
On augmenting matchings
via bounded-length augmentations

Julien Bensmail, Valentin Garnero, Nicolas Nisse

Université Nice-Sophia-Antipolis, France

LaBRI
April 28th, 2017

1 / 35



Introduction

2 / 35



Cast

Graph, Matching
Exposed vertex, Covered vertex

3 / 35



Cast

Graph

, Matching
Exposed vertex, Covered vertex

3 / 35



Cast

Graph, Matching

Exposed vertex, Covered vertex

3 / 35



Cast

Graph, Matching
Exposed vertex, Covered vertex

3 / 35



Augmenting a matching

Augmenting path, Augmentation

Augmentation ⇒ Bigger matching.

4 / 35



Augmenting a matching

Augmenting path, Augmentation

Augmentation ⇒ Bigger matching.

4 / 35



Augmenting a matching

Augmenting path, Augmentation

Augmentation ⇒ Bigger matching.

4 / 35



Augmenting a matching

Augmenting path, Augmentation

Augmentation ⇒ Bigger matching.

4 / 35



Augmenting a matching

Augmenting path, Augmentation

Augmentation ⇒ Bigger matching.

4 / 35



Augmenting a matching

Augmenting path, Augmentation

Augmentation ⇒ Bigger matching.

4 / 35



Augmenting a matching

Augmenting path, Augmentation

Augmentation ⇒ Bigger matching.

4 / 35



Augmenting a matching

Augmenting path, Augmentation

Augmentation ⇒ Bigger matching.
4 / 35



Berge and Edmonds’ results

Maximum matching = Biggest matching.
µ(G ) = Cardinality of a maximum matching of G .

Theorem [Berge, 1957]

Maximum matching ⇔ No augmenting path.

Finding augmenting paths?

Theorem [Edmonds’ Blossom Algorithm, 1965]

Detection in polynomial time.

Hence, µ(G ) can be determined in poly-time.

5 / 35



Berge and Edmonds’ results

Maximum matching = Biggest matching.
µ(G ) = Cardinality of a maximum matching of G .

Theorem [Berge, 1957]

Maximum matching ⇔ No augmenting path.

Finding augmenting paths?

Theorem [Edmonds’ Blossom Algorithm, 1965]

Detection in polynomial time.

Hence, µ(G ) can be determined in poly-time.

5 / 35



Berge and Edmonds’ results

Maximum matching = Biggest matching.
µ(G ) = Cardinality of a maximum matching of G .

Theorem [Berge, 1957]

Maximum matching ⇔ No augmenting path.

Finding augmenting paths?

Theorem [Edmonds’ Blossom Algorithm, 1965]

Detection in polynomial time.

Hence, µ(G ) can be determined in poly-time.

5 / 35



Today’s motivation

Plane → Suitable landing slot times (edges) + Scheduled one (matching).

9h-9h20 9h20-9h40 9h40-10h 10h-10h20 10h20-10h40

6 / 35



Today’s motivation

Issue: Plane 2 is delayed...

9h-9h20 9h20-9h40 9h40-10h 10h-10h20 10h20-10h40

How to fix that??

7 / 35



Today’s motivation

Issue: Plane 2 is delayed...

9h-9h20 9h20-9h40 9h40-10h 10h-10h20 10h20-10h40

How to fix that??

7 / 35



Motivation

Re-scheduling a lot is not acceptable! ⇒ Cannot start over from scratch.
⇒ Modify the matching “locally”, via an augmentation.

9h-9h20 9h20-9h40 9h40-10h 10h-10h20 10h20-10h40

8 / 35



Motivation

Re-scheduling a lot is not acceptable! ⇒ Cannot start over from scratch.
⇒ Modify the matching “locally”, via an augmentation.

9h-9h20 9h20-9h40 9h40-10h 10h-10h20 10h20-10h40

8 / 35



Motivation

Re-scheduling a lot is not acceptable! ⇒ Cannot start over from scratch.
⇒ Modify the matching “locally”, via an augmentation.

