
Edge-partitioning a graph into paths:
beyond the Barát-Thomassen conjecture

Julien Bensmail, Ararat Harutyunyan and Stéphan Thomassé

LIP, ÉNS de Lyon, France

AGH University, Kraków
April 14th, 2015

1 / 41

Part 1: Introduction to the problem

Part 2: Fractions of graphs

Part 3: Path-graphs

Part 4: Constructing path-trees

Part 5: Using everything together

Part 6: Conclusion

2 / 41

Main problem

G : undirected simple graph.
T : tree with |E (T)| dividing |E (G)|.

Definition: T -decomposition

A T -decomposition of G is a partition E1, ...,Ek of E (G) such that Ei

induces an isomorphic copy of T for every i = 1, ..., k.

S4-decomposition P3-decomposition

3 / 41

Main problem

G : undirected simple graph.
T : tree with |E (T)| dividing |E (G)|.

Definition: T -decomposition

A T -decomposition of G is a partition E1, ...,Ek of E (G) such that Ei

induces an isomorphic copy of T for every i = 1, ..., k .

S4-decomposition P3-decomposition

3 / 41

Main problem

G : undirected simple graph.
T : tree with |E (T)| dividing |E (G)|.

Definition: T -decomposition

A T -decomposition of G is a partition E1, ...,Ek of E (G) such that Ei

induces an isomorphic copy of T for every i = 1, ..., k .

S4-decomposition P3-decomposition

3 / 41

Main problem

G : undirected simple graph.
T : tree with |E (T)| dividing |E (G)|.

Definition: T -decomposition

A T -decomposition of G is a partition E1, ...,Ek of E (G) such that Ei

induces an isomorphic copy of T for every i = 1, ..., k .

S4-decomposition P3-decomposition

3 / 41

The Barát-Thomassen conjecture

Divisibility condition is understood throughout.

Conjecture [Barát, Thomassen – 2006]

For every fixed tree T , there exists a positive constant cT such that every
cT -edge-connected graph admits a T -decomposition.

4 / 41

The Barát-Thomassen conjecture

Divisibility condition is understood throughout.

Conjecture [Barát, Thomassen – 2006]

For every fixed tree T , there exists a positive constant cT such that every
cT -edge-connected graph admits a T -decomposition.

Verified for T being:

a star [Thomassen – 2012],

a bistar of the form Sk,k+1 [Thomassen – 2014],

the tree with degree sequence (1, 1, 1, 2, 3) [Barát, Gerbner – 2014],

of diameter at most 4 [Merker – 2015+],

among some family of trees with diameter 5 [Merker – 2015+],

and...

4 / 41

The Barát-Thomassen conjecture

Divisibility condition is understood throughout.

Conjecture [Barát, Thomassen – 2006]

For every fixed tree T , there exists a positive constant cT such that every
cT -edge-connected graph admits a T -decomposition.

and...

the path of length 3 [Thomassen – 2008],

the path of length 4 [Thomassen – 2008],

a path of length 2k [Thomassen – 2014],

the path of length 5 [Botler, Mota, Oshiro, Wakabayashi – 2015],

any path [Botler, Mota, Oshiro, Wakabayashi – 2015+]!

4 / 41

About the result for paths

Theorem [Botler, Mota, Oshiro, Wakabayashi – 2015+]

The Barát-Thomassen conjecture is true for T being any path.

About the proof:

Generalization of a proof for P5.

Technical due to risky path-uncrossing procedures.

Our goal: give a somewhat simpler proof with reasonable technicalities.

5 / 41

About the result for paths

Theorem [Botler, Mota, Oshiro, Wakabayashi – 2015+]

The Barát-Thomassen conjecture is true for T being any path.

About the proof:

Generalization of a proof for P5.

Technical due to risky path-uncrossing procedures.

Our goal: give a somewhat simpler proof with reasonable technicalities.

5 / 41

About the result for paths

Theorem [Botler, Mota, Oshiro, Wakabayashi – 2015+]

The Barát-Thomassen conjecture is true for T being any path.

About the proof:

Generalization of a proof for P5.

Technical due to risky path-uncrossing procedures.

Our goal: give a somewhat simpler proof with reasonable technicalities.

5 / 41

A stronger result

‘Stronger’ = degree is more important than edge-connectivity.

Theorem [B., Harutyunyan, Thomassé – 2015+]

For every ` ≥ 1, every 64-edge-connected graph admits a P`-
decomposition provided its minimum degree is large enough.

More general question

2-edge-connectivity + large minimum degree ⇒ path-decomposition???

6 / 41

A stronger result

‘Stronger’ = degree is more important than edge-connectivity.

Theorem [B., Harutyunyan, Thomassé – 2015+]

For every ` ≥ 1, every 64-edge-connected graph admits a P`-
decomposition provided its minimum degree is large enough.

More general question

2-edge-connectivity + large minimum degree ⇒ path-decomposition???

6 / 41

A stronger result

‘Stronger’ = degree is more important than edge-connectivity.

Theorem [B., Harutyunyan, Thomassé – 2015+]

For every ` ≥ 1, every 64-edge-connected graph admits a P`-
decomposition provided its minimum degree is large enough.

More general question

2-edge-connectivity + large minimum degree ⇒ path-decomposition???

6 / 41

Overview of the proof

Main ideas:

1. See G as a ‘convenient’ system H of induced paths.

2. Remove some P`’s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Issues:

1. What does ‘convenient’ mean?

2. What does it mean for H to be eulerian?

2. How to ensure connectedness of H (after 2., especially)?

3. How to be sure that the trail is properly decomposable?

3. is a crucial concern in Botler, Mota, Oshiro and Wakabayashi’s proof.

P3 P3 @@��P3

7 / 41

Overview of the proof

Main ideas:

1. See G as a ‘convenient’ system H of induced paths.

2. Remove some P`’s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Issues:

1. What does ‘convenient’ mean?

2. What does it mean for H to be eulerian?

2. How to ensure connectedness of H (after 2., especially)?

3. How to be sure that the trail is properly decomposable?

3. is a crucial concern in Botler, Mota, Oshiro and Wakabayashi’s proof.

