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Main problem

G : undirected simple graph.
T : tree with |E (T )| dividing |E (G )|.

Definition: T -decomposition

A T -decomposition of G is a partition E1, ...,Ek of E (G ) such that Ei

induces an isomorphic copy of T for every i = 1, ..., k.

S4-decomposition P3-decomposition
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The Barát-Thomassen conjecture

Divisibility condition is understood throughout.

Conjecture [Barát, Thomassen – 2006]

For every fixed tree T , there exists a positive constant cT such that every
cT -edge-connected graph admits a T -decomposition.
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The Barát-Thomassen conjecture

Divisibility condition is understood throughout.

Conjecture [Barát, Thomassen – 2006]

For every fixed tree T , there exists a positive constant cT such that every
cT -edge-connected graph admits a T -decomposition.

Verified for T being:

a star [Thomassen – 2012],

a bistar of the form Sk,k+1 [Thomassen – 2014],

the tree with degree sequence (1, 1, 1, 2, 3) [Barát, Gerbner – 2014],

of diameter at most 4 [Merker – 2015+],

among some family of trees with diameter 5 [Merker – 2015+],

and...
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The Barát-Thomassen conjecture

Divisibility condition is understood throughout.

Conjecture [Barát, Thomassen – 2006]

For every fixed tree T , there exists a positive constant cT such that every
cT -edge-connected graph admits a T -decomposition.

and...

the path of length 3 [Thomassen – 2008],

the path of length 4 [Thomassen – 2008],

a path of length 2k [Thomassen – 2014],

the path of length 5 [Botler, Mota, Oshiro, Wakabayashi – 2015],

any path [Botler, Mota, Oshiro, Wakabayashi – 2015+]!
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About the result for paths

Theorem [Botler, Mota, Oshiro, Wakabayashi – 2015+]

The Barát-Thomassen conjecture is true for T being any path.

About the proof:

Generalization of a proof for P5.

Technical due to risky path-uncrossing procedures.

Our goal: give a somewhat simpler proof with reasonable technicalities.
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A stronger result

‘Stronger’ = degree is more important than edge-connectivity.

Theorem [B., Harutyunyan, Thomassé – 2015+]

For every ` ≥ 1, every 64-edge-connected graph admits a P`-
decomposition provided its minimum degree is large enough.

More general question

2-edge-connectivity + large minimum degree ⇒ path-decomposition???
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Overview of the proof

Main ideas:

1. See G as a ‘convenient’ system H of induced paths.

2. Remove some P`’s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Issues:

1. What does ‘convenient’ mean?

2. What does it mean for H to be eulerian?

2. How to ensure connectedness of H (after 2., especially)?

3. How to be sure that the trail is properly decomposable?

3. is a crucial concern in Botler, Mota, Oshiro and Wakabayashi’s proof.

P3 P3 @@��P3
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Outline of the talk

Degree assumption ⇒ source of degree.

Source of degree + small edge-connectivity ⇒ ‘convenient’ objects.

Part 2: sparse and dense subgraphs.

Part 3: constructing systems of edge-disjoint paths.

Part 4: obtaining such systems with a tree structure.
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Sparse and dense subgraphs

α: real number in [0, 1].

Definitions: α-sparse, α-dense, α-fraction

Let H be a spanning subgraph of G . We say that H is α-sparse (resp. α-
dense) if dH(v) ≤ αdG (v) (resp. dH(v) ≥ αdG (v)) for every v ∈ V (G ).
We say that H is an α-fraction of G if H is both α-sparse and α-dense.

k-edge-connectivity + large degree ⇒ 1/k-sparse spanning tree.

Theorem [Ellingham, Nam, Voss – 2002]

Every k-edge-connected graph admits a 1/k-sparse spanning tree.

(with error term +2)
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On fractions of graphs

Proposition

Every graph G has a 1/2-fraction (with error term ±1).

Proof: If G has an even cycle C , remove the edges of C , apply induction and add
the edges of a perfect matching of C to the solution. Otherwise, G is either an
odd cycle (in which case the conclusion follows), or has a cutvertex z incident to
an ‘endblock’ B which is either an edge or an odd cycle. Then contract B to z ,
apply induction, and extend the solution by conveniently choosing some edges of
B. �

Corollary

If α has a finite binary extension, then G has an α-fraction.

(with constant additive error term)
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Path-graphs

Definition: path-graph

A path-graph H on G = (V ,E ) is a couple (V ,P) where P is a set of
edge-disjoint paths of G . For every v ∈ V , we define Pv as the set of
paths of P having v as an endvertex. To H, we associate the (multi)graph
H∗ on vertex set V and edge set contains the pairs of endvertices of P.

