Edge-partitioning a graph into paths:

beyond the Barat-Thomassen conjecture

Julien Bensmail, Ararat Harutyunyan and Stéphan Thomassé

LIP, ENS de Lyon, France

AGH University, Krakéw
April 14th, 2015

Part 1:

Part 2:
Part 3:
Part 4:
Part 5:
Part 6:

Introduction to the problem
Fractions of graphs
Path-graphs

Constructing path-trees

Using everything together

Conclusion

2/41

Main problem

G: undirected simple graph.
T: tree with |E(T)| dividing |E(G)].

Main problem

G: undirected simple graph.
T: tree with |E(T)| dividing |E(G)].

Definition: T-decomposition

A T-decomposition of G is a partition Eq, ..., Ex of E(G) such that E;
induces an isomorphic copy of T for every i =1, ..., k.

Main problem

G: undirected simple graph.
T: tree with |E(T)| dividing |E(G)|.

Definition: T-decomposition

A T-decomposition of G is a partition Eq, ..., Ex of E(G) such that E;
induces an isomorphic copy of T for every i =1, ..., k.

O <P XY

Main problem

G: undirected simple graph.
T: tree with |E(T)| dividing |E(G)].

Definition: T-decomposition

A T-decomposition of G is a partition Eq, ..., Ex of E(G) such that E;
induces an isomorphic copy of T for every i =1, ..., k.

IR

S4-decomposition P3-decomposition

The Barat-Thomassen conjecture

Divisibility condition is understood throughout.

Conjecture [Barat, Thomassen — 2006]

For every fixed tree T, there exists a positive constant ¢t such that every
cr-edge-connected graph admits a T-decomposition.

The Barat-Thomassen conjecture

Divisibility condition is understood throughout.

Conjecture [Barat, Thomassen — 2006]

For every fixed tree T, there exists a positive constant ¢t such that every
cr-edge-connected graph admits a T-decomposition.

Verified for T being:
@ a star [Thomassen — 2012],
@ a bistar of the form Sy x+1 [Thomassen — 2014],
@ the tree with degree sequence (1,1,1,2,3) [Bardt, Gerbner — 2014],
o of diameter at most 4 [Merker — 2015+],
@ among some family of trees with diameter 5 [Merker — 2015+],

and...

The Barat-Thomassen conjecture

Divisibility condition is understood throughout.

Conjecture [Barat, Thomassen — 2006]

For every fixed tree T, there exists a positive constant ¢t such that every
cr-edge-connected graph admits a T-decomposition.

and...

the path of length 3 [Thomassen — 2008],

the path of length 4 [Thomassen — 2008],

a path of length 2% [Thomassen — 2014],

the path of length 5 [Botler, Mota, Oshiro, Wakabayashi — 2015],
any path [Botler, Mota, Oshiro, Wakabayashi — 2015+]!

About the result for paths

Theorem [Botler, Mota, Oshiro, Wakabayashi — 2015+]

The Bardt-Thomassen conjecture is true for T being any path.

About the proof:

@ Generalization of a proof for Ps.

About the result for paths

Theorem [Botler, Mota, Oshiro, Wakabayashi — 2015+]

The Bardt-Thomassen conjecture is true for T being any path.

About the proof:

@ Generalization of a proof for Ps.
@ Technical due to risky path-uncrossing procedures.

About the result for paths

Theorem [Botler, Mota, Oshiro, Wakabayashi — 2015+]

The Bardt-Thomassen conjecture is true for T being any path.

About the proof:

@ Generalization of a proof for Ps.
@ Technical due to risky path-uncrossing procedures.

Our goal: give a somewhat simpler proof with reasonable technicalities.

A stronger result

‘Stronger’ = degree is more important than edge-connectivity.

6/41

A stronger result

‘Stronger’ = degree is more important than edge-connectivity.

Theorem [B., Harutyunyan, Thomassé — 2015+

For every ¢ > 1, every 64-edge-connected graph admits a P,-
decomposition provided its minimum degree is large enough.

6/41

A stronger result

‘Stronger’ = degree is more important than edge-connectivity.

Theorem [B., Harutyunyan, Thomassé — 2015+

For every ¢ > 1, every 64-edge-connected graph admits a P,-
decomposition provided its minimum degree is large enough.

More general question

2-edge-connectivity + large minimum degree = path-decomposition???

Overview of the proof

Main ideas:
1. See G as a ‘convenient’ system H of induced paths.
2. Remove some P,;’'s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Overview of the proof

Main ideas:

1. See G as a ‘convenient’ system H of induced paths.
2. Remove some P,;’'s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Issues:

1. What does ‘convenient’ mean?

Overview of the proof

Main ideas:

1. See G as a ‘convenient’ system H of induced paths.
2. Remove some P,;’'s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Issues:

1. What does ‘convenient’ mean?
2. What does it mean for H to be eulerian?

Overview of the proof

Main ideas:
1. See G as a ‘convenient’ system H of induced paths.
2. Remove some P,;’'s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Issues:
1. What does ‘convenient’ mean?
2. What does it mean for H to be eulerian?
2. How to ensure connectedness of H (after 2., especially)?

Overview of the proof

Main ideas:

1. See G as a ‘convenient’ system H of induced paths.
2. Remove some P,;’'s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Issues:
1. What does ‘convenient’ mean?
2. What does it mean for H to be eulerian?
2. How to ensure connectedness of H (after 2., especially)?
3

. How to be sure that the trail is properly decomposable?

Overview of the proof

Main ideas:
1. See G as a ‘convenient’ system H of induced paths.
2. Remove some P,;’'s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Issues:
1. What does ‘convenient’ mean?
2. What does it mean for H to be eulerian?
2. How to ensure connectedness of H (after 2., especially)?
3

. How to be sure that the trail is properly decomposable?

3. is a crucial concern in Botler, Mota, Oshiro and Wakabayashi's proof.

