveniently choose the joined spikes = Bipartite.
o Same = Arbitrarily large girth.

+ by slight modifications, we can also guarantee A < 3.

30/35



(= k)-MP in trees for non-fixed k

Modified version:

(=)-MATCHING PROBLEM - (=)-MP
Input: A graph G, a matching M of G, and an odd k > 1.
Question: What is the value of u_x(G, M)?
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(= k)-MP in trees for non-fixed k

Modified version:

(=)-MATCHING PROBLEM - (=)-MP
Input: A graph G, a matching M of G, and an odd k > 1.
Question: What is the value of u_x(G, M)?

Negative result for trees:

Theorem [B., Garnero, Nisse, 2017+]

(=)-MP is NP-hard for trees.

Proof (sketch): Reduction from 3-SAT.
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(=)-MP in trees
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(=)-MP in trees

Theorem [B., Garnero, Nisse, 2017+]

(=)-MP is NP-hard for trees.

Lengths of the dashed paths chosen so that:
o for each x;, open either the true or false gate;

o for each C;, reach only the arrival points.
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(=)-MP in trees

Theorem [B., Garnero, Nisse, 2017+]

(=)-MP is NP-hard for trees.

Lengths of the dashed paths chosen so that:
o for each x;, open either the true or false gate;
o for each C;, reach only the arrival points.
= Needed k depends on #clauses and #variables. |
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Conclusion and perspectives

Status of (< k)-MP still unclear for trees.
What about:

o trees with A <37
e subdivided combs?
e etc.

@ Dynamic programming yields algorithms.

What about (= k)-MP in trees?
Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!
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