H on G H∗
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Properties of path-graphs

H connected ⇔ H∗ connected.

H tree ⇔ H∗ tree.

For every v ∈ V , dH(v) = dH∗(v).

H eulerian ⇔ H connected + dH(v) even for every v ∈ V .

H q-path-graph ⇔ all paths of P have length q.

H (≤ q)-path-graph ⇔ all paths of P have length at most q.

H (≥ q)-path-graph ⇔ all paths of P have length at least q.

H (q1,q2)-path-graph ⇔ all paths of P have length q1 or q2.

Previous example: disconnected (≤ 3)-path-graph.
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Conflicting paths

Conflicting paths ⇔ paths sharing more than just one end.

Conflictless trail ⇔ trail with no subsequent conflicting paths.

H conflictless eulerian ⇔ H has a conflictless eulerian closed trail.
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More terminology for conflicts

Definition: multiplicity

For distinct w , v ∈ V , the multiplicity of w around v is

multv (w) := |{P ∈ Pv : w ∈ P}|/|Pv |.

The multiplicity of H is the maximum multiplicity of its vertices.

Definitions: conflict graph, conflict ratio

For every v ∈ V , the conflict graph Hv is the graph on vertex set Pv in
which P1P2 is an edge if P1 and P2 intersect. The conflict ratio of H is
defined as

max{(∆(Hv ) + 1)/|Pv | : v ∈ V }.

Remark: Every path is self-conflicting.
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Eulerian closed trails and conflict ratio

Eulerian path-graph + reasonable conflict ratio ⇒ conflictless eulerian closed trail.

Theorem

Every eulerian path-graph H with conflict ratio at most 1/8 has a con-
flictless eulerian closed trail.

Proof: Since the antidegree of every vertex in Hv is greater than |Pv |/2,
necessarily Hv admits a hamiltonian anticycle (by Dirac’s Theorem). So there is a
pairing Mv = P1P2,P3P4, ... of the paths in Pv such that each pair is
non-conflicting.

Having such a pairing Mv for every v ∈ V defines a set of conflictless closed trails
T1, ...,Tt , where a pair {Pi ,Pi+1} means that when entering at a vertex via Pi ,
we must leave via Pi+1 (and vice-versa). If t = 1, we are done. Otherwise, we
merge two trails so that t decreases.
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Merging two conflictless closed trails

By our terminology, there is a v ∈ V whose some paths of Pv belong to, say, T1.
We may assume that no more than half of its paths appear in T1.

Assume {P1,P2} ∈ Mv and P1,P2 ∈ T1. Because P1 and P2 have degree less
than |Pv |/8 in Hv , there is a pair {P3,P4} not in T1 and such that P1,P2,P3,P4

are non-conflicting. Then replace {P1,P2} and {P3,P4} in Mv by {P1,P4} and
{P2,P3}. Then t decreases by 1, as claimed. �

P1,P2

|T1| ≤ half < quarter < quarter

P3,P4P3,P4

vP1

P2

T1

P3

P4

T2
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than |Pv |/8 in Hv , there is a pair {P3,P4} not in T1 and such that P1,P2,P3,P4

are non-conflicting. Then replace {P1,P2} and {P3,P4} in Mv by {P1,P4} and
{P2,P3}. Then t decreases by 1, as claimed. �
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To larger paths with reasonable conflicts

Growing paths with still ‘reasonable’ path conflicts?

Lemma

Let q be some fixed positive integer and c > 0 be some real number such
that cq < 1/100. Let H = (V ,P) be an α-dense q-path-graph of some
graph G with multiplicity at most c and minimum degree k large with
respect to 1/c and q. Then one can form an α/5-dense 2q-path-graph
on G with multiplicity at most 16cq.

Proof idea: Consider a cut (V1,V2) of V maximizing the size of the set P ′ of
edges of H∗ ‘between’ V1 and V2. Let H ′ = (V ,P ′). Then H ′ is α/2-dense and
has multiplicity at most 2c . Now split H ′ into two 1/2-fractions H ′1 = (V ,P ′1) and
H ′2 = (V ,P ′2). These two path-graphs are α/4-dense and have multiplicity at
most 4c . We use H ′1 only to form a 2q-path graph on V1 with required density
(almost automatic) and multiplicity (much harder).
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Overview of the proof

We iteratively want to randomly concatenate two q-paths meeting in V2 at some
vertex w to connect two vertices V1 via a 2q-paths.