Overview of the proof

Main ideas:
1. See G as a ‘convenient’ system H of induced paths.
2. Remove some P,;’'s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Issues:
1. What does ‘convenient’ mean?
2. What does it mean for H to be eulerian?
2. How to ensure connectedness of H (after 2., especially)?
3

. How to be sure that the trail is properly decomposable?

3. is a crucial concern in Botler, Mota, Oshiro and Wakabayashi's proof.

Overview of the proof

Main ideas:
1. See G as a ‘convenient’ system H of induced paths.
2. Remove some P,;’'s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Issues:
1. What does ‘convenient’ mean?
2. What does it mean for H to be eulerian?
2. How to ensure connectedness of H (after 2., especially)?
3

. How to be sure that the trail is properly decomposable?

3. is a crucial concern in Botler, Mota, Oshiro and Wakabayashi's proof.

Overview of the proof

Main ideas:
1. See G as a ‘convenient’ system H of induced paths.
2. Remove some P,;’'s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Issues:
1. What does ‘convenient’ mean?
2. What does it mean for H to be eulerian?
2. How to ensure connectedness of H (after 2., especially)?
3

. How to be sure that the trail is properly decomposable?

3. is a crucial concern in Botler, Mota, Oshiro and Wakabayashi's proof.

Outline of the talk

Degree assumption = source of degree.

Outline of the talk

Degree assumption = source of degree.

Source of degree + small edge-connectivity = ‘convenient’ objects.

Outline of the talk

Degree assumption = source of degree.

Source of degree + small edge-connectivity = ‘convenient’ objects.

o Part 2: sparse and dense subgraphs.

Outline of the talk

Degree assumption = source of degree.

Source of degree + small edge-connectivity = ‘convenient’ objects.

o Part 2: sparse and dense subgraphs.
e Part 3: constructing systems of edge-disjoint paths.

Outline of the talk

Degree assumption = source of degree.

Source of degree + small edge-connectivity = ‘convenient’ objects.

o Part 2: sparse and dense subgraphs.
e Part 3: constructing systems of edge-disjoint paths.

o Part 4: obtaining such systems with a tree structure.

Part 1: Introduction to the problem
Part 2: Fractions of graphs

Part 3: Path-graphs

Part 4: Constructing path-trees
Part 5: Using everything together

Part 6: Conclusion

9/41

Sparse and dense subgraphs

a: real number in [0, 1].

Definitions: a-sparse, a-dense, a-fraction

Let H be a spanning subgraph of G. We say that H is a--sparse (resp. a-
dense) if dy(v) < adg(v) (resp. dy(v) > adg(v)) for every v € V(G).
We say that H is an a-fraction of G if H is both a-sparse and a-dense.

10 /41

Sparse and dense subgraphs

a: real number in [0, 1].

Definitions: a-sparse, a-dense, a-fraction

Let H be a spanning subgraph of G. We say that H is a--sparse (resp. a-
dense) if dy(v) < adg(v) (resp. dy(v) > adg(v)) for every v € V(G).
We say that H is an a-fraction of G if H is both a-sparse and a-dense.

k-edge-connectivity + large degree = 1/k-sparse spanning tree.

Theorem [Ellingham, Nam, Voss — 2002]

Every k-edge-connected graph admits a 1/k-sparse spanning tree.

(with error term +2)

10 /41

On fractions of graphs

Proposition

Every graph G has a 1/2-fraction (with error term +1).

Proof: If G has an even cycle C, remove the edges of C, apply induction and add
the edges of a perfect matching of C to the solution. Otherwise, G is either an
odd cycle (in which case the conclusion follows), or has a cutvertex z incident to
an ‘endblock’ B which is either an edge or an odd cycle. Then contract B to z,
apply induction, and extend the solution by conveniently choosing some edges of
B. |

11/41

On fractions of graphs

Proposition

Every graph G has a 1/2-fraction (with error term +1).

Proof: If G has an even cycle C, remove the edges of C, apply induction and add
the edges of a perfect matching of C to the solution. Otherwise, G is either an
odd cycle (in which case the conclusion follows), or has a cutvertex z incident to
an ‘endblock’ B which is either an edge or an odd cycle. Then contract B to z,
apply induction, and extend the solution by conveniently choosing some edges of
B. |

If « has a finite binary extension, then G has an a-fraction.

(with constant additive error term)

11/41

Part 1: Introduction to the problem
Part 2: Fractions of graphs

Part 3: Path-graphs

Part 4: Constructing path-trees
Part 5: Using everything together

Part 6: Conclusion

12/41

Path-graphs

Definition: path-graph

A path-graph H on G = (V,E) is a couple (V,P) where P is a set of
edge-disjoint paths of G. For every v € V, we define P, as the set of
paths of P having v as an endvertex. To H, we associate the (multi)graph
H* on vertex set V and edge set contains the pairs of endvertices of P.

13 /41

Path-graphs

Definition: path-graph

A path-graph H on G = (V,E) is a couple (V,P) where P is a set of
edge-disjoint paths of G. For every v € V, we define P, as the set of
paths of P having v as an endvertex. To H, we associate the (multi)graph
H* on vertex set V and edge set contains the pairs of endvertices of P.

Hon G

13 /41

Path-graphs

Definition: path-graph

A path-graph H on G = (V,E) is a couple (V,P) where P is a set of
edge-disjoint paths of G. For every v € V, we define P, as the set of
paths of P having v as an endvertex. To H, we associate the (multi)graph
H* on vertex set V and edge set contains the pairs of endvertices of P.

HO—> 0]

Hon G

13 /41

Properties of path-graphs

@ H connected < H* connected.
o H tree & H* tree.

14/41

Properties of path-graphs

H connected < H* connected.

H tree < H* tree.

For every v € V, dy(v) = dy=(v).

