On augmenting matchings via bounded-length augmentations

Julien Bensmail, Valentin Garnero, Nicolas Nisse

Université Nice-Sophia-Antipolis, France

LaBRI April 28th, 2017

Introduction

Cast

Graph

Graph, Matching

Cast

Graph, Matching Exposed vertex, Covered vertex

Augmenting path, Augmentation

Augmentation \Rightarrow Bigger matching.

Berge and Edmonds' results

Maximum matching = Biggest matching. $\mu(G)$ = Cardinality of a maximum matching of *G*.

Berge and Edmonds' results

Maximum matching = Biggest matching. $\mu(G)$ = Cardinality of a maximum matching of *G*.

Theorem [Berge, 1957]

Maximum matching \Leftrightarrow No augmenting path.

Maximum matching = Biggest matching. $\mu(G)$ = Cardinality of a maximum matching of *G*.

Theorem [Berge, 1957]

 $\mathsf{Maximum\ matching\ }\Leftrightarrow \mathsf{No\ augmenting\ path}.$

Finding augmenting paths?

Theorem [Edmonds' Blossom Algorithm, 1965]

Detection in polynomial time.

Hence, $\mu(G)$ can be determined in poly-time.

 $\mathsf{Plane} \to \mathsf{Suitable} \text{ landing slot times (edges)} + \mathsf{Scheduled one (matching)}.$

Today's motivation

Issue: Plane 2 is delayed...

Today's motivation

Issue: Plane 2 is delayed...

How to fix that??

For practical reasons, only

- I-paths (= pick a free slot), and
- 3-paths (= shift a busy slot)

should actually be augmented. Hence (\leq 3)-paths.

For practical reasons, only

- 1-paths (= pick a free slot), and
- 3-paths (= shift a busy slot)

should actually be augmented. Hence (\leq 3)-paths.

For odd $k \ge 1$, attain a largest matching via $(\le k)$ -augmentations?

 $\mu_{\leq k}(G, M)$: Its cardinality for G equipped with M.

Note: $\mu_{\leq 1}(G, \emptyset) = \mu(G)$.

k = 5. Second attempt.

First dichotomy

 $(\leq k)$ -MATCHING PROBLEM – $(\leq k)$ -MP Input: A graph *G*, and a matching *M* of *G*. Question: What is the value of $\mu_{\leq k}(G, M)$? $(\leq k)$ -MATCHING PROBLEM – $(\leq k)$ -MP Input: A graph G, and a matching M of G. Question: What is the value of $\mu_{\leq k}(G, M)$?

Dichotomy on k:

Theorem [Nisse, Salch, Weber, 2015+] $(\leq k)$ -MP is • in P for k = 1, 3; • NP-hard for every odd $k \geq 5$.

Latter statement true for planar bipartite graphs with $\Delta \leq$ 3 and arb. large girth.

- For k = 1, 3, the problem is settled.
- For odd $k \ge 5$, NP-hard for graphs close to trees.

- For k = 1, 3, the problem is settled.
- For odd $k \ge 5$, NP-hard for graphs close to trees.

Complexity of $(\leq k)$ -MP for trees?

- For k = 1, 3, the problem is settled.
- For odd $k \ge 5$, NP-hard for graphs close to trees.

Complexity of $(\leq k)$ -MP for trees?

Today's talk:

• $(\leq k)$ -MP is in P for caterpillars, subdivided stars, "sparse trees", etc.

- For k = 1, 3, the problem is settled.
- For odd $k \ge 5$, NP-hard for graphs close to trees.

Complexity of $(\leq k)$ -MP for trees?

Today's talk:

- $(\leq k)$ -MP is in P for caterpillars, subdivided stars, "sparse trees", etc.
- A modified version is NP-complete for trees.

Positive results

Theorem [Nisse, Salch, Weber, 2015+]

 $(\leq k)$ -MP is in P for paths.