V1

w
V2

q − paths

2q − path

Problem: The two paths may be conflicting, and w can have degree so large that
it carries too many path dependencies (making impossible e.g. the application of
Lovász Local Lemma).
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Pairing non-conflicting q-paths

Solution: Group the q-paths arriving at w into small subsets of non-conflicting
paths → Possible because of the multiplicity assumption.

Generalization of Hajnal-Szemerédi Theorem

Let G be some graph of order n. Then, for every integer t ≥ ∆(G ) + 1,
the set V (G ) can be partitioned into V1, ...,Vt such that each Vi is an
independent set of size b nt c or d nt e.

Now randomly pairing the q-paths arriving at every vertex w of V2, we get a
2q-path graph H ′′1 spanning V1. Multiplicity around every vertex v of V1 is shown
to be smaller than 16cq by combining LLL and Chernoff’s bound.

Using H ′2 instead H ′1, we also obtain a 2q-path graph H ′′2 spanning V2. �
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Constructing larger paths with reasonable conflicts

From repeated applications, we get:

Theorem

Let p be some integer and 0 < c < 1 be some real number. There is an
integer k depending on p and c such that every graph G with minimum
degree at least k admits a 1/5p-dense 2p-path graph H with multiplicity
at most c .
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Part 1: Introduction to the problem

Part 2: Fractions of graphs

Part 3: Path-graphs

Part 4: Constructing path-trees

Part 5: Using everything together

Part 6: Conclusion
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Constructing (1, `)-trees

2-edge-connectivity + large degree ⇒ (1, `)-(path-)tree with ‘small’ degree.

Theorem

Every 2-edge-connected graph G admits a subcubic spanning (1, 2)-tree.

Proof idea: Assume G is minimal and perform a DFS from some vertex. This
defines some forward edges. The other edges of G are backward edges.

To every vertex v of G , we initially associate the empty (1, 2)-tree X on {v}. The
procedure mainly consists in iteratively considering vertices at the highest depth,
and ‘merging’ their corresponding (1, 2)-trees somehow. This is done with
preserving 2-edge-connectivity.

The key to respect the degree condition is that there are only two possibilities for
increasing the degree of a vertex in a merged (1, 2)-tree, namely by adding its
incident forward and backward edges. �
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Sample cases – One child

x1

xj

x ′1

x1 X1

xj Xj

X1j
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Sample cases – Two children

x1 x2

xj

x ′1

x ′2

x1

X1

x2

X2

xj Xj

26 / 41



Sample cases – Two children

x1 x2

xj

x ′1

x ′2

x1

X1

x2

X2

xj Xj

26 / 41



Sample cases – Two children

x1 x2

xj

x ′1

x ′2

x1

X12

x2

xj Xj

26 / 41



Sample cases – Two children

x1 x2

xj

x ′1

x ′2

x1

X12

x2

xj Xj

26 / 41



From (1, 2)-trees to (1, k)-trees

spanning (1, k)-tree + disjoint ‘source’ of degree = spanning (1, k + 1)-tree.

Theorem

Let T be a spanning (1, k)-tree of some graph G = (V ,E ), and let
H be some additional graph on V , edge-disjoint from G , and satisfying
dH(v) ≥ 2(dT (v) + 2k) for every v ∈ V . Then G ∪ H is spanned by a
(1, k + 1)-tree T ′.

Proof idea: Same kind of proof. Start from the leaves of T and iteratively
concatenate incident k-paths of T with some edges of H in order to form
(k + 1)-paths. This is always possible by the assumption on the degrees in H.

To make sure that the edges of H are equitably used and not ‘saturated’ by some
vertex, we orient them in a balanced way beforehand (hence defining private edges
for every vertex). �
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Sample case – Two children
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(1, k)-trees – Summary

2-edge-connectivity + disjoint ‘source’ of degree = spanning (1, `)-tree.

Corollary

For every ` ≥ 1, there exists k` such that if G = (V ,E ) is a 2-edge-
connected graph and H is some additional graph on V with minimum
degree k`, then G ∪ H is spanned by a (1, ` + 1)-tree T where dT (v) ≤
dH(v) for every v ∈ V .

Proof: First deduce a subcubic (1, 2)-tree T2 spanning G . Then consider a
sequence of disjoint small fraction H1, ...,H`−1 of H, where each Hi is an
εi -fraction of H. By the assumption on k`, we can assume εi+1 ≥ 4εi .