P3 P3 @@��P3

7 / 41

Overview of the proof

Main ideas:

1. See G as a ‘convenient’ system H of induced paths.

2. Remove some P`’s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Issues:

1. What does ‘convenient’ mean?

2. What does it mean for H to be eulerian?

2. How to ensure connectedness of H (after 2., especially)?

3. How to be sure that the trail is properly decomposable?

3. is a crucial concern in Botler, Mota, Oshiro and Wakabayashi’s proof.

P3 P3 @@��P3

7 / 41

Overview of the proof

Main ideas:

1. See G as a ‘convenient’ system H of induced paths.

2. Remove some P`’s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Issues:

1. What does ‘convenient’ mean?

2. What does it mean for H to be eulerian?

2. How to ensure connectedness of H (after 2., especially)?

3. How to be sure that the trail is properly decomposable?

3. is a crucial concern in Botler, Mota, Oshiro and Wakabayashi’s proof.

P3 P3 @@��P3

7 / 41

Overview of the proof

Main ideas:

1. See G as a ‘convenient’ system H of induced paths.

2. Remove some P`’s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Issues:

1. What does ‘convenient’ mean?

2. What does it mean for H to be eulerian?

2. How to ensure connectedness of H (after 2., especially)?

3. How to be sure that the trail is properly decomposable?

3. is a crucial concern in Botler, Mota, Oshiro and Wakabayashi’s proof.

P3 P3 @@��P3

7 / 41

Overview of the proof

Main ideas:

1. See G as a ‘convenient’ system H of induced paths.

2. Remove some P`’s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Issues:

1. What does ‘convenient’ mean?

2. What does it mean for H to be eulerian?

2. How to ensure connectedness of H (after 2., especially)?

3. How to be sure that the trail is properly decomposable?

3. is a crucial concern in Botler, Mota, Oshiro and Wakabayashi’s proof.

P3 P3 @@��P3

7 / 41

Overview of the proof

Main ideas:

1. See G as a ‘convenient’ system H of induced paths.

2. Remove some P`’s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Issues:

1. What does ‘convenient’ mean?

2. What does it mean for H to be eulerian?

2. How to ensure connectedness of H (after 2., especially)?

3. How to be sure that the trail is properly decomposable?

3. is a crucial concern in Botler, Mota, Oshiro and Wakabayashi’s proof.

P3

P3 @@��P3

7 / 41

Overview of the proof

Main ideas:

1. See G as a ‘convenient’ system H of induced paths.

2. Remove some P`’s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Issues:

1. What does ‘convenient’ mean?

2. What does it mean for H to be eulerian?

2. How to ensure connectedness of H (after 2., especially)?

3. How to be sure that the trail is properly decomposable?

3. is a crucial concern in Botler, Mota, Oshiro and Wakabayashi’s proof.

P3 P3

@@��P3

7 / 41

Overview of the proof

Main ideas:

1. See G as a ‘convenient’ system H of induced paths.

2. Remove some P`’s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Issues:

1. What does ‘convenient’ mean?

2. What does it mean for H to be eulerian?

2. How to ensure connectedness of H (after 2., especially)?

3. How to be sure that the trail is properly decomposable?

3. is a crucial concern in Botler, Mota, Oshiro and Wakabayashi’s proof.

P3 P3 @@��P3

7 / 41

Outline of the talk

Degree assumption ⇒ source of degree.

Source of degree + small edge-connectivity ⇒ ‘convenient’ objects.

Part 2: sparse and dense subgraphs.

Part 3: constructing systems of edge-disjoint paths.

Part 4: obtaining such systems with a tree structure.

8 / 41

Outline of the talk

Degree assumption ⇒ source of degree.

Source of degree + small edge-connectivity ⇒ ‘convenient’ objects.

Part 2: sparse and dense subgraphs.

Part 3: constructing systems of edge-disjoint paths.

Part 4: obtaining such systems with a tree structure.

8 / 41

Outline of the talk

Degree assumption ⇒ source of degree.

Source of degree + small edge-connectivity ⇒ ‘convenient’ objects.

Part 2: sparse and dense subgraphs.

Part 3: constructing systems of edge-disjoint paths.

Part 4: obtaining such systems with a tree structure.

8 / 41

Outline of the talk

Degree assumption ⇒ source of degree.

Source of degree + small edge-connectivity ⇒ ‘convenient’ objects.

Part 2: sparse and dense subgraphs.

Part 3: constructing systems of edge-disjoint paths.

Part 4: obtaining such systems with a tree structure.

8 / 41

Outline of the talk

Degree assumption ⇒ source of degree.

Source of degree + small edge-connectivity ⇒ ‘convenient’ objects.

Part 2: sparse and dense subgraphs.

Part 3: constructing systems of edge-disjoint paths.

Part 4: obtaining such systems with a tree structure.

8 / 41

Part 1: Introduction to the problem

Part 2: Fractions of graphs

Part 3: Path-graphs

Part 4: Constructing path-trees

Part 5: Using everything together

Part 6: Conclusion

9 / 41

Sparse and dense subgraphs

α: real number in [0, 1].

Definitions: α-sparse, α-dense, α-fraction

Let H be a spanning subgraph of G . We say that H is α-sparse (resp. α-
dense) if dH(v) ≤ αdG (v) (resp. dH(v) ≥ αdG (v)) for every v ∈ V (G).
We say that H is an α-fraction of G if H is both α-sparse and α-dense.

k-edge-connectivity + large degree ⇒ 1/k-sparse spanning tree.

Theorem [Ellingham, Nam, Voss – 2002]

Every k-edge-connected graph admits a 1/k-sparse spanning tree.

(with error term +2)

10 / 41

Sparse and dense subgraphs

α: real number in [0, 1].

Definitions: α-sparse, α-dense, α-fraction

Let H be a spanning subgraph of G . We say that H is α-sparse (resp. α-
dense) if dH(v) ≤ αdG (v) (resp. dH(v) ≥ αdG (v)) for every v ∈ V (G).
We say that H is an α-fraction of G if H is both α-sparse and α-dense.

k-edge-connectivity + large degree ⇒ 1/k-sparse spanning tree.

Theorem [Ellingham, Nam, Voss – 2002]

Every k-edge-connected graph admits a 1/k-sparse spanning tree.

(with error term +2)

10 / 41

On fractions of graphs

Proposition

Every graph G has a 1/2-fraction (with error term ±1).