H eulerian < H connected + dy(v) even for every v € V.

14/41

Properties of path-graphs

H connected < H* connected.

H tree < H* tree.

For every v € V, dy(v) = dy=(v).

H eulerian < H connected + dy(v) even for every v € V.

H g-path-graph < all paths of P have length gq.
H (< q)-path-graph < all paths of P have length at most q.
H (> q)-path-graph < all paths of P have length at least g.

H (q1, q2)-path-graph < all paths of P have length ¢; or g.

Previous example: disconnected (< 3)-path-graph.

14/41

Conflicting paths

o Conflicting paths < paths sharing more than just one end.
o Conflictless trail < trail with no subsequent conflicting paths.
o H conflictless eulerian < H has a conflictless eulerian closed trail.

EN
4

15 /41

More terminology for conflicts

Definition: multiplicity

For distinct w, v € V/, the multiplicity of w around v is
mult,(w) = |{P € P, : w e P}/|P,|

The multiplicity of H is the maximum multiplicity of its vertices.

16 /41

More terminology for conflicts

Definition: multiplicity

For distinct w, v € V/, the multiplicity of w around v is
mult, (w) := [{P € P, : w € P}|/|Py|.

The multiplicity of H is the maximum multiplicity of its vertices.

Definitions: conflict graph, conflict ratio

For every v € V, the conflict graph H, is the graph on vertex set P, in
which Py P, is an edge if P; and P, intersect. The conflict ratio of H is

defined as
max{(A(H,)+1)/|P,|: v e V}.

Remark: Every path is self-conflicting.

16 /41

Eulerian closed trails and conflict ratio

Eulerian path-graph + reasonable conflict ratio = conflictless eulerian closed trail.

Every eulerian path-graph H with conflict ratio at most 1/8 has a con-
flictless eulerian closed trail.

17 /41

Eulerian closed trails and conflict ratio

Eulerian path-graph + reasonable conflict ratio = conflictless eulerian closed trail.

Every eulerian path-graph H with conflict ratio at most 1/8 has a con-
flictless eulerian closed trail.

Proof: Since the antidegree of every vertex in H, is greater than |P,|/2,
necessarily H, admits a hamiltonian anticycle (by Dirac’'s Theorem). So there is a
pairing M, = P1P,, P3Py, ... of the paths in P, such that each pair is
non-conflicting.

17 /41

Eulerian closed trails and conflict ratio

Eulerian path-graph + reasonable conflict ratio = conflictless eulerian closed trail.

Every eulerian path-graph H with conflict ratio at most 1/8 has a con-
flictless eulerian closed trail.

Proof: Since the antidegree of every vertex in H, is greater than |P,|/2,
necessarily H, admits a hamiltonian anticycle (by Dirac’'s Theorem). So there is a
pairing M, = P1P,, P3Py, ... of the paths in P, such that each pair is
non-conflicting.

Having such a pairing M, for every v € V defines a set of conflictless closed trails
Ti,..., T+, where a pair {P;, P;+1} means that when entering at a vertex via P;,
we must leave via P;1 (and vice-versa). If t = 1, we are done. Otherwise, we
merge two trails so that t decreases.

17 /41

Merging two conflictless closed trails

By our terminology, there is a v € V whose some paths of P, belong to, say, T;.
We may assume that no more than half of its paths appear in T;.

Assume {Py1, P,} € M, and Py, P, € T;. Because P; and P, have degree less
than |P,|/8 in H,, there is a pair {Ps3, P4} not in Ty and such that Py, Py, P3, P4
are non-conflicting. Then replace {Py, P,} and {Ps, P4} in M, by {P1, P4} and
{P,, P3}. Then t decreases by 1, as claimed. |

18 /41

Merging two conflictless closed trails

By our terminology, there is a v € V whose some paths of P, belong to, say, T;.
We may assume that no more than half of its paths appear in T;.

Assume {Py1, P,} € M, and Py, P, € T;. Because P; and P, have degree less
than |P,|/8 in H,, there is a pair {Ps3, P4} not in Ty and such that Py, Py, P3, P4
are non-conflicting. Then replace {Py, P,} and {Ps, P4} in M, by {P1, P4} and
{P,, P3}. Then t decreases by 1, as claimed. |

| T1| < half > half

18 /41

Merging two conflictless closed trails

By our terminology, there is a v € V whose some paths of P, belong to, say, T;.
We may assume that no more than half of its paths appear in T;.

Assume {Py1, P,} € M, and Py, P, € T;. Because P; and P, have degree less
than |P,|/8 in H,, there is a pair {Ps3, P4} not in Ty and such that Py, Py, P3, P4
are non-conflicting. Then replace {Py, P,} and {Ps, P4} in M, by {P1, P4} and
{P,, P3}. Then t decreases by 1, as claimed. |

(PIPy g mece e ’),

| T1| < half < quarter

18 /41

Merging two conflictless closed trails

By our terminology, there is a v € V whose some paths of P, belong to, say, T;.
We may assume that no more than half of its paths appear in T;.

Assume {Py1, P,} € M, and Py, P, € T;. Because P; and P, have degree less
than |P,|/8 in H,, there is a pair {Ps3, P4} not in Ty and such that Py, Py, P3, P4
are non-conflicting. Then replace {Py, P,} and {Ps, P4} in M, by {P1, P4} and
{P,, P3}. Then t decreases by 1, as claimed. |

| T1| < half < quarter < quarter

18 /41

Merging two conflictless closed trails

By our terminology, there is a v € V whose some paths of P, belong to, say, T;.
We may assume that no more than half of its paths appear in T;.