9h-9h20 9h20-9h40 9h40-10h 10h-10h20 10h20-10h40

8 / 35



Motivation

Re-scheduling a lot is not acceptable! ⇒ Cannot start over from scratch.
⇒ Modify the matching “locally”, via an augmentation.

9h-9h20 9h20-9h40 9h40-10h 10h-10h20 10h20-10h40

8 / 35



More formally

For practical reasons, only

1 1-paths (= pick a free slot), and

2 3-paths (= shift a busy slot)

should actually be augmented. Hence (≤ 3)-paths.

For odd k ≥ 1, attain a largest matching via (≤ k)-augmentations?

µ≤k(G ,M): Its cardinality for G equipped with M.

Note: µ≤1(G , ∅) = µ(G ).

9 / 35



More formally

For practical reasons, only

1 1-paths (= pick a free slot), and

2 3-paths (= shift a busy slot)

should actually be augmented. Hence (≤ 3)-paths.

For odd k ≥ 1, attain a largest matching via (≤ k)-augmentations?

µ≤k(G ,M): Its cardinality for G equipped with M.

Note: µ≤1(G , ∅) = µ(G ).

9 / 35



Note: order matters

k = 5. First attempt.

10 / 35



Note: order matters

k = 5. First attempt.

10 / 35



Note: order matters

k = 5. First attempt.

10 / 35



Note: order matters

k = 5. First attempt.

10 / 35



Note: order matters

k = 5. Second attempt.

11 / 35



Note: order matters

k = 5. Second attempt.

11 / 35



Note: order matters

k = 5. Second attempt.

11 / 35



Note: order matters

k = 5. Second attempt.

11 / 35



Note: order matters

k = 5. Second attempt.

11 / 35



Note: order matters

k = 5. Second attempt.

11 / 35



Note: order matters

k = 5. Second attempt.

11 / 35



First dichotomy

(≤ k)-Matching Problem – (≤ k)-MP
Input: A graph G , and a matching M of G .
Question: What is the value of µ≤k(G ,M)?

Dichotomy on k:

Theorem [Nisse, Salch, Weber, 2015+]

(≤ k)-MP is

in P for k = 1, 3;

NP-hard for every odd k ≥ 5.

Latter statement true for planar bipartite graphs with ∆ ≤ 3 and arb. large girth.

12 / 35



First dichotomy

(≤ k)-Matching Problem – (≤ k)-MP
Input: A graph G , and a matching M of G .
Question: What is the value of µ≤k(G ,M)?

Dichotomy on k :

Theorem [Nisse, Salch, Weber, 2015+]

(≤ k)-MP is

in P for k = 1, 3;

NP-hard for every odd k ≥ 5.

Latter statement true for planar bipartite graphs with ∆ ≤ 3 and arb. large girth.

12 / 35



Towards a second dichotomy

Summary:

For k = 1, 3, the problem is settled.

For odd k ≥ 5, NP-hard for graphs close to trees.

Complexity of (≤ k)-MP for trees?

Today’s talk:

(≤ k)-MP is in P for caterpillars, subdivided stars, “sparse trees”, etc.

A modified version is NP-complete for trees.

13 / 35



Towards a second dichotomy

Summary:

For k = 1, 3, the problem is settled.

For odd k ≥ 5, NP-hard for graphs close to trees.

Complexity of (≤ k)-MP for trees?

Today’s talk:

(≤ k)-MP is in P for caterpillars, subdivided stars, “sparse trees”, etc.

A modified version is NP-complete for trees.

13 / 35



Towards a second dichotomy

Summary:

For k = 1, 3, the problem is settled.

For odd k ≥ 5, NP-hard for graphs close to trees.

Complexity of (≤ k)-MP for trees?

Today’s talk:

(≤ k)-MP is in P for caterpillars, subdivided stars, “sparse trees”, etc.

A modified version is NP-complete for trees.

13 / 35



Towards a second dichotomy

Summary:

For k = 1, 3, the problem is settled.