Proof: If G has an even cycle C , remove the edges of C , apply induction and add
the edges of a perfect matching of C to the solution. Otherwise, G is either an
odd cycle (in which case the conclusion follows), or has a cutvertex z incident to
an ‘endblock’ B which is either an edge or an odd cycle. Then contract B to z ,
apply induction, and extend the solution by conveniently choosing some edges of
B. �

Corollary

If α has a finite binary extension, then G has an α-fraction.

(with constant additive error term)

11 / 41

On fractions of graphs

Proposition

Every graph G has a 1/2-fraction (with error term ±1).

Proof: If G has an even cycle C , remove the edges of C , apply induction and add
the edges of a perfect matching of C to the solution. Otherwise, G is either an
odd cycle (in which case the conclusion follows), or has a cutvertex z incident to
an ‘endblock’ B which is either an edge or an odd cycle. Then contract B to z ,
apply induction, and extend the solution by conveniently choosing some edges of
B. �

Corollary

If α has a finite binary extension, then G has an α-fraction.

(with constant additive error term)

11 / 41

Part 1: Introduction to the problem

Part 2: Fractions of graphs

Part 3: Path-graphs

Part 4: Constructing path-trees

Part 5: Using everything together

Part 6: Conclusion

12 / 41

Path-graphs

Definition: path-graph

A path-graph H on G = (V ,E) is a couple (V ,P) where P is a set of
edge-disjoint paths of G . For every v ∈ V , we define Pv as the set of
paths of P having v as an endvertex. To H, we associate the (multi)graph
H∗ on vertex set V and edge set contains the pairs of endvertices of P.

H on G H∗

13 / 41

Path-graphs

Definition: path-graph

A path-graph H on G = (V ,E) is a couple (V ,P) where P is a set of
edge-disjoint paths of G . For every v ∈ V , we define Pv as the set of
paths of P having v as an endvertex. To H, we associate the (multi)graph
H∗ on vertex set V and edge set contains the pairs of endvertices of P.

H on G

H∗

13 / 41

Path-graphs

Definition: path-graph

A path-graph H on G = (V ,E) is a couple (V ,P) where P is a set of
edge-disjoint paths of G . For every v ∈ V , we define Pv as the set of
paths of P having v as an endvertex. To H, we associate the (multi)graph
H∗ on vertex set V and edge set contains the pairs of endvertices of P.

H on G H∗

13 / 41

Properties of path-graphs

H connected ⇔ H∗ connected.

H tree ⇔ H∗ tree.

For every v ∈ V , dH(v) = dH∗(v).

H eulerian ⇔ H connected + dH(v) even for every v ∈ V .

H q-path-graph ⇔ all paths of P have length q.

H (≤ q)-path-graph ⇔ all paths of P have length at most q.

H (≥ q)-path-graph ⇔ all paths of P have length at least q.

H (q1,q2)-path-graph ⇔ all paths of P have length q1 or q2.

Previous example: disconnected (≤ 3)-path-graph.

14 / 41

Properties of path-graphs

H connected ⇔ H∗ connected.

H tree ⇔ H∗ tree.

For every v ∈ V , dH(v) = dH∗(v).

H eulerian ⇔ H connected + dH(v) even for every v ∈ V .

H q-path-graph ⇔ all paths of P have length q.

H (≤ q)-path-graph ⇔ all paths of P have length at most q.

H (≥ q)-path-graph ⇔ all paths of P have length at least q.

H (q1,q2)-path-graph ⇔ all paths of P have length q1 or q2.

Previous example: disconnected (≤ 3)-path-graph.

14 / 41

Properties of path-graphs

H connected ⇔ H∗ connected.

H tree ⇔ H∗ tree.

For every v ∈ V , dH(v) = dH∗(v).

H eulerian ⇔ H connected + dH(v) even for every v ∈ V .

H q-path-graph ⇔ all paths of P have length q.

H (≤ q)-path-graph ⇔ all paths of P have length at most q.

H (≥ q)-path-graph ⇔ all paths of P have length at least q.

H (q1,q2)-path-graph ⇔ all paths of P have length q1 or q2.

Previous example: disconnected (≤ 3)-path-graph.

14 / 41

Conflicting paths

Conflicting paths ⇔ paths sharing more than just one end.

Conflictless trail ⇔ trail with no subsequent conflicting paths.

H conflictless eulerian ⇔ H has a conflictless eulerian closed trail.

15 / 41

More terminology for conflicts

Definition: multiplicity

For distinct w , v ∈ V , the multiplicity of w around v is

multv (w) := |{P ∈ Pv : w ∈ P}|/|Pv |.

The multiplicity of H is the maximum multiplicity of its vertices.

Definitions: conflict graph, conflict ratio

For every v ∈ V , the conflict graph Hv is the graph on vertex set Pv in
which P1P2 is an edge if P1 and P2 intersect. The conflict ratio of H is
defined as

max{(∆(Hv) + 1)/|Pv | : v ∈ V }.

Remark: Every path is self-conflicting.

16 / 41

More terminology for conflicts

Definition: multiplicity

For distinct w , v ∈ V , the multiplicity of w around v is

multv (w) := |{P ∈ Pv : w ∈ P}|/|Pv |.

The multiplicity of H is the maximum multiplicity of its vertices.

Definitions: conflict graph, conflict ratio

For every v ∈ V , the conflict graph Hv is the graph on vertex set Pv in
which P1P2 is an edge if P1 and P2 intersect. The conflict ratio of H is
defined as

max{(∆(Hv) + 1)/|Pv | : v ∈ V }.

Remark: Every path is self-conflicting.

16 / 41

Eulerian closed trails and conflict ratio

Eulerian path-graph + reasonable conflict ratio ⇒ conflictless eulerian closed trail.

Theorem

Every eulerian path-graph H with conflict ratio at most 1/8 has a con-
flictless eulerian closed trail.

Proof: Since the antidegree of every vertex in Hv is greater than |Pv |/2,
necessarily Hv admits a hamiltonian anticycle (by Dirac’s Theorem). So there is a
pairing Mv = P1P2,P3P4, ... of the paths in Pv such that each pair is
non-conflicting.