Assume {Py1, P,} € M, and Py, P, € T;. Because P; and P, have degree less
than |P,|/8 in H,, there is a pair {Ps3, P4} not in Ty and such that Py, Py, P3, P4
are non-conflicting. Then replace {Py, P,} and {Ps, P4} in M, by {P1, P4} and
{P,, P3}. Then t decreases by 1, as claimed. |

| T1| < half < quarter < quarter

18 /41

Merging two conflictless closed trails

By our terminology, there is a v € V whose some paths of P, belong to, say, T;.
We may assume that no more than half of its paths appear in T;.

Assume {Py1, P,} € M, and Py, P, € T;. Because P; and P, have degree less
than |P,|/8 in H,, there is a pair {Ps3, P4} not in Ty and such that Py, Py, P3, P4
are non-conflicting. Then replace {Py, P,} and {Ps, P4} in M, by {P1, P4} and
{P,, P3}. Then t decreases by 1, as claimed. |

| T1| < half < quarter < quarter

18 /41

Merging two conflictless closed trails

By our terminology, there is a v € V whose some paths of P, belong to, say, T;.
We may assume that no more than half of its paths appear in T;.

Assume {Py1, P,} € M, and Py, P, € T;. Because P; and P, have degree less

than |P,|/8 in H,, there is a pair {Ps3, P4} not in Ty and such that Py, Py, P3, P4
are non-conflicting. Then replace {Py, P,} and {Ps, P4} in M, by {P1, P4} and

{P,, P3}. Then t decreases by 1, as claimed. n
VPP Y e : N N R
| T1| < half < quarter < quarter
-e o
DA S L AIRS
' Py v Ps)
1 1
L] 1
7! > T2

18 /41

Merging two conflictless closed trails

By our terminology, there is a v € V whose some paths of P, belong to, say, T;.
We may assume that no more than half of its paths appear in T;.

Assume {Py1, P,} € M, and Py, P, € T;. Because P; and P, have degree less
than |P,|/8 in H,, there is a pair {Ps3, P4} not in Ty and such that Py, Py, P3, P4
are non-conflicting. Then replace {Py, P,} and {Ps, P4} in M, by {P1, P4} and
{P,, P3}. Then t decreases by 1, as claimed. |

18 /41

To larger paths with reasonable conflicts

Growing paths with still ‘reasonable’ path conflicts?

Lemma

Let g be some fixed positive integer and ¢ > 0 be some real number such
that cg < 1/100. Let H = (V,P) be an a-dense g-path-graph of some
graph G with multiplicity at most ¢ and minimum degree k large with
respect to 1/c and g. Then one can form an «/5-dense 2g-path-graph
on G with multiplicity at most 16¢q.

19/41

To larger paths with reasonable conflicts

Growing paths with still ‘reasonable’ path conflicts?

Lemma

Let g be some fixed positive integer and ¢ > 0 be some real number such
that cg < 1/100. Let H = (V,P) be an a-dense g-path-graph of some
graph G with multiplicity at most ¢ and minimum degree k large with
respect to 1/c and g. Then one can form an «/5-dense 2g-path-graph
on G with multiplicity at most 16cq.

J

Proof idea: Consider a cut (V4, V») of V maximizing the size of the set P’ of
edges of H* ‘between’ V; and V5. Let H' = (V,P’). Then H' is a/2-dense and
has multiplicity at most 2c. Now split H' into two 1/2-fractions H; = (V,P;) and
H) = (V,P,). These two path-graphs are a;/4-dense and have multiplicity at
most 4c. We use Hj only to form a 2g-path graph on V; with required density
(almost automatic) and multiplicity (much harder).

19/41

Overview of the proof

We iteratively want to randomly concatenate two g-paths meeting in V5 at some
vertex w to connect two vertices V; via a 2g-paths.

N g v

Y

20/41

Overview of the proof

We iteratively want to randomly concatenate two g-paths meeting in V5 at some
vertex w to connect two vertices V; via a 2g-paths.

s s v

q — paths

[v]vz

20/41

Overview of the proof

We iteratively want to randomly concatenate two g-paths meeting in V5 at some
vertex w to connect two vertices V; via a 2g-paths.

{ 2q — path } Vi

[. |v

20/41

Overview of the proof

We iteratively want to randomly concatenate two g-paths meeting in V5 at some
vertex w to connect two vertices V; via a 2g-paths.

e

20/41

Overview of the proof

We iteratively want to randomly concatenate two g-paths meeting in V5 at some
vertex w to connect two vertices V; via a 2g-paths.

s g v

[v]vz

w

Problem: The two paths may be conflicting, and w can have degree so large that
it carries too many path dependencies (making impossible e.g. the application of
Lovész Local Lemma).

20/41

Pairing non-conflicting g-paths

Solution: Group the g-paths arriving at w into small subsets of non-conflicting
paths — Possible because of the multiplicity assumption.

Generalization of Hajnal-Szemerédi Theorem

Let G be some graph of order n. Then, for every integer t > A(G) + 1,
the set V/(G) can be partitioned into V4, ..., V; such that each V; is an

independent set of size [7] or [7].

21/41

Pairing non-conflicting g-paths

Solution: Group the g-paths arriving at w into small subsets of non-conflicting
paths — Possible because of the multiplicity assumption.

Generalization of Hajnal-Szemerédi Theorem

Let G be some graph of order n. Then, for every integer t > A(G) + 1,
the set V/(G) can be partitioned into V4, ..., V; such that each V; is an

independent set of size [7] or [7].

Now randomly pairing the g-paths arriving at every vertex w of V5, we get a
2g-path graph Hj' spanning V4. Multiplicity around every vertex v of V; is shown
to be smaller than 16¢cq by combining LLL and Chernoff's bound.

Using H} instead Hj, we also obtain a 2g-path graph H} spanning V5. |

21/41

Constructing larger paths with reasonable conflicts

From repeated applications, we get:

Let p be some integer and 0 < ¢ < 1 be some real number. There is an
integer k depending on p and c¢ such that every graph G with minimum
degree at least k admits a 1/5P-dense 2P-path graph H with multiplicity
at most c.