For odd k ≥ 5, NP-hard for graphs close to trees.

Complexity of (≤ k)-MP for trees?

Today’s talk:

(≤ k)-MP is in P for caterpillars, subdivided stars, “sparse trees”, etc.

A modified version is NP-complete for trees.

13 / 35



Positive results

14 / 35



Easy case: paths

Theorem [Nisse, Salch, Weber, 2015+]

(≤ k)-MP is in P for paths.

1st key idea: Consider exposed vertices joined only once by an augmenting path.

> k

⇒ Decompose the problem into two sub-problems.
In a path ⇒ Exposed vertices have one on the left/right at distance ≤ k.

15 / 35



Easy case: paths

Theorem [Nisse, Salch, Weber, 2015+]

(≤ k)-MP is in P for paths.

1st key idea: Consider exposed vertices joined only once by an augmenting path.

> k

⇒ Decompose the problem into two sub-problems.
In a path ⇒ Exposed vertices have one on the left/right at distance ≤ k.

15 / 35



Easy case: paths

Theorem [Nisse, Salch, Weber, 2015+]

(≤ k)-MP is in P for paths.

1st key idea: Consider exposed vertices joined only once by an augmenting path.

> k

E

⇒ Decompose the problem into two sub-problems.
In a path ⇒ Exposed vertices have one on the left/right at distance ≤ k.

15 / 35



Easy case: paths

Theorem [Nisse, Salch, Weber, 2015+]

(≤ k)-MP is in P for paths.

1st key idea: Consider exposed vertices joined only once by an augmenting path.

> k

E

⇒ Decompose the problem into two sub-problems.
In a path ⇒ Exposed vertices have one on the left/right at distance ≤ k.

15 / 35



Easy case: paths

Theorem [Nisse, Salch, Weber, 2015+]

(≤ k)-MP is in P for paths.

2nd key idea: We can augment paths joining “consecutive” exposed vertices only.

v1 v2 v3 v4 v5 v6

1 2

3

3 ⇒ The paths v1...v2, v3...v4 and v5...v6 have length ≤ k and alternate. So

v1 v2 v3 v4 v5 v6

1 2 3

yield the same matching.

⇒ In a path, just go from left to right, and augment paths when possible. �

16 / 35



Easy case: paths

Theorem [Nisse, Salch, Weber, 2015+]

(≤ k)-MP is in P for paths.

2nd key idea: We can augment paths joining “consecutive” exposed vertices only.

v1 v2 v3 v4 v5 v6

1 2

3

3 ⇒ The paths v1...v2, v3...v4 and v5...v6 have length ≤ k and alternate. So

v1 v2 v3 v4 v5 v6

1 2 3

yield the same matching.

⇒ In a path, just go from left to right, and augment paths when possible. �

16 / 35



Easy case: paths

Theorem [Nisse, Salch, Weber, 2015+]

(≤ k)-MP is in P for paths.

2nd key idea: We can augment paths joining “consecutive” exposed vertices only.

v1 v2 v3 v4 v5 v6

1 2

3

3 ⇒ The paths v1...v2, v3...v4 and v5...v6 have length ≤ k and alternate. So

v1 v2 v3 v4 v5 v6

1 2 3

yield the same matching.

⇒ In a path, just go from left to right, and augment paths when possible. �
16 / 35



Caterpillars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for caterpillars.

Remark: Matched leaf edge ⇒ Simplification.

⇒ Being adjacent to two leaves is useless.

Focus on caterpillars with ∆ = 3 (∼ paths).

Essentially, again go from left to right. �

17 / 35



Caterpillars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for caterpillars.

Remark: Matched leaf edge ⇒ Simplification.

⇒ Being adjacent to two leaves is useless.

Focus on caterpillars with ∆ = 3 (∼ paths).

Essentially, again go from left to right. �

17 / 35



Caterpillars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for caterpillars.

Remark: Matched leaf edge ⇒ Simplification.

⇒ Being adjacent to two leaves is useless.