Having such a pairing Mv for every v ∈ V defines a set of conflictless closed trails
T1, ...,Tt , where a pair {Pi ,Pi+1} means that when entering at a vertex via Pi ,
we must leave via Pi+1 (and vice-versa). If t = 1, we are done. Otherwise, we
merge two trails so that t decreases.

17 / 41

Eulerian closed trails and conflict ratio

Eulerian path-graph + reasonable conflict ratio ⇒ conflictless eulerian closed trail.

Theorem

Every eulerian path-graph H with conflict ratio at most 1/8 has a con-
flictless eulerian closed trail.

Proof: Since the antidegree of every vertex in Hv is greater than |Pv |/2,
necessarily Hv admits a hamiltonian anticycle (by Dirac’s Theorem). So there is a
pairing Mv = P1P2,P3P4, ... of the paths in Pv such that each pair is
non-conflicting.

Having such a pairing Mv for every v ∈ V defines a set of conflictless closed trails
T1, ...,Tt , where a pair {Pi ,Pi+1} means that when entering at a vertex via Pi ,
we must leave via Pi+1 (and vice-versa). If t = 1, we are done. Otherwise, we
merge two trails so that t decreases.

17 / 41

Eulerian closed trails and conflict ratio

Eulerian path-graph + reasonable conflict ratio ⇒ conflictless eulerian closed trail.

Theorem

Every eulerian path-graph H with conflict ratio at most 1/8 has a con-
flictless eulerian closed trail.

Proof: Since the antidegree of every vertex in Hv is greater than |Pv |/2,
necessarily Hv admits a hamiltonian anticycle (by Dirac’s Theorem). So there is a
pairing Mv = P1P2,P3P4, ... of the paths in Pv such that each pair is
non-conflicting.

Having such a pairing Mv for every v ∈ V defines a set of conflictless closed trails
T1, ...,Tt , where a pair {Pi ,Pi+1} means that when entering at a vertex via Pi ,
we must leave via Pi+1 (and vice-versa). If t = 1, we are done. Otherwise, we
merge two trails so that t decreases.

17 / 41

Merging two conflictless closed trails

By our terminology, there is a v ∈ V whose some paths of Pv belong to, say, T1.
We may assume that no more than half of its paths appear in T1.

Assume {P1,P2} ∈ Mv and P1,P2 ∈ T1. Because P1 and P2 have degree less
than |Pv |/8 in Hv , there is a pair {P3,P4} not in T1 and such that P1,P2,P3,P4

are non-conflicting. Then replace {P1,P2} and {P3,P4} in Mv by {P1,P4} and
{P2,P3}. Then t decreases by 1, as claimed. �

P1,P2

|T1| ≤ half < quarter < quarter

P3,P4P3,P4

vP1

P2

T1

P3

P4

T2

18 / 41

Merging two conflictless closed trails

By our terminology, there is a v ∈ V whose some paths of Pv belong to, say, T1.
We may assume that no more than half of its paths appear in T1.

Assume {P1,P2} ∈ Mv and P1,P2 ∈ T1. Because P1 and P2 have degree less
than |Pv |/8 in Hv , there is a pair {P3,P4} not in T1 and such that P1,P2,P3,P4

are non-conflicting. Then replace {P1,P2} and {P3,P4} in Mv by {P1,P4} and
{P2,P3}. Then t decreases by 1, as claimed. �

P1,P2

|T1| ≤ half ≥ half

< quarter < quarter

P3,P4P3,P4

vP1

P2

T1

P3

P4

T2

18 / 41

Merging two conflictless closed trails

By our terminology, there is a v ∈ V whose some paths of Pv belong to, say, T1.
We may assume that no more than half of its paths appear in T1.

Assume {P1,P2} ∈ Mv and P1,P2 ∈ T1. Because P1 and P2 have degree less
than |Pv |/8 in Hv , there is a pair {P3,P4} not in T1 and such that P1,P2,P3,P4

are non-conflicting. Then replace {P1,P2} and {P3,P4} in Mv by {P1,P4} and
{P2,P3}. Then t decreases by 1, as claimed. �

P1,P2

|T1| ≤ half < quarter

< quarter

P3,P4P3,P4

vP1

P2

T1

P3

P4

T2

18 / 41

Merging two conflictless closed trails

By our terminology, there is a v ∈ V whose some paths of Pv belong to, say, T1.
We may assume that no more than half of its paths appear in T1.

Assume {P1,P2} ∈ Mv and P1,P2 ∈ T1. Because P1 and P2 have degree less
than |Pv |/8 in Hv , there is a pair {P3,P4} not in T1 and such that P1,P2,P3,P4

are non-conflicting. Then replace {P1,P2} and {P3,P4} in Mv by {P1,P4} and
{P2,P3}. Then t decreases by 1, as claimed. �

P1,P2

|T1| ≤ half < quarter < quarter

P3,P4P3,P4

vP1

P2

T1

P3

P4

T2

18 / 41

Merging two conflictless closed trails

By our terminology, there is a v ∈ V whose some paths of Pv belong to, say, T1.
We may assume that no more than half of its paths appear in T1.

Assume {P1,P2} ∈ Mv and P1,P2 ∈ T1. Because P1 and P2 have degree less
than |Pv |/8 in Hv , there is a pair {P3,P4} not in T1 and such that P1,P2,P3,P4

are non-conflicting. Then replace {P1,P2} and {P3,P4} in Mv by {P1,P4} and
{P2,P3}. Then t decreases by 1, as claimed. �

P1,P2

|T1| ≤ half < quarter < quarter

P3,P4

P3,P4

vP1

P2

T1

P3

P4

T2

18 / 41

Merging two conflictless closed trails

By our terminology, there is a v ∈ V whose some paths of Pv belong to, say, T1.
We may assume that no more than half of its paths appear in T1.

Assume {P1,P2} ∈ Mv and P1,P2 ∈ T1. Because P1 and P2 have degree less
than |Pv |/8 in Hv , there is a pair {P3,P4} not in T1 and such that P1,P2,P3,P4

are non-conflicting. Then replace {P1,P2} and {P3,P4} in Mv by {P1,P4} and
{P2,P3}. Then t decreases by 1, as claimed. �

P1,P2

|T1| ≤ half < quarter < quarter

P3,P4

P3,P4

vP1

P2

T1

P3

P4

T2

18 / 41

Merging two conflictless closed trails

By our terminology, there is a v ∈ V whose some paths of Pv belong to, say, T1.
We may assume that no more than half of its paths appear in T1.