Part 1: Introduction to the problem
Part 2: Fractions of graphs

Part 3: Path-graphs

Part 4: Constructing path-trees
Part 5: Using everything together

Part 6: Conclusion

23/41

Constructing (1, ¢)-trees

2-edge-connectivity + large degree = (1, £)-(path-)tree with ‘small’ degree.

Every 2-edge-connected graph G admits a subcubic spanning (1, 2)-tree.

24 /41

Constructing (1, ¢)-trees

2-edge-connectivity + large degree = (1, ¢)-(path-)tree with ‘small’ degree.

Every 2-edge-connected graph G admits a subcubic spanning (1, 2)-tree.

Proof idea: Assume G is minimal and perform a DFS from some vertex. This
defines some forward edges. The other edges of G are backward edges.

24 /41

Constructing (1, ¢)-trees

2-edge-connectivity + large degree = (1, ¢)-(path-)tree with ‘small’ degree.

Every 2-edge-connected graph G admits a subcubic spanning (1, 2)-tree.

Proof idea: Assume G is minimal and perform a DFS from some vertex. This
defines some forward edges. The other edges of G are backward edges.

To every vertex v of G, we initially associate the empty (1,2)-tree X on {v}. The
procedure mainly consists in iteratively considering vertices at the highest depth,
and ‘merging’ their corresponding (1,2)-trees somehow. This is done with
preserving 2-edge-connectivity.

24 /41

Constructing (1, ¢)-trees

2-edge-connectivity + large degree = (1, ¢)-(path-)tree with ‘small’ degree.

Every 2-edge-connected graph G admits a subcubic spanning (1, 2)-tree.

Proof idea: Assume G is minimal and perform a DFS from some vertex. This
defines some forward edges. The other edges of G are backward edges.

To every vertex v of G, we initially associate the empty (1,2)-tree X on {v}. The
procedure mainly consists in iteratively considering vertices at the highest depth,
and ‘merging’ their corresponding (1,2)-trees somehow. This is done with
preserving 2-edge-connectivity.

The key to respect the degree condition is that there are only two possibilities for
increasing the degree of a vertex in a merged (1,2)-tree, namely by adding its
incident forward and backward edges. |

Sample cases — One child

X1 nMA-§’/-rr’J,X1

25 /41

Sample cases — One child

X1 nMA-§’/-rr’J,X1

25 /41

Sample cases — One child

)
X1

25 /41

Sample cases — One child

)
X1

25 /41

Sample cases — Two children

26 /41

Sample cases — Two children

26 /41

Sample cases — Two children

X12
{/. X1 [X2] X1 X2
A3
.
.
.
A}
1
1
1 Xi ®)<J
1
1
]
1
]
]
’

26 /41

Sample cases — Two children

X12
{/. X1 [X2] X1 X2
A3
.
.
.
A}
1
1
1 Xi ®)<J
1
1
]
1
]
]
’

26 /41

From (1, 2)-trees to (1, k)-trees

spanning (1, k)-tree + disjoint ‘source’ of degree = spanning (1, k + 1)-tree.

Let T be a spanning (1, k)-tree of some graph G = (V,E), and let
H be some additional graph on V/, edge-disjoint from G, and satisfying
du(v) > 2(d1(v) + 2k) for every v € V. Then G U H is spanned by a
(1, k+1)-tree T'.

27 /41

From (1, 2)-trees to (1, k)-trees

spanning (1, k)-tree + disjoint ‘source’ of degree = spanning (1, k + 1)-tree.

Let T be a spanning (1, k)-tree of some graph G = (V,E), and let
H be some additional graph on V/, edge-disjoint from G, and satisfying
du(v) > 2(d1(v) + 2k) for every v € V. Then G U H is spanned by a
(1, k+1)-tree T'.

Proof idea: Same kind of proof. Start from the leaves of T and iteratively
concatenate incident k-paths of T with some edges of H in order to form
(k + 1)-paths. This is always possible by the assumption on the degrees in H.

From (1, 2)-trees to (1, k)-trees

spanning (1, k)-tree + disjoint ‘source’ of degree = spanning (1, k + 1)-tree.

Let T be a spanning (1, k)-tree of some graph G = (V,E), and let
H be some additional graph on V/, edge-disjoint from G, and satisfying
du(v) > 2(d1(v) + 2k) for every v € V. Then G U H is spanned by a
(1, k+1)-tree T'.

Proof idea: Same kind of proof. Start from the leaves of T and iteratively
concatenate incident k-paths of T with some edges of H in order to form
(k + 1)-paths. This is always possible by the assumption on the degrees in H.

To make sure that the edges of H are equitably used and not ‘saturated’ by some
vertex, we orient them in a balanced way beforehand (hence defining private edges
for every vertex). [|

Sample case — Two children

28 /41

Sample case — Two children

28 /41

Sample case — Two children

28 /41

Sample case — Two children

X1

28 /41

Sample case — Two children

X1

28 /41

(1, k)-trees — Summary

2-edge-connectivity + disjoint ‘source’ of degree = spanning (1, ¢)-tree.

For every £ > 1, there exists kg such that if G = (V,E) is a 2-edge-
connected graph and H is some additional graph on V with minimum
degree kg, then G U H is spanned by a (1,¢ 4 1)-tree T where d7(v) <
du(v) for every v € V.

29 /41

(1, k)-trees — Summary

2-edge-connectivity + disjoint ‘source’ of degree = spanning (1, ¢)-tree.

For every £ > 1, there exists kg such that if G = (V,E) is a 2-edge-
connected graph and H is some additional graph on V with minimum
degree kg, then G U H is spanned by a (1,¢ 4 1)-tree T where d7(v) <
du(v) for every v € V.

Proof: First deduce a subcubic (1,2)-tree T, spanning G. Then consider a
sequence of disjoint small fraction Hy, ..., Hy_1 of H, where each H; is an
g;-fraction of H. By the assumption on k;, we can assume €;;1 > 4¢;.