1st key idea: Consider exposed vertices joined only once by an augmenting path.

1st key idea: Consider exposed vertices joined only once by an augmenting path.

1st key idea: Consider exposed vertices joined only once by an augmenting path.

1st key idea: Consider exposed vertices joined only once by an augmenting path.

 \Rightarrow Decompose the problem into two sub-problems. In a path \Rightarrow Exposed vertices have one on the left/right at distance $\leq k$.

Theorem [Nisse, Salch, Weber, 2015+]

 $(\leq k)$ -MP is in P for paths.

2nd key idea: We can augment paths joining "consecutive" exposed vertices only.

Theorem [Nisse, Salch, Weber, 2015+]

 $(\leq k)$ -MP is in P for paths.

2nd key idea: We can augment paths joining "consecutive" exposed vertices only.

 $3 \Rightarrow$ The paths $v_1...v_2$, $v_3...v_4$ and $v_5...v_6$ have length $\leq k$ and alternate. So

yield the same matching.

Theorem [Nisse, Salch, Weber, 2015+]

 $(\leq k)$ -MP is in P for paths.

2nd key idea: We can augment paths joining "consecutive" exposed vertices only.

3 \Rightarrow The paths $v_1...v_2$, $v_3...v_4$ and $v_5...v_6$ have length $\leq k$ and alternate. So

yield the same matching.

 \Rightarrow In a path, just go from left to right, and augment paths when possible.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

Remark: Matched leaf edge \Rightarrow Simplification.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

Remark: Matched leaf edge \Rightarrow Simplification.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

Remark: Matched leaf edge \Rightarrow Simplification.

 \Rightarrow Being adjacent to two leaves is useless.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

Remark: Matched leaf edge \Rightarrow Simplification.

 \Rightarrow Being adjacent to two leaves is useless.

Focus on caterpillars with $\Delta = 3$ (\sim paths).

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

Remark: Matched leaf edge \Rightarrow Simplification.

 \Rightarrow Being adjacent to two leaves is useless.

Focus on caterpillars with $\Delta = 3$ (\sim paths).

Essentially, again go from left to right.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

Claim: Augmentations through the root should behave in a path way:

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

Claim: Augmentations through the root should behave in a path way:

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

Claim: Augmentations through the root should behave in a path way:

(because 1, 2, 3 and 4 are augmenting ($\leq k$)-paths.)

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

For an inner-branch, an equivalent augmentation can be performed

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

For an inner-branch, an equivalent augmentation can be performed

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

For an inner-branch, an equivalent augmentation can be performed

... and it retains the parity of the number of exposed vertices along that branch.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

For an inner-branch, an equivalent augmentation can be performed

... and it retains the parity of the number of exposed vertices along that branch. Augmentations through the root \rightarrow Alter the parity of the end-branches only.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

For an inner-branch, an equivalent augmentation can be performed

... and it retains the parity of the number of exposed vertices along that branch.

Augmentations through the root \rightarrow Alter the parity of the end-branches only.

Along a branch with α exp. vertices, $\lfloor \alpha/2 \rfloor$ augmentations can be done (path):

- $\bullet~\alpha$ even: all exposed can be matched along.
- otherwise: all but one.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

So, we can reach a maximum matching by essentially:

Augment root paths to match two vertices from different branches;

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

So, we can reach a maximum matching by essentially:

- Augment root paths to match two vertices from different branches;
- In the finish off along the branches.
- ... and the first step is only useful if the two end-branches are "odd".

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

So, we can reach a maximum matching by essentially:

- 4 Augment root paths to match two vertices from different branches;
- Intermediate of the branches.

... and the first step is only useful if the two end-branches are "odd".

The first end-branch is the one having the "root" matching. Accessibility of a second odd branch can be checked via a BFS in an auxiliary graph:

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

So, we can reach a maximum matching by essentially:

- 4 Augment root paths to match two vertices from different branches;
- Intermediate of the branches.