Assume {P1,P2} ∈ Mv and P1,P2 ∈ T1. Because P1 and P2 have degree less
than |Pv |/8 in Hv , there is a pair {P3,P4} not in T1 and such that P1,P2,P3,P4

are non-conflicting. Then replace {P1,P2} and {P3,P4} in Mv by {P1,P4} and
{P2,P3}. Then t decreases by 1, as claimed. �

P1,P2

|T1| ≤ half < quarter < quarter

P3,P4

P3,P4

vP1

P2

T1

P3

P4

T2

18 / 41

Merging two conflictless closed trails

By our terminology, there is a v ∈ V whose some paths of Pv belong to, say, T1.
We may assume that no more than half of its paths appear in T1.

Assume {P1,P2} ∈ Mv and P1,P2 ∈ T1. Because P1 and P2 have degree less
than |Pv |/8 in Hv , there is a pair {P3,P4} not in T1 and such that P1,P2,P3,P4

are non-conflicting. Then replace {P1,P2} and {P3,P4} in Mv by {P1,P4} and
{P2,P3}. Then t decreases by 1, as claimed. �

P1,P2

|T1| ≤ half < quarter < quarter

P3,P4

P3,P4

v

P1

P2

T1

P3

P4

T2

18 / 41

To larger paths with reasonable conflicts

Growing paths with still ‘reasonable’ path conflicts?

Lemma

Let q be some fixed positive integer and c > 0 be some real number such
that cq < 1/100. Let H = (V ,P) be an α-dense q-path-graph of some
graph G with multiplicity at most c and minimum degree k large with
respect to 1/c and q. Then one can form an α/5-dense 2q-path-graph
on G with multiplicity at most 16cq.

Proof idea: Consider a cut (V1,V2) of V maximizing the size of the set P ′ of
edges of H∗ ‘between’ V1 and V2. Let H ′ = (V ,P ′). Then H ′ is α/2-dense and
has multiplicity at most 2c . Now split H ′ into two 1/2-fractions H ′1 = (V ,P ′1) and
H ′2 = (V ,P ′2). These two path-graphs are α/4-dense and have multiplicity at
most 4c . We use H ′1 only to form a 2q-path graph on V1 with required density
(almost automatic) and multiplicity (much harder).

19 / 41

To larger paths with reasonable conflicts

Growing paths with still ‘reasonable’ path conflicts?

Lemma

Let q be some fixed positive integer and c > 0 be some real number such
that cq < 1/100. Let H = (V ,P) be an α-dense q-path-graph of some
graph G with multiplicity at most c and minimum degree k large with
respect to 1/c and q. Then one can form an α/5-dense 2q-path-graph
on G with multiplicity at most 16cq.

Proof idea: Consider a cut (V1,V2) of V maximizing the size of the set P ′ of
edges of H∗ ‘between’ V1 and V2. Let H ′ = (V ,P ′). Then H ′ is α/2-dense and
has multiplicity at most 2c . Now split H ′ into two 1/2-fractions H ′1 = (V ,P ′1) and
H ′2 = (V ,P ′2). These two path-graphs are α/4-dense and have multiplicity at
most 4c . We use H ′1 only to form a 2q-path graph on V1 with required density
(almost automatic) and multiplicity (much harder).

19 / 41

Overview of the proof

We iteratively want to randomly concatenate two q-paths meeting in V2 at some
vertex w to connect two vertices V1 via a 2q-paths.

V1

w
V2

q − paths

2q − path

Problem: The two paths may be conflicting, and w can have degree so large that
it carries too many path dependencies (making impossible e.g. the application of
Lovász Local Lemma).

20 / 41

Overview of the proof

We iteratively want to randomly concatenate two q-paths meeting in V2 at some
vertex w to connect two vertices V1 via a 2q-paths.

V1

w
V2

q − paths

2q − path

Problem: The two paths may be conflicting, and w can have degree so large that
it carries too many path dependencies (making impossible e.g. the application of
Lovász Local Lemma).

20 / 41

Overview of the proof

We iteratively want to randomly concatenate two q-paths meeting in V2 at some
vertex w to connect two vertices V1 via a 2q-paths.

V1

w
V2

q − paths

2q − path

Problem: The two paths may be conflicting, and w can have degree so large that
it carries too many path dependencies (making impossible e.g. the application of
Lovász Local Lemma).

20 / 41

Overview of the proof

We iteratively want to randomly concatenate two q-paths meeting in V2 at some
vertex w to connect two vertices V1 via a 2q-paths.

V1

w
V2

q − paths

2q − path

Problem: The two paths may be conflicting, and w can have degree so large that
it carries too many path dependencies (making impossible e.g. the application of
Lovász Local Lemma).

20 / 41

Overview of the proof

We iteratively want to randomly concatenate two q-paths meeting in V2 at some
vertex w to connect two vertices V1 via a 2q-paths.

V1

w
V2

q − paths

2q − path

Problem: The two paths may be conflicting, and w can have degree so large that
it carries too many path dependencies (making impossible e.g. the application of
Lovász Local Lemma).

20 / 41

Pairing non-conflicting q-paths

Solution: Group the q-paths arriving at w into small subsets of non-conflicting
paths → Possible because of the multiplicity assumption.

Generalization of Hajnal-Szemerédi Theorem

Let G be some graph of order n. Then, for every integer t ≥ ∆(G) + 1,
the set V (G) can be partitioned into V1, ...,Vt such that each Vi is an
independent set of size b nt c or d nt e.

Now randomly pairing the q-paths arriving at every vertex w of V2, we get a
2q-path graph H ′′1 spanning V1. Multiplicity around every vertex v of V1 is shown
to be smaller than 16cq by combining LLL and Chernoff’s bound.

Using H ′2 instead H ′1, we also obtain a 2q-path graph H ′′2 spanning V2. �

21 / 41

Pairing non-conflicting q-paths

Solution: Group the q-paths arriving at w into small subsets of non-conflicting
paths → Possible because of the multiplicity assumption.

Generalization of Hajnal-Szemerédi Theorem

Let G be some graph of order n. Then, for every integer t ≥ ∆(G) + 1,
the set V (G) can be partitioned into V1, ...,Vt such that each Vi is an
independent set of size b nt c or d nt e.