29 /41

(1, k)-trees — Summary

2-edge-connectivity + disjoint ‘source’ of degree = spanning (1, ¢)-tree.

For every £ > 1, there exists kg such that if G = (V,E) is a 2-edge-
connected graph and H is some additional graph on V with minimum
degree kg, then G U H is spanned by a (1,¢ 4 1)-tree T where d7(v) <
du(v) for every v € V.

Proof: First deduce a subcubic (1,2)-tree T, spanning G. Then consider a
sequence of disjoint small fraction Hy, ..., Hy_1 of H, where each H; is an
g;-fraction of H. By the assumption on k;, we can assume €;;1 > 4¢;.

Using Hy, from T, we can deduce a (1, 3)-tree T3 spanning G. Note that

dr,(v) < d7,(v) + du, (v) for every vertex v € V. Since 4dy, (v) < du,(v), we can
use H, to extend T3 to a (1,4)-tree T, spanning G. Due to the choice of the ¢;'s,
this process can be repeated until we get T. |

Path-trees in bipartite graphs

Path-trees with paths of lengths multiple of ¢7

For every even £ > 2, there exists ky such that if G = (V/, E) is a 2-edge-
connected bipartite graph with vertex partition (A, B) and H is some
additional bipartite graph with vertex bipartition (A, B) and minimum
degree kg, then GU H admits a (¢,2¢)-tree T spanning A where d7(v) <
du(v) for every v € V.

30/41

Path-trees in bipartite graphs

Path-trees with paths of lengths multiple of ¢7

For every even £ > 2, there exists ky such that if G = (V/, E) is a 2-edge-
connected bipartite graph with vertex partition (A, B) and H is some
additional bipartite graph with vertex bipartition (A, B) and minimum
degree kg, then GU H admits a (¢,2¢)-tree T spanning A where d7(v) <
du(v) for every v € V.

\. .

Proof idea: Using a tiny e-fraction of H, we can obtain a (1,¢+ 1)-tree T’
spanning G verifying dr/(v) < edy(v) for every v € V.

30/41

Path-trees in bipartite graphs

Path-trees with paths of lengths multiple of ¢7

For every even £ > 2, there exists ky such that if G = (V/, E) is a 2-edge-
connected bipartite graph with vertex partition (A, B) and H is some
additional bipartite graph with vertex bipartition (A, B) and minimum
degree kg, then GU H admits a (¢,2¢)-tree T spanning A where d7(v) <
du(v) for every v € V.

\.

Proof idea: Using a tiny e-fraction of H, we can obtain a (1,¢+ 1)-tree T’
spanning G verifying dr/(v) < edy(v) for every v € V.

We may assume 4e < 1/5P, where p = [log, £]. Also, we can deduce a
1/5P-dense 2P-path-graph H’ on H with multiplicity at most 1/16.2P. Orienting
H’* in a balanced way, every vertex v is the origin of at least dy(v)/2.5° private
2P-paths of H' (with multiplicity at most 1/8.27). Furthermore, 2P > ¢ — 1.

30/41

Path-trees in bipartite graphs

To obtain T, we once again start from every vertex v of A being its own
(£,20)-tree X,. We then iteratively consider a leaf u in T’ with parent x, and
concatenate the path associated to ux with some private (¢ — 1)-path of x. This
forms an ¢ or 2¢-path. |

31/41

Path-trees in bipartite graphs

To obtain T, we once again start from every vertex v of A being its own
(£,20)-tree X,. We then iteratively consider a leaf u in T’ with parent x, and
concatenate the path associated to ux with some private (¢ — 1)-path of x. This
forms an ¢ or 2¢-path. |

31/41

Path-trees in bipartite graphs

To obtain T, we once again start from every vertex v of A being its own
(£,20)-tree X,. We then iteratively consider a leaf u in T’ with parent x, and
concatenate the path associated to ux with some private (¢ — 1)-path of x. This
forms an ¢ or 2¢-path. |

31/41

Path-trees in bipartite graphs

To obtain T, we once again start from every vertex v of A being its own
(£,20)-tree X,. We then iteratively consider a leaf u in T’ with parent x, and
concatenate the path associated to ux with some private (¢ — 1)-path of x. This
forms an ¢ or 2¢-path. |

X1

e
s

31/41

Path-trees in bipartite graphs

To obtain T, we once again start from every vertex v of A being its own
(£,20)-tree X,. We then iteratively consider a leaf u in T’ with parent x, and
concatenate the path associated to ux with some private (¢ — 1)-path of x. This
forms an ¢ or 2¢-path. |

Xy,

31/41

Path-trees in bipartite graphs

To obtain T, we once again start from every vertex v of A being its own
(£,20)-tree X,. We then iteratively consider a leaf u in T’ with parent x, and
concatenate the path associated to ux with some private (¢ — 1)-path of x. This
forms an ¢ or 2¢-path. |

Xy,

31/41

Part 1: Introduction to the problem
Part 2: Fractions of graphs

Part 3: Path-graphs

Part 4: Constructing path-trees

Part 5: Using everything together

Part 6: Conclusion

32/41

Overview, second try

Main ideas:

1. See G as a ‘convenient’ system H of induced paths.
2. Remove some P;'s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

33/41

Overview, second try

Main ideas:

1. See G as a ‘convenient’ system H of induced paths.
2. Remove some P;'s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Refined to...
1. Turn G into a (> £)-path graph H.

33/41

Overview, second try

Main ideas:

1. See G as a ‘convenient’ system H of induced paths.
2. Remove some P;'s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Refined to...

1. Turn G into a (> £)-path graph H.
2. Make H conflictless eulerian by removing some P;'s.

33/41

Overview, second try

Main ideas:

1. See G as a ‘convenient’ system H of induced paths.
2. Remove some P;'s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Refined to...