... and the first step is only useful if the two end-branches are "odd".

The first end-branch is the one having the "root" matching. Accessibility of a second odd branch can be checked via a BFS in an auxiliary graph:

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

So, we can reach a maximum matching by essentially:

- 4 Augment root paths to match two vertices from different branches;
- Intermediate of the branches.
- ... and the first step is only useful if the two end-branches are "odd".

The first end-branch is the one having the "root" matching. Accessibility of a second odd branch can be checked via a BFS in an auxiliary graph:

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

To summarize:

If necessary, do an augmentation involving the root.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

To summarize:

- If necessary, do an augmentation involving the root.
- **2** If possible, join two odd branches via root augmentations.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

To summarize:

- If necessary, do an augmentation involving the root.
- **②** If possible, join two odd branches via root augmentations.
- S Finally, match the remaining exposed vertices on the branches.

 \Rightarrow Polynomial-time algorithm.
k-sparse tree: Vertices with degree \geq 3 are at distance > k.

$(\leq k)$ -MP for k-sparse trees

 $(\leq k)$ -MP is in P for k-sparse trees.

Idea: Consider subdivided stars, and build a solution from bottom to top.

Negative results

For $(\leq k)$ -MP in trees, sounds hard because of the " $\leq k$ " requirement.

For $(\leq k)$ -MP in trees, sounds hard because of the " $\leq k$ " requirement.

 \Rightarrow What if we augment *k*-paths only?

For $(\leq k)$ -MP in trees, sounds hard because of the " $\leq k$ " requirement.

 \Rightarrow What if we augment *k*-paths only?

(= k)-MATCHING PROBLEM – (= k)-MP **Input:** A graph G, and a matching M of G. **Question:** What is the value of $\mu_{=k}(G, M)$?

For $(\leq k)$ -MP in trees, sounds hard because of the " $\leq k$ " requirement.

 \Rightarrow What if we augment *k*-paths only?

(= k)-MATCHING PROBLEM – (= k)-MP **Input:** A graph G, and a matching M of G. **Question:** What is the value of $\mu_{=k}(G, M)$?

Good news: Some properties of $(\leq k)$ -MP derive to (= k)-MP:

- NP-hardness for odd $k \ge 5$;
- all polynomial-time algorithms for classes of trees.

Recall that (\leq 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+] (= 3)-MP is NP-hard.

Recall that (\leq 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+] (= 3)-MP is NP-hard.

Recall that (\leq 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+] (= 3)-MP is NP-hard.

Recall that (\leq 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+] (= 3)-MP is NP-hard.

Recall that (\leq 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+] (= 3)-MP is NP-hard.

Recall that (\leq 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+] (= 3)-MP is NP-hard.

Proof: Reduction from 3-SAT. Just need variable gadget:

Longest sequence: Matched edges on all spikes of a single side.

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Attach a leaf to the base of every spike. Previous remark still applies.

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Add a variable gadget G_i for each x_i . Pushing left=True. Pushing right=False.

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Add a variable gadget G_i for each x_i . Pushing left=True. Pushing right=False. Next add a clause vertex c_i for every clause C_i , and, for every distinct literal ℓ_j it

contains, join c_i and one non-used spike of G_i (left if positive, right otherwise).

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Add a variable gadget G_i for each x_i . Pushing left=True. Pushing right=False. Next add a clause vertex c_i for every clause C_i , and, for every distinct literal ℓ_j it contains, join c_i and one non-used spike of G_i (left if positive, right otherwise).

 \Rightarrow One additional augmentation covering c_i can be done.

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Maximum # of 3-augmentations:

- For every G_i , push the matching to the left (x_i true) or to the right (x_i false).
- Solution For every c_i , do an additional augmentation (if made true by a literal).