Now randomly pairing the q-paths arriving at every vertex w of V2, we get a
2q-path graph H ′′1 spanning V1. Multiplicity around every vertex v of V1 is shown
to be smaller than 16cq by combining LLL and Chernoff’s bound.

Using H ′2 instead H ′1, we also obtain a 2q-path graph H ′′2 spanning V2. �

21 / 41

Constructing larger paths with reasonable conflicts

From repeated applications, we get:

Theorem

Let p be some integer and 0 < c < 1 be some real number. There is an
integer k depending on p and c such that every graph G with minimum
degree at least k admits a 1/5p-dense 2p-path graph H with multiplicity
at most c .

22 / 41

Part 1: Introduction to the problem

Part 2: Fractions of graphs

Part 3: Path-graphs

Part 4: Constructing path-trees

Part 5: Using everything together

Part 6: Conclusion

23 / 41

Constructing (1, `)-trees

2-edge-connectivity + large degree ⇒ (1, `)-(path-)tree with ‘small’ degree.

Theorem

Every 2-edge-connected graph G admits a subcubic spanning (1, 2)-tree.

Proof idea: Assume G is minimal and perform a DFS from some vertex. This
defines some forward edges. The other edges of G are backward edges.

To every vertex v of G , we initially associate the empty (1, 2)-tree X on {v}. The
procedure mainly consists in iteratively considering vertices at the highest depth,
and ‘merging’ their corresponding (1, 2)-trees somehow. This is done with
preserving 2-edge-connectivity.

The key to respect the degree condition is that there are only two possibilities for
increasing the degree of a vertex in a merged (1, 2)-tree, namely by adding its
incident forward and backward edges. �

24 / 41

Constructing (1, `)-trees

2-edge-connectivity + large degree ⇒ (1, `)-(path-)tree with ‘small’ degree.

Theorem

Every 2-edge-connected graph G admits a subcubic spanning (1, 2)-tree.

Proof idea: Assume G is minimal and perform a DFS from some vertex. This
defines some forward edges. The other edges of G are backward edges.

To every vertex v of G , we initially associate the empty (1, 2)-tree X on {v}. The
procedure mainly consists in iteratively considering vertices at the highest depth,
and ‘merging’ their corresponding (1, 2)-trees somehow. This is done with
preserving 2-edge-connectivity.

The key to respect the degree condition is that there are only two possibilities for
increasing the degree of a vertex in a merged (1, 2)-tree, namely by adding its
incident forward and backward edges. �

24 / 41

Constructing (1, `)-trees

2-edge-connectivity + large degree ⇒ (1, `)-(path-)tree with ‘small’ degree.

Theorem

Every 2-edge-connected graph G admits a subcubic spanning (1, 2)-tree.

Proof idea: Assume G is minimal and perform a DFS from some vertex. This
defines some forward edges. The other edges of G are backward edges.

To every vertex v of G , we initially associate the empty (1, 2)-tree X on {v}. The
procedure mainly consists in iteratively considering vertices at the highest depth,
and ‘merging’ their corresponding (1, 2)-trees somehow. This is done with
preserving 2-edge-connectivity.

The key to respect the degree condition is that there are only two possibilities for
increasing the degree of a vertex in a merged (1, 2)-tree, namely by adding its
incident forward and backward edges. �

24 / 41

Constructing (1, `)-trees

2-edge-connectivity + large degree ⇒ (1, `)-(path-)tree with ‘small’ degree.

Theorem

Every 2-edge-connected graph G admits a subcubic spanning (1, 2)-tree.

Proof idea: Assume G is minimal and perform a DFS from some vertex. This
defines some forward edges. The other edges of G are backward edges.

To every vertex v of G , we initially associate the empty (1, 2)-tree X on {v}. The
procedure mainly consists in iteratively considering vertices at the highest depth,
and ‘merging’ their corresponding (1, 2)-trees somehow. This is done with
preserving 2-edge-connectivity.

The key to respect the degree condition is that there are only two possibilities for
increasing the degree of a vertex in a merged (1, 2)-tree, namely by adding its
incident forward and backward edges. �

24 / 41

Sample cases – One child

x1

xj

x ′1

x1 X1

xj Xj

X1j

25 / 41

Sample cases – One child

x1

xj

x ′1

x1 X1

xj Xj

X1j

25 / 41

Sample cases – One child

x1

xj

x ′1

x1

xj

X1j

25 / 41

Sample cases – One child

x1

xj

x ′1

x1

xj

X1j

X1j

25 / 41

Sample cases – Two children

x1 x2

xj

x ′1

x ′2

x1

X1

x2

X2

xj Xj

26 / 41

Sample cases – Two children

x1 x2

xj

x ′1

x ′2

x1

X1

x2

X2

xj Xj

26 / 41

Sample cases – Two children

x1 x2

xj

x ′1

x ′2

x1

X12

x2

xj Xj

26 / 41

Sample cases – Two children

x1 x2

xj

x ′1

x ′2

x1

X12

x2

xj Xj

26 / 41

From (1, 2)-trees to (1, k)-trees

spanning (1, k)-tree + disjoint ‘source’ of degree = spanning (1, k + 1)-tree.

Theorem

Let T be a spanning (1, k)-tree of some graph G = (V ,E), and let
H be some additional graph on V , edge-disjoint from G , and satisfying
dH(v) ≥ 2(dT (v) + 2k) for every v ∈ V . Then G ∪ H is spanned by a
(1, k + 1)-tree T ′.

Proof idea: Same kind of proof. Start from the leaves of T and iteratively
concatenate incident k-paths of T with some edges of H in order to form
(k + 1)-paths. This is always possible by the assumption on the degrees in H.

To make sure that the edges of H are equitably used and not ‘saturated’ by some
vertex, we orient them in a balanced way beforehand (hence defining private edges
for every vertex). �

27 / 41

From (1, 2)-trees to (1, k)-trees

spanning (1, k)-tree + disjoint ‘source’ of degree = spanning (1, k + 1)-tree.

Theorem

Let T be a spanning (1, k)-tree of some graph G = (V ,E), and let
H be some additional graph on V , edge-disjoint from G , and satisfying
dH(v) ≥ 2(dT (v) + 2k) for every v ∈ V . Then G ∪ H is spanned by a
(1, k + 1)-tree T ′.