1. Turn G into a (> £)-path graph H.
2. Make H conflictless eulerian by removing some P;'s.
3. Achieve the decomposition by following the conflictless eulerian trail.

33/41

Overview, second try

Main ideas:

1. See G as a ‘convenient’ system H of induced paths.
2. Remove some P;'s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Refined to...
1. Turn G into a (> £)-path graph H.

2. Make H conflictless eulerian by removing some P;'s.

3. Achieve the decomposition by following the conflictless eulerian trail.

Remark: We may suppose /£ is even.

33/41

G: 64-edge-connected, §(G) > £.

34/41

G: 64-edge-connected, §(G) > £.

Start from a maximum cut (V4, V) of G, and let F be the edges across the cut.

34/41

G: 64-edge-connected, §(G) > £.

Start from a maximum cut (V4, V) of G, and let F be the edges across the cut.
Set G' .= (V,F).

WYV A WA/ A

G: 64-edge-connected, §(G) > £.

Start from a maximum cut (V4, V) of G, and let F be the edges across the cut.

Set G' = (V, F).

WYV A WA/ A

L

AN AN AN AN AN AN AN

Max cut = G’ is 32-edge-connected and §(G’) > /.

34/41

G: 64-edge-connected, §(G) > £.

Start from a maximum cut (V4, V) of G, and let F be the edges across the cut.
Set G' .= (V,F).

WYV A WA/ A

AN AN AN AN AN AN AN

Max cut = G’ is 32-edge-connected and §(G’) > /.
= there exist 16 edge-disjoint spanning trees of G’ [Tutte — 1965].

34/41

G: 64-edge-connected, §(G) > £.

Start from a maximum cut (V4, V) of G, and let F be the edges across the cut.
Set G' .= (V,F).

WYV A WA/ A

AN AN AN AN AN AN AN

Max cut = G’ is 32-edge-connected and §(G’) > /.

= there exist 16 edge-disjoint spanning trees of G’ [Tutte — 1965].
= G’ = G, ..., G§ (2-edge-connected).

34/41

G: 64-edge-connected, §(G) > £.

Start from a maximum cut (V4, V) of G, and let F be the edges across the cut.
Set G' .= (V,F).

WYV A WA/ A

AN AN AN AN AN AN AN

Max cut = G’ is 32-edge-connected and §(G’) > /.

= there exist 16 edge-disjoint spanning trees of G’ [Tutte — 1965].
= G’ = G, ..., G§ (2-edge-connected).
= there exist Ty, ..., Tg 1/2-sparse spanning trees.

34/41

Set Hy ;= T1 U Ty, Hy := T3 U Ty, Hz := TsU Tg, Hs := T7U Tg, and Hjs the rest.

35/41

Set Hy ;= T1 U Ty, Hy := T3 U Ty, Hz := TsU Tg, Hs := T7U Tg, and Hjs the rest.

VAL A AV

\ |

\

|

\

|

L

it

ANANANANANANA

[

[

|

[

|

Vi

V2

Set Hy ;= T1 U Ty, Hy := T3 U Ty, Hz := TsU Tg, Hs := T7U Tg, and Hjs the rest.

O 2 O A O A/ VT

L

e e e e ey e e gy,

G = Hi, Hy H3 Hy + Hs
——
e connected e 1/2-dense
e bridgeless

e 1/2-sparse

Creating (¢, 2()-trees over V4 and V,

H; + tiny c-fraction of Hs = c-sparse (¢,2()-tree T{ spanning V.
Hy + tiny c-fraction of Hs = c-sparse (¢, 2{)-tree T} spanning V;.

36 /41

H; + tiny c-fraction of Hs
H, + tiny c-fraction of Hs

H3 + tiny c-fraction of Hs
H, + tiny c-fraction of Hs

Creating (¢, 2()-trees over V4 and V,

c-sparse (¢, 2()-tree T,
c-sparse (¢, 2()-tree T}

spanning Vj.
spanning V;.
c-sparse (¢,2¢
c-sparse (¢, 20)-tree T}

spanning V5.
spanning V5.

Creating (¢, 2()-trees over V4 and V,

H; + tiny c-fraction of Hs

)_

)_
Hs + tiny c-fraction of Hs = c-sparse (¢,2()-tree T} spanning V.
Hy + tiny c-fraction of Hs = c-sparse (¢, 2()-tree T, spanning V5.

Because §(Hs) > ¢, we can find a proper (¢ 4 1)-path P in Hs.

c-sparse (¢, 2()-tree T{ spanning V;.
Hy + tiny c-fraction of Hs = c-sparse (¢, 2{)-tree T} spanning V;.

36

4

Creating (¢, 2()-trees over V4 and V,

Hy + tiny c-fraction of Hs = c-sparse (¢, 2{)-tree T{ spanning V;.

Hy + tiny c-fraction of Hs = c-sparse (¢, 2{)-tree T} spanning V;.

)_

)_
Hs + tiny c-fraction of Hs = c-sparse (¢,2()-tree T} spanning V.
Hy + tiny c-fraction of Hs = c-sparse (¢, 2()-tree T, spanning V5.

Because §(Hs) > ¢, we can find a proper (¢ 4 1)-path P in Hs.
T =T/UT,UP is a sparse (> {)-tree spanning G.