Using H1, from T2 we can deduce a (1, 3)-tree T3 spanning G . Note that
dT3(v) ≤ dT2(v) + dH1(v) for every vertex v ∈ V . Since 4dH1(v) ≤ dH2(v), we can
use H2 to extend T3 to a (1, 4)-tree T4 spanning G . Due to the choice of the εi ’s,
this process can be repeated until we get T . �
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Path-trees in bipartite graphs

Path-trees with paths of lengths multiple of `?

Theorem

For every even ` ≥ 2, there exists k` such that if G = (V ,E ) is a 2-edge-
connected bipartite graph with vertex partition (A,B) and H is some
additional bipartite graph with vertex bipartition (A,B) and minimum
degree k`, then G ∪H admits a (`, 2`)-tree T spanning A where dT (v) ≤
dH(v) for every v ∈ V .

Proof idea: Using a tiny ε-fraction of H, we can obtain a (1, `+ 1)-tree T ′

spanning G verifying dT ′(v) ≤ εdH(v) for every v ∈ V .

We may assume 4ε ≤ 1/5p, where p = dlog2 `e. Also, we can deduce a
1/5p-dense 2p-path-graph H ′ on H with multiplicity at most 1/16.2p. Orienting
H ′∗ in a balanced way, every vertex v is the origin of at least dH(v)/2.5p private
2p-paths of H ′ (with multiplicity at most 1/8.2p). Furthermore, 2p ≥ `− 1.
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Path-trees in bipartite graphs

To obtain T , we once again start from every vertex v of A being its own
(`, 2`)-tree Xv . We then iteratively consider a leaf u in T ′ with parent x , and
concatenate the path associated to ux with some private (`− 1)-path of x . This
forms an ` or 2`-path. �

x1

X1

xj

Xy

X1y
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Overview, second try

Main ideas:

1. See G as a ‘convenient’ system H of induced paths.

2. Remove some P`’s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Refined to...

1. Turn G into a (≥ `)-path graph H.

2. Make H conflictless eulerian by removing some P`’s.

3. Achieve the decomposition by following the conflictless eulerian trail.

Remark: We may suppose ` is even.
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Setting up

G : 64-edge-connected, δ(G )� `.

Start from a maximum cut (V1,V2) of G , and let F be the edges across the cut.

Set G ′ := (V ,F ).

V1

V2

G ′

Max cut ⇒ G ′ is 32-edge-connected and δ(G ′)� `.
⇒ there exist 16 edge-disjoint spanning trees of G ′ [Tutte – 1965].
⇒ G ′ = G ′1, ...,G

′
8 (2-edge-connected).

⇒ there exist T1, ...,T8 1/2-sparse spanning trees.
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Max cut ⇒ G ′ is 32-edge-connected and δ(G ′)� `.
⇒ there exist 16 edge-disjoint spanning trees of G ′ [Tutte – 1965].
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Setting up

Set H1 := T1 ∪T2, H2 := T3 ∪T4, H3 := T5 ∪T6, H4 := T7 ∪T8, and H5 the rest.

V1

V2

G ′H1 H2 H3 H4 H5

G ′ = H1, H2, H3, H4

• connected
• bridgeless

• 1/2-sparse

+ H5

• 1/2-dense
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Creating (`, 2`)-trees over V1 and V2

H1 + tiny c-fraction of H5 = c-sparse (`, 2`)-tree T ′1 spanning V1.
H2 + tiny c-fraction of H5 = c-sparse (`, 2`)-tree T ′2 spanning V1.

H3 + tiny c-fraction of H5 = c-sparse (`, 2`)-tree T ′3 spanning V2.
H4 + tiny c-fraction of H5 = c-sparse (`, 2`)-tree T ′4 spanning V2.

Because δ(H5)� `, we can find a proper (`+ 1)-path P in H5.

T = T ′1 ∪ T ′3 ∪ P is a sparse (≥ `)-tree spanning G .

V1

V2

G ′

T ′1

T ′3

P
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Going on

We may suppose H5 is still 1/2-dense in G ′. Because of the degree assumption, it
has a 1/5p-dense 2p-path-graph H with multiplicity at most c , where p satisfies
` ≤ 2p < 2`.

So far, G is decomposed, saved some `-paths, into:

H +

• 2p-path-graph

• 1/5p-dense

• multiplicity c

T +

• [`, 2`]-tree

• c-sparse

T ′2 +

• (`, 2`)-tree on V1

• c-sparse

T ′4 +

• (`, 2`)-tree on V2

• c-sparse

R

• rest

As long as possible, remove `-paths from R. Call GR what remains.