Focus on caterpillars with ∆ = 3 (∼ paths).

Essentially, again go from left to right. �

17 / 35



Caterpillars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for caterpillars.

Remark: Matched leaf edge ⇒ Simplification.

⇒ Being adjacent to two leaves is useless.

Focus on caterpillars with ∆ = 3 (∼ paths).

Essentially, again go from left to right. �

17 / 35



Caterpillars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for caterpillars.

Remark: Matched leaf edge ⇒ Simplification.

⇒ Being adjacent to two leaves is useless.

Focus on caterpillars with ∆ = 3 (∼ paths).

Essentially, again go from left to right. �

17 / 35



Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

Claim: Augmentations through the root should behave in a path way:

1

2

3

4

equivalent to

1′ 2′

3′4′

(because 1, 2, 3 and 4 are augmenting (≤ k)-paths.)

18 / 35



Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

Claim: Augmentations through the root should behave in a path way:

1

2

3

4 equivalent to

1′ 2′

3′4′

(because 1, 2, 3 and 4 are augmenting (≤ k)-paths.)

18 / 35



Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

Claim: Augmentations through the root should behave in a path way:

1

2

3

4 equivalent to

1′ 2′

3′4′

(because 1, 2, 3 and 4 are augmenting (≤ k)-paths.)
18 / 35



Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

For an inner-branch, an equivalent augmentation can be performed

1 2

→
1′

... and it retains the parity of the number of exposed vertices along that branch.

Augmentations through the root → Alter the parity of the end-branches only.

Along a branch with α exp. vertices, bα/2c augmentations can be done (path):

α even: all exposed can be matched along.

otherwise: all but one.

19 / 35



Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

For an inner-branch, an equivalent augmentation can be performed

1 2

→

1′

... and it retains the parity of the number of exposed vertices along that branch.

Augmentations through the root → Alter the parity of the end-branches only.

Along a branch with α exp. vertices, bα/2c augmentations can be done (path):

α even: all exposed can be matched along.

otherwise: all but one.

19 / 35



Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

For an inner-branch, an equivalent augmentation can be performed

1 2

→
1′

... and it retains the parity of the number of exposed vertices along that branch.

Augmentations through the root → Alter the parity of the end-branches only.

Along a branch with α exp. vertices, bα/2c augmentations can be done (path):

α even: all exposed can be matched along.

otherwise: all but one.

19 / 35



Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

For an inner-branch, an equivalent augmentation can be performed

1 2

→
1′

... and it retains the parity of the number of exposed vertices along that branch.

Augmentations through the root → Alter the parity of the end-branches only.

Along a branch with α exp. vertices, bα/2c augmentations can be done (path):

α even: all exposed can be matched along.

otherwise: all but one.

19 / 35



Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

For an inner-branch, an equivalent augmentation can be performed

1 2

→
1′

... and it retains the parity of the number of exposed vertices along that branch.

Augmentations through the root → Alter the parity of the end-branches only.

Along a branch with α exp. vertices, bα/2c augmentations can be done (path):

α even: all exposed can be matched along.

otherwise: all but one.
19 / 35



Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

So, we can reach a maximum matching by essentially:
1 Augment root paths to match two vertices from different branches;

2 Then finish off along the branches.
... and the first step is only useful if the two end-branches are “odd”.

The first end-branch is the one having the “root” matching. Accessibility of a
second odd branch can be checked via a BFS in an auxiliary graph:

≤ k

≤ k

≤ k

u

v1 v2

w1 w2

→ u

{v1, v2}

{w1,w2}

20 / 35



Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

So, we can reach a maximum matching by essentially:
1 Augment root paths to match two vertices from different branches;
2 Then finish off along the branches.

... and the first step is only useful if the two end-branches are “odd”.

The first end-branch is the one having the “root” matching. Accessibility of a
second odd branch can be checked via a BFS in an auxiliary graph:

≤ k

≤ k

≤ k

u

v1 v2

w1 w2

→ u

{v1, v2}

{w1,w2}

20 / 35



Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

So, we can reach a maximum matching by essentially:
1 Augment root paths to match two vertices from different branches;
2 Then finish off along the branches.