T{[M]Vl

P G’

T3/ M V2

36 /41

We may suppose Hs is still 1/2-dense in G’. Because of the degree assumption, it

has a 1/5P-dense 2P-path-graph H with multiplicity at most ¢ , where p satisfies
0<2P <20

37/41

We may suppose Hs is still 1/2-dense in G’. Because of the degree assumption, it

has a 1/5P-dense 2P-path-graph H with multiplicity at most ¢ , where p satisfies
0<2P <20

So far, G is decomposed, saved some /-paths, into:

H + T + T3+ T+ R
e 2P_path-graph o [(,20])-tree o (£,20)-tree on V; ® (£,20)-tree on V, e rest
e 1/5P-dense ® c-sparse ® c-sparse ® c-sparse

o multiplicity ¢

37/41

We may suppose Hs is still 1/2-dense in G’. Because of the degree assumption, it
has a 1/5P-dense 2P-path-graph H with multiplicity at most ¢ , where p satisfies
0<2P <20

So far, G is decomposed, saved some /-paths, into:

H + T + T3+ T+ R
e 2P_path-graph o [(,20])-tree o (£,20)-tree on V; ® (£,20)-tree on V, e rest
e 1/5P-dense ® c-sparse ® c-sparse ® c-sparse

o multiplicity ¢

As long as possible, remove /-paths from R. Call Gg what remains.

Theorem [Thomassen — 2008]

Ggr admits a (< ¢)-path-graph with maximum degree at most £ — 1.

37/41

Growing the paths of Gg

Call Gg this path-graph.

38/41

Growing the paths of Gg

Call Gg this path-graph.

Consider a ‘tiny’ 4c/3-fraction of H' of H, and orient H"* in a balanced way. Then

every vertex v is the origin of a private set of K = 2c/3dy(v) paths P, ..., Pj in
H'.

38/41

Growing the paths of Gg

Call Gg this path-graph.

Consider a ‘tiny’ 4c/3-fraction of H' of H, and orient H"* in a balanced way. Then
every vertex v is the origin of a private set of K = 2c/3dy(v) paths P, ..., Pj in
H'.

Since the multiplicity of H is at most ¢, every path P/ is conflicting at v with at
most ¢|P!|dn(v) < 2cldy(v) other paths of H,. Among Py, ..., P}, one can
hence find K /2cfdy(v) = 2 non-conflicting paths. Then use these paths to
extend those of H, starting at v. Then we transform all paths of Gg into paths of
length in between ¢ and 3/.

38/41

Growing the paths of Gg

Call Gg this path-graph.

Consider a ‘tiny’ 4c/3-fraction of H' of H, and orient H"* in a balanced way. Then
every vertex v is the origin of a private set of K = 2c/3dy(v) paths P, ..., Pj in
H'.

Since the multiplicity of H is at most ¢, every path P/ is conflicting at v with at
most ¢|P!|dn(v) < 2cldy(v) other paths of H,. Among Py, ..., P}, one can
hence find K /2cfdy(v) = 2 non-conflicting paths. Then use these paths to
extend those of H, starting at v. Then we transform all paths of Gg into paths of

length in between ¢ and 3/.

Call Hf, the resulting (> ¢)-path graph. In particular, this graph is sparse in H.

38/41

Getting a decomposition

Our objects are:

H + T + T+ T+ Hl,
—— —— —— —— ——
e 2P-path-graph o [(,2(]-tree e (¢,20)-tree on V4 e (¢,20)-tree on V, e [¢, 3(]-path-graph
e 1/5P-dense ® c-sparse ® c-sparse ® c-sparse o 4cl3-sparse

o multiplicity ¢

and form Hg. The final objective is to invoke a eulerian closed trail argument.

39/41

Getting a decomposition

Our objects are:

H + T + T+ T+ Hl,
—— —— —— —— ——
e 2P-path-graph o [(,2(]-tree e (¢,20)-tree on V4 e (¢,20)-tree on V, e [¢, 3(]-path-graph
e 1/5P-dense ® c-sparse ® c-sparse ® c-sparse o 4cl3-sparse

e multiplicity ¢

and form Hg. The final objective is to invoke a eulerian closed trail argument.

So that all degrees of V4 (resp. V4) but maybe one are even, we can remove ¢- or
2¢-paths from T} (resp. T,). In case V; and V5 both have a remaining vertex
with odd degree, with join them via a dummy edge.

39/41

Getting a decomposition

Our objects are:

H + T + T+ T+ Hl,
—— —— —— —— ——
e 2P-path-graph o [(,2(]-tree e (¢,20)-tree on V4 e (¢,20)-tree on V, e [¢, 3(]-path-graph
e 1/5P-dense ® c-sparse ® c-sparse ® c-sparse o 4cl3-sparse

e multiplicity ¢

and form Hg. The final objective is to invoke a eulerian closed trail argument.

So that all degrees of V4 (resp. V4) but maybe one are even, we can remove ¢- or
2¢-paths from T} (resp. T,). In case V; and V5 both have a remaining vertex
with odd degree, with join them via a dummy edge.

Now, since the multiplicity of H is arbitrarily small and T U T, U T, U Hg is, say,
4cl3-sparse, He is a (< 3¢)-path-graph with multiplicity less than 1/24¢. Then a
conflictless eulerian closed trail exists in Hg. Going along it, we finish the
decomposition into ¢-paths. |

39/41

Part 1: Introduction to the problem
Part 2: Fractions of graphs

Part 3: Path-graphs

Part 4: Constructing path-trees
Part 5: Using everything together

Part 6: Conclusion

40 /41

Conclusion

@ For paths, 64-edge-connectivity suffices...

41 /41

Conclusion

@ For paths, 64-edge-connectivity suffices...
@ ... but how far can this be pushed?

41 /41

Conclusion

@ For paths, 64-edge-connectivity suffices...
@ ... but how far can this be pushed?

@ Actually 48 works (save two trees for constructing T).

41 /41

Conclusion

For paths, 64-edge-connectivity suffices...

... but how far can this be pushed?

Actually 48 works (save two trees for constructing T).

Similar approaches for other kinds of trees?

4141

Conclusion

For paths, 64-edge-connectivity suffices...

... but how far can this be pushed?

Actually 48 works (save two trees for constructing T).

Similar approaches for other kinds of trees?

Thank you for your attention.

4141