Proof idea: Same kind of proof. Start from the leaves of T and iteratively
concatenate incident k-paths of T with some edges of H in order to form
(k + 1)-paths. This is always possible by the assumption on the degrees in H.

To make sure that the edges of H are equitably used and not ‘saturated’ by some
vertex, we orient them in a balanced way beforehand (hence defining private edges
for every vertex). �

27 / 41

From (1, 2)-trees to (1, k)-trees

spanning (1, k)-tree + disjoint ‘source’ of degree = spanning (1, k + 1)-tree.

Theorem

Let T be a spanning (1, k)-tree of some graph G = (V ,E), and let
H be some additional graph on V , edge-disjoint from G , and satisfying
dH(v) ≥ 2(dT (v) + 2k) for every v ∈ V . Then G ∪ H is spanned by a
(1, k + 1)-tree T ′.

Proof idea: Same kind of proof. Start from the leaves of T and iteratively
concatenate incident k-paths of T with some edges of H in order to form
(k + 1)-paths. This is always possible by the assumption on the degrees in H.

To make sure that the edges of H are equitably used and not ‘saturated’ by some
vertex, we orient them in a balanced way beforehand (hence defining private edges
for every vertex). �

27 / 41

Sample case – Two children

x1
X1

x2
X2

xj

Xj

Xy 6= X1

28 / 41

Sample case – Two children

x1
X1

x2
X2

xj

Xj

y
Xy 6= X1Xy 6= X1

28 / 41

Sample case – Two children

x1
X1

x2
X2

xj

Xj

y
Xy 6= X1Xy 6= X1

28 / 41

Sample case – Two children

x1 x2
X2

xj

Xj

y

X1y

Xy 6= X1

28 / 41

Sample case – Two children

x1 x2
X2

xj

Xj

y

X1y

Xy 6= X1

28 / 41

(1, k)-trees – Summary

2-edge-connectivity + disjoint ‘source’ of degree = spanning (1, `)-tree.

Corollary

For every ` ≥ 1, there exists k` such that if G = (V ,E) is a 2-edge-
connected graph and H is some additional graph on V with minimum
degree k`, then G ∪ H is spanned by a (1, ` + 1)-tree T where dT (v) ≤
dH(v) for every v ∈ V .

Proof: First deduce a subcubic (1, 2)-tree T2 spanning G . Then consider a
sequence of disjoint small fraction H1, ...,H`−1 of H, where each Hi is an
εi -fraction of H. By the assumption on k`, we can assume εi+1 ≥ 4εi .

Using H1, from T2 we can deduce a (1, 3)-tree T3 spanning G . Note that
dT3(v) ≤ dT2(v) + dH1(v) for every vertex v ∈ V . Since 4dH1(v) ≤ dH2(v), we can
use H2 to extend T3 to a (1, 4)-tree T4 spanning G . Due to the choice of the εi ’s,
this process can be repeated until we get T . �

29 / 41

(1, k)-trees – Summary

2-edge-connectivity + disjoint ‘source’ of degree = spanning (1, `)-tree.

Corollary

For every ` ≥ 1, there exists k` such that if G = (V ,E) is a 2-edge-
connected graph and H is some additional graph on V with minimum
degree k`, then G ∪ H is spanned by a (1, ` + 1)-tree T where dT (v) ≤
dH(v) for every v ∈ V .

Proof: First deduce a subcubic (1, 2)-tree T2 spanning G . Then consider a
sequence of disjoint small fraction H1, ...,H`−1 of H, where each Hi is an
εi -fraction of H. By the assumption on k`, we can assume εi+1 ≥ 4εi .

Using H1, from T2 we can deduce a (1, 3)-tree T3 spanning G . Note that
dT3(v) ≤ dT2(v) + dH1(v) for every vertex v ∈ V . Since 4dH1(v) ≤ dH2(v), we can
use H2 to extend T3 to a (1, 4)-tree T4 spanning G . Due to the choice of the εi ’s,
this process can be repeated until we get T . �

29 / 41

(1, k)-trees – Summary

2-edge-connectivity + disjoint ‘source’ of degree = spanning (1, `)-tree.

Corollary

For every ` ≥ 1, there exists k` such that if G = (V ,E) is a 2-edge-
connected graph and H is some additional graph on V with minimum
degree k`, then G ∪ H is spanned by a (1, ` + 1)-tree T where dT (v) ≤
dH(v) for every v ∈ V .

Proof: First deduce a subcubic (1, 2)-tree T2 spanning G . Then consider a
sequence of disjoint small fraction H1, ...,H`−1 of H, where each Hi is an
εi -fraction of H. By the assumption on k`, we can assume εi+1 ≥ 4εi .

Using H1, from T2 we can deduce a (1, 3)-tree T3 spanning G . Note that
dT3(v) ≤ dT2(v) + dH1(v) for every vertex v ∈ V . Since 4dH1(v) ≤ dH2(v), we can
use H2 to extend T3 to a (1, 4)-tree T4 spanning G . Due to the choice of the εi ’s,
this process can be repeated until we get T . �

29 / 41

Path-trees in bipartite graphs

Path-trees with paths of lengths multiple of `?

Theorem

For every even ` ≥ 2, there exists k` such that if G = (V ,E) is a 2-edge-
connected bipartite graph with vertex partition (A,B) and H is some
additional bipartite graph with vertex bipartition (A,B) and minimum
degree k`, then G ∪H admits a (`, 2`)-tree T spanning A where dT (v) ≤
dH(v) for every v ∈ V .

Proof idea: Using a tiny ε-fraction of H, we can obtain a (1, `+ 1)-tree T ′

spanning G verifying dT ′(v) ≤ εdH(v) for every v ∈ V .

We may assume 4ε ≤ 1/5p, where p = dlog2 `e. Also, we can deduce a
1/5p-dense 2p-path-graph H ′ on H with multiplicity at most 1/16.2p. Orienting
H ′∗ in a balanced way, every vertex v is the origin of at least dH(v)/2.5p private
2p-paths of H ′ (with multiplicity at most 1/8.2p). Furthermore, 2p ≥ `− 1.

30 / 41

Path-trees in bipartite graphs

Path-trees with paths of lengths multiple of `?