... and the first step is only useful if the two end-branches are “odd”.

The first end-branch is the one having the “root” matching. Accessibility of a
second odd branch can be checked via a BFS in an auxiliary graph:

≤ k

≤ k

≤ k

u

v1 v2

w1 w2

→ u

{v1, v2}

{w1,w2}

20 / 35



Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

So, we can reach a maximum matching by essentially:
1 Augment root paths to match two vertices from different branches;
2 Then finish off along the branches.

... and the first step is only useful if the two end-branches are “odd”.

The first end-branch is the one having the “root” matching. Accessibility of a
second odd branch can be checked via a BFS in an auxiliary graph:

≤ k

≤ k

≤ k

u

v1 v2

w1 w2

→

u

{v1, v2}

{w1,w2}

20 / 35



Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

So, we can reach a maximum matching by essentially:
1 Augment root paths to match two vertices from different branches;
2 Then finish off along the branches.

... and the first step is only useful if the two end-branches are “odd”.

The first end-branch is the one having the “root” matching. Accessibility of a
second odd branch can be checked via a BFS in an auxiliary graph:

≤ k

≤ k

≤ k

u

v1 v2

w1 w2

→ u

{v1, v2}

{w1,w2}

20 / 35



Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

To summarize:

1 If necessary, do an augmentation involving the root.

2 If possible, join two odd branches via root augmentations.

3 Finally, match the remaining exposed vertices on the branches.

⇒ Polynomial-time algorithm. �

21 / 35



Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

To summarize:

1 If necessary, do an augmentation involving the root.

2 If possible, join two odd branches via root augmentations.

3 Finally, match the remaining exposed vertices on the branches.

⇒ Polynomial-time algorithm. �

21 / 35



Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

To summarize:

1 If necessary, do an augmentation involving the root.

2 If possible, join two odd branches via root augmentations.

3 Finally, match the remaining exposed vertices on the branches.

⇒ Polynomial-time algorithm. �

21 / 35



Going to sparse trees

k-sparse tree: Vertices with degree ≥ 3 are at distance > k.

> k

22 / 35



(≤ k)-MP for k-sparse trees

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for k-sparse trees.

Idea: Consider subdivided stars, and build a solution from bottom to top. �

> k

23 / 35



Negative results

24 / 35



Original intention

NP-hardness proof: Need some forcing mechanisms.

For (≤ k)-MP in trees, sounds hard because of the “≤ k” requirement.

⇒ What if we augment k-paths only?

(= k)-Matching Problem – (= k)-MP
Input: A graph G , and a matching M of G .
Question: What is the value of µ=k(G ,M)?

Good news: Some properties of (≤ k)-MP derive to (= k)-MP:

NP-hardness for odd k ≥ 5;

all polynomial-time algorithms for classes of trees.

25 / 35



Original intention

NP-hardness proof: Need some forcing mechanisms.

For (≤ k)-MP in trees, sounds hard because of the “≤ k” requirement.

⇒ What if we augment k-paths only?

(= k)-Matching Problem – (= k)-MP
Input: A graph G , and a matching M of G .
Question: What is the value of µ=k(G ,M)?

Good news: Some properties of (≤ k)-MP derive to (= k)-MP:

NP-hardness for odd k ≥ 5;

all polynomial-time algorithms for classes of trees.

25 / 35



Original intention

NP-hardness proof: Need some forcing mechanisms.

For (≤ k)-MP in trees, sounds hard because of the “≤ k” requirement.

⇒ What if we augment k-paths only?

(= k)-Matching Problem – (= k)-MP
Input: A graph G , and a matching M of G .
Question: What is the value of µ=k(G ,M)?

Good news: Some properties of (≤ k)-MP derive to (= k)-MP:

NP-hardness for odd k ≥ 5;

all polynomial-time algorithms for classes of trees.