Theorem [Thomassen – 2008]

GR admits a (< `)-path-graph with maximum degree at most `− 1.
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Growing the paths of GR

Call GR this path-graph.

Consider a ‘tiny’ 4c`3-fraction of H ′ of H, and orient H ′∗ in a balanced way. Then
every vertex v is the origin of a private set of K = 2c`3dH(v) paths P ′1, ...,P

′
K in

H ′.

Since the multiplicity of H is at most c , every path P ′i is conflicting at v with at
most c |P ′i |dH(v) ≤ 2c`dH(v) other paths of H ′v . Among P ′1, ...,P

′
K , one can

hence find K/2c`dH(v) = `2 non-conflicting paths. Then use these paths to
extend those of Hr starting at v . Then we transform all paths of GR into paths of
length in between ` and 3`.

Call H ′R the resulting (≥ `)-path graph. In particular, this graph is sparse in H.
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Getting a decomposition

Our objects are:

H +

• 2p-path-graph

• 1/5p-dense

• multiplicity c

T +

• [`, 2`]-tree

• c-sparse

T ′2 +

• (`, 2`)-tree on V1

• c-sparse

T ′4 +

• (`, 2`)-tree on V2

• c-sparse

H ′R

• [`, 3`]-path-graph

• 4c`3-sparse

and form HF . The final objective is to invoke a eulerian closed trail argument.

So that all degrees of V1 (resp. V2) but maybe one are even, we can remove `- or
2`-paths from T ′2 (resp. T ′4). In case V1 and V2 both have a remaining vertex
with odd degree, with join them via a dummy edge.

Now, since the multiplicity of H is arbitrarily small and T ∪ T ′2 ∪ T ′4 ∪ H ′R is, say,
4c`3-sparse, HF is a (≤ 3`)-path-graph with multiplicity less than 1/24`. Then a
conflictless eulerian closed trail exists in HF . Going along it, we finish the
decomposition into `-paths. �

39 / 41



Getting a decomposition

Our objects are:

H +

• 2p-path-graph

• 1/5p-dense

• multiplicity c

T +

• [`, 2`]-tree

• c-sparse

T ′2 +

• (`, 2`)-tree on V1

• c-sparse

T ′4 +

• (`, 2`)-tree on V2

• c-sparse

H ′R

• [`, 3`]-path-graph

• 4c`3-sparse

and form HF . The final objective is to invoke a eulerian closed trail argument.

So that all degrees of V1 (resp. V2) but maybe one are even, we can remove `- or
2`-paths from T ′2 (resp. T ′4). In case V1 and V2 both have a remaining vertex
with odd degree, with join them via a dummy edge.

Now, since the multiplicity of H is arbitrarily small and T ∪ T ′2 ∪ T ′4 ∪ H ′R is, say,
4c`3-sparse, HF is a (≤ 3`)-path-graph with multiplicity less than 1/24`. Then a
conflictless eulerian closed trail exists in HF . Going along it, we finish the
decomposition into `-paths. �

39 / 41



Getting a decomposition

Our objects are:

H +

• 2p-path-graph

• 1/5p-dense

• multiplicity c

T +

• [`, 2`]-tree

• c-sparse

T ′2 +

• (`, 2`)-tree on V1

• c-sparse

T ′4 +

• (`, 2`)-tree on V2

• c-sparse

H ′R

• [`, 3`]-path-graph

• 4c`3-sparse

and form HF . The final objective is to invoke a eulerian closed trail argument.

So that all degrees of V1 (resp. V2) but maybe one are even, we can remove `- or
2`-paths from T ′2 (resp. T ′4). In case V1 and V2 both have a remaining vertex
with odd degree, with join them via a dummy edge.

Now, since the multiplicity of H is arbitrarily small and T ∪ T ′2 ∪ T ′4 ∪ H ′R is, say,
4c`3-sparse, HF is a (≤ 3`)-path-graph with multiplicity less than 1/24`. Then a
conflictless eulerian closed trail exists in HF . Going along it, we finish the
decomposition into `-paths. �

39 / 41



Part 1: Introduction to the problem

Part 2: Fractions of graphs

Part 3: Path-graphs
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Conclusion

For paths, 64-edge-connectivity suffices...

... but how far can this be pushed?

Actually 48 works (save two trees for constructing T ).

Similar approaches for other kinds of trees?

Thank you for your attention.
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