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Maximum # of 3-augmentations:

- For every G_i , push the matching to the left (x_i true) or to the right (x_i false).
- So For every c_i , do an additional augmentation (if made true by a literal).
- \Rightarrow Maximum $\mu_{=3}$ achievable is

 $(\# variables \cdot \# spikes) + \# clauses,$

which is attainable iff F is satisfiable.

We have $\Delta \leq 4$ in the reduction.

• If F planar, then the reduced graph is planar.

- If F planar, then the reduced graph is planar.
- All cycles go through c_i's and variables gadgets:

- If F planar, then the reduced graph is planar.
- All cycles go through c_i's and variables gadgets:
 - Conveniently choose the joined spikes \Rightarrow Bipartite.
 - Same \Rightarrow Arbitrarily large girth.

- If F planar, then the reduced graph is planar.
- All cycles go through c_i's and variables gadgets:
 - Conveniently choose the joined spikes \Rightarrow Bipartite.
 - Same \Rightarrow Arbitrarily large girth.

+ by slight modifications, we can also guarantee $\Delta \leq$ 3.

(= k)-MP in trees for non-fixed k

Modified version:

(=)-MATCHING PROBLEM – (=)-MP **Input:** A graph G, a matching M of G, and an odd $k \ge 1$. **Question:** What is the value of $\mu_{=k}(G, M)$?

(= k)-MP in trees for non-fixed k

Modified version:

(=)-MATCHING PROBLEM – (=)-MP **Input:** A graph G, a matching M of G, and an odd $k \ge 1$. **Question:** What is the value of $\mu_{=k}(G, M)$?

Negative result for trees:

Theorem [B., Garnero, Nisse, 2017+] (=)-MP is NP-hard for trees.

Proof (sketch): Reduction from 3-SAT.

(=)-MP in trees

Theorem [B., Garnero, Nisse, 2017+]

(=)-MP is NP-hard for trees.

Lengths of the dashed paths chosen so that:

- for each x_i, open either the *true* or *false* gate;
- for each C_i , reach only the arrival points.

Theorem [B., Garnero, Nisse, 2017+]

(=)-MP is NP-hard for trees.

Lengths of the dashed paths chosen so that:

- for each x_i, open either the *true* or *false* gate;
- for each C_i , reach only the arrival points.
- \Rightarrow Needed k depends on #clauses and #variables.

Conclusion

• Status of $(\leq k)$ -MP still unclear for trees.

- Status of $(\leq k)$ -MP still unclear for trees.
- What about:
 - trees with $\Delta \leq 3?$

- Status of $(\leq k)$ -MP still unclear for trees.
- What about:
 - trees with $\Delta \leq 3?$
 - subdivided combs?

- Status of $(\leq k)$ -MP still unclear for trees.
- What about:
 - trees with $\Delta \leq 3?$
 - subdivided combs?
 - etc.

- Status of $(\leq k)$ -MP still unclear for trees.
- What about:
 - trees with $\Delta \leq 3?$
 - subdivided combs?
 - etc.
- Dynamic programming yields algorithms.

- Status of $(\leq k)$ -MP still unclear for trees.
- What about:
 - trees with $\Delta \leq 3?$
 - subdivided combs?
 - etc.
- Dynamic programming yields algorithms.
- What about (= k)-MP in trees?
- Appealing case: k = 3.
Conclusion and perspectives

• Status of $(\leq k)$ -MP still unclear for trees.

- What about:
 - trees with $\Delta \leq 3?$
 - subdivided combs?
 - etc.
- Dynamic programming yields algorithms.
- What about (= k)-MP in trees?
- Appealing case: k = 3.
- Other classes of graphs?
- e.g. interval graphs, other sparse classes, etc.

Conclusion and perspectives

• Status of $(\leq k)$ -MP still unclear for trees.

- What about:
 - trees with $\Delta \leq 3?$
 - subdivided combs?
 - etc.
- Dynamic programming yields algorithms.
- What about (= k)-MP in trees?
- Appealing case: k = 3.
- Other classes of graphs?
- e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!