25 / 35



Original intention

NP-hardness proof: Need some forcing mechanisms.

For (≤ k)-MP in trees, sounds hard because of the “≤ k” requirement.

⇒ What if we augment k-paths only?

(= k)-Matching Problem – (= k)-MP
Input: A graph G , and a matching M of G .
Question: What is the value of µ=k(G ,M)?

Good news: Some properties of (≤ k)-MP derive to (= k)-MP:

NP-hardness for odd k ≥ 5;

all polynomial-time algorithms for classes of trees.

25 / 35



On (≤ 3)-MP and (= 3)-MP

Recall that (≤ 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Proof: Reduction from 3-SAT. Just need variable gadget:

Longest sequence: Matched edges on all spikes of a single side.

26 / 35



On (≤ 3)-MP and (= 3)-MP

Recall that (≤ 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Proof: Reduction from 3-SAT. Just need variable gadget:

Longest sequence: Matched edges on all spikes of a single side.

26 / 35



On (≤ 3)-MP and (= 3)-MP

Recall that (≤ 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Proof: Reduction from 3-SAT. Just need variable gadget:

Longest sequence: Matched edges on all spikes of a single side.

26 / 35



On (≤ 3)-MP and (= 3)-MP

Recall that (≤ 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Proof: Reduction from 3-SAT. Just need variable gadget:

Longest sequence: Matched edges on all spikes of a single side.

26 / 35



On (≤ 3)-MP and (= 3)-MP

Recall that (≤ 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Proof: Reduction from 3-SAT. Just need variable gadget:

Longest sequence: Matched edges on all spikes of a single side.

26 / 35



On (≤ 3)-MP and (= 3)-MP

Recall that (≤ 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Proof: Reduction from 3-SAT. Just need variable gadget:

Longest sequence: Matched edges on all spikes of a single side.

26 / 35



On (≤ 3)-MP and (= 3)-MP

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Attach a leaf to the base of every spike. Previous remark still applies.

27 / 35



On (≤ 3)-MP and (= 3)-MP

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Add a variable gadget Gi for each xi . Pushing left=True. Pushing right=False.

Next add a clause vertex ci for every clause Ci , and, for every distinct literal `j it
contains, join ci and one non-used spike of Gi (left if positive, right otherwise).

ci

Gj1 Gj2 Gj3

⇒ One additional augmentation covering ci can be done.

28 / 35



On (≤ 3)-MP and (= 3)-MP

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Add a variable gadget Gi for each xi . Pushing left=True. Pushing right=False.

Next add a clause vertex ci for every clause Ci , and, for every distinct literal `j it
contains, join ci and one non-used spike of Gi (left if positive, right otherwise).

ci

Gj1 Gj2 Gj3

⇒ One additional augmentation covering ci can be done.

28 / 35



On (≤ 3)-MP and (= 3)-MP

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Add a variable gadget Gi for each xi . Pushing left=True. Pushing right=False.

Next add a clause vertex ci for every clause Ci , and, for every distinct literal `j it
contains, join ci and one non-used spike of Gi (left if positive, right otherwise).

ci

Gj1 Gj2 Gj3

⇒ One additional augmentation covering ci can be done.
28 / 35



On (≤ 3)-MP and (= 3)-MP

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Maximum # of 3-augmentations:
1 For every Gi , push the matching to the left (xi true) or to the right (xi false).

2 For every ci , do an additional augmentation (if made true by a literal).

⇒ Maximum µ=3 achievable is

(#variables ·#spikes) + #clauses,

which is attainable iff F is satisfiable. �

29 / 35



On (≤ 3)-MP and (= 3)-MP

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Maximum # of 3-augmentations:
1 For every Gi , push the matching to the left (xi true) or to the right (xi false).

2 For every ci , do an additional augmentation (if made true by a literal).

⇒ Maximum µ=3 achievable is

(#variables ·#spikes) + #clauses,

which is attainable iff F is satisfiable. �

29 / 35



About the reduction

We have ∆ ≤ 4 in the reduction.

Furthermore:

If F planar, then the reduced graph is planar.

All cycles go through ci ’s and variables gadgets:

Conveniently choose the joined spikes ⇒ Bipartite.
Same ⇒ Arbitrarily large girth.

+ by slight modifications, we can also guarantee ∆ ≤ 3.

30 / 35



About the reduction

We have ∆ ≤ 4 in the reduction. Furthermore:

If F planar, then the reduced graph is planar.

All cycles go through ci ’s and variables gadgets:

Conveniently choose the joined spikes ⇒ Bipartite.
Same ⇒ Arbitrarily large girth.

+ by slight modifications, we can also guarantee ∆ ≤ 3.

30 / 35



About the reduction

We have ∆ ≤ 4 in the reduction. Furthermore:

If F planar, then the reduced graph is planar.

All cycles go through ci ’s and variables gadgets:

Conveniently choose the joined spikes ⇒ Bipartite.
Same ⇒ Arbitrarily large girth.

+ by slight modifications, we can also guarantee ∆ ≤ 3.

30 / 35



About the reduction

We have ∆ ≤ 4 in the reduction. Furthermore:

If F planar, then the reduced graph is planar.

All cycles go through ci ’s and variables gadgets:

Conveniently choose the joined spikes ⇒ Bipartite.
Same ⇒ Arbitrarily large girth.

+ by slight modifications, we can also guarantee ∆ ≤ 3.

30 / 35



About the reduction

We have ∆ ≤ 4 in the reduction. Furthermore:

If F planar, then the reduced graph is planar.

All cycles go through ci ’s and variables gadgets:

Conveniently choose the joined spikes ⇒ Bipartite.
Same ⇒ Arbitrarily large girth.

+ by slight modifications, we can also guarantee ∆ ≤ 3.

30 / 35



(= k)-MP in trees for non-fixed k

Modified version:

(=)-Matching Problem – (=)-MP
Input: A graph G , a matching M of G , and an odd k ≥ 1.
Question: What is the value of µ=k(G ,M)?

Negative result for trees:

Theorem [B., Garnero, Nisse, 2017+]

(=)-MP is NP-hard for trees.

Proof (sketch): Reduction from 3-SAT.

31 / 35



(= k)-MP in trees for non-fixed k

Modified version:

(=)-Matching Problem – (=)-MP
Input: A graph G , a matching M of G , and an odd k ≥ 1.
Question: What is the value of µ=k(G ,M)?

Negative result for trees:

Theorem [B., Garnero, Nisse, 2017+]

(=)-MP is NP-hard for trees.

Proof (sketch): Reduction from 3-SAT.

31 / 35



(=)-MP in trees

x1

forth back

x2

forth back

C1

forth back

C2

forth back

x1
in

out

in

out

C1
inout C1

C2

in out

in out

x2
in

out

in

out

C2
inout C1

in out

32 / 35



(=)-MP in trees

Theorem [B., Garnero, Nisse, 2017+]

(=)-MP is NP-hard for trees.

Lengths of the dashed paths chosen so that:

for each xi , open either the true or false gate;

for each Ci , reach only the arrival points.

⇒ Needed k depends on #clauses and #variables. �

33 / 35



(=)-MP in trees

Theorem [B., Garnero, Nisse, 2017+]

(=)-MP is NP-hard for trees.

Lengths of the dashed paths chosen so that:

for each xi , open either the true or false gate;

for each Ci , reach only the arrival points.

⇒ Needed k depends on #clauses and #variables. �

33 / 35



Conclusion

34 / 35



Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?
subdivided combs?
etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!

35 / 35



Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?

subdivided combs?
etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!

35 / 35



Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?
subdivided combs?

etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!

35 / 35



Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?
subdivided combs?
etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!

35 / 35



Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?
subdivided combs?
etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!

35 / 35



Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?
subdivided combs?
etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!

35 / 35



Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?
subdivided combs?
etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!

35 / 35



Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?
subdivided combs?
etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!

35 / 35