Theorem

For every even ` ≥ 2, there exists k` such that if G = (V ,E) is a 2-edge-
connected bipartite graph with vertex partition (A,B) and H is some
additional bipartite graph with vertex bipartition (A,B) and minimum
degree k`, then G ∪H admits a (`, 2`)-tree T spanning A where dT (v) ≤
dH(v) for every v ∈ V .

Proof idea: Using a tiny ε-fraction of H, we can obtain a (1, `+ 1)-tree T ′

spanning G verifying dT ′(v) ≤ εdH(v) for every v ∈ V .

We may assume 4ε ≤ 1/5p, where p = dlog2 `e. Also, we can deduce a
1/5p-dense 2p-path-graph H ′ on H with multiplicity at most 1/16.2p. Orienting
H ′∗ in a balanced way, every vertex v is the origin of at least dH(v)/2.5p private
2p-paths of H ′ (with multiplicity at most 1/8.2p). Furthermore, 2p ≥ `− 1.

30 / 41

Path-trees in bipartite graphs

Path-trees with paths of lengths multiple of `?

Theorem

For every even ` ≥ 2, there exists k` such that if G = (V ,E) is a 2-edge-
connected bipartite graph with vertex partition (A,B) and H is some
additional bipartite graph with vertex bipartition (A,B) and minimum
degree k`, then G ∪H admits a (`, 2`)-tree T spanning A where dT (v) ≤
dH(v) for every v ∈ V .

Proof idea: Using a tiny ε-fraction of H, we can obtain a (1, `+ 1)-tree T ′

spanning G verifying dT ′(v) ≤ εdH(v) for every v ∈ V .

We may assume 4ε ≤ 1/5p, where p = dlog2 `e. Also, we can deduce a
1/5p-dense 2p-path-graph H ′ on H with multiplicity at most 1/16.2p. Orienting
H ′∗ in a balanced way, every vertex v is the origin of at least dH(v)/2.5p private
2p-paths of H ′ (with multiplicity at most 1/8.2p). Furthermore, 2p ≥ `− 1.

30 / 41

Path-trees in bipartite graphs

To obtain T , we once again start from every vertex v of A being its own
(`, 2`)-tree Xv . We then iteratively consider a leaf u in T ′ with parent x , and
concatenate the path associated to ux with some private (`− 1)-path of x . This
forms an ` or 2`-path. �

x1

X1

xj

Xy

X1y

31 / 41

Path-trees in bipartite graphs

To obtain T , we once again start from every vertex v of A being its own
(`, 2`)-tree Xv . We then iteratively consider a leaf u in T ′ with parent x , and
concatenate the path associated to ux with some private (`− 1)-path of x . This
forms an ` or 2`-path. �

x1 X1

xj Xj

Xy

X1y

31 / 41

Path-trees in bipartite graphs

To obtain T , we once again start from every vertex v of A being its own
(`, 2`)-tree Xv . We then iteratively consider a leaf u in T ′ with parent x , and
concatenate the path associated to ux with some private (`− 1)-path of x . This
forms an ` or 2`-path. �

x1 X1

xj XjyXy
`− 1

X1y

31 / 41

Path-trees in bipartite graphs

To obtain T , we once again start from every vertex v of A being its own
(`, 2`)-tree Xv . We then iteratively consider a leaf u in T ′ with parent x , and
concatenate the path associated to ux with some private (`− 1)-path of x . This
forms an ` or 2`-path. �

x1 X1

xj XjyXy

X1y

31 / 41

Path-trees in bipartite graphs

To obtain T , we once again start from every vertex v of A being its own
(`, 2`)-tree Xv . We then iteratively consider a leaf u in T ′ with parent x , and
concatenate the path associated to ux with some private (`− 1)-path of x . This
forms an ` or 2`-path. �

x1

X1

xj Xjy

Xy

X1y

31 / 41

Path-trees in bipartite graphs

To obtain T , we once again start from every vertex v of A being its own
(`, 2`)-tree Xv . We then iteratively consider a leaf u in T ′ with parent x , and
concatenate the path associated to ux with some private (`− 1)-path of x . This
forms an ` or 2`-path. �

x1

X1

xj Xjy

Xy

X1y

31 / 41

Part 1: Introduction to the problem

Part 2: Fractions of graphs

Part 3: Path-graphs

Part 4: Constructing path-trees

Part 5: Using everything together

Part 6: Conclusion

32 / 41

Overview, second try

Main ideas:

1. See G as a ‘convenient’ system H of induced paths.

2. Remove some P`’s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Refined to...

1. Turn G into a (≥ `)-path graph H.

2. Make H conflictless eulerian by removing some P`’s.

3. Achieve the decomposition by following the conflictless eulerian trail.

Remark: We may suppose ` is even.

33 / 41

Overview, second try

Main ideas:

1. See G as a ‘convenient’ system H of induced paths.

2. Remove some P`’s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Refined to...

1. Turn G into a (≥ `)-path graph H.

2. Make H conflictless eulerian by removing some P`’s.

3. Achieve the decomposition by following the conflictless eulerian trail.

Remark: We may suppose ` is even.

33 / 41

Overview, second try

Main ideas:

1. See G as a ‘convenient’ system H of induced paths.

2. Remove some P`’s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Refined to...

1. Turn G into a (≥ `)-path graph H.

2. Make H conflictless eulerian by removing some P`’s.

3. Achieve the decomposition by following the conflictless eulerian trail.

Remark: We may suppose ` is even.

33 / 41

Overview, second try

Main ideas:

1. See G as a ‘convenient’ system H of induced paths.

2. Remove some P`’s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Refined to...

1. Turn G into a (≥ `)-path graph H.

2. Make H conflictless eulerian by removing some P`’s.

3. Achieve the decomposition by following the conflictless eulerian trail.

Remark: We may suppose ` is even.

33 / 41

Overview, second try

Main ideas:

1. See G as a ‘convenient’ system H of induced paths.

2. Remove some P`’s from G so that H is eulerian.

3. Finish the decomposition by following a eulerian trail of H.

Refined to...

1. Turn G into a (≥ `)-path graph H.

2. Make H conflictless eulerian by removing some P`’s.

3. Achieve the decomposition by following the conflictless eulerian trail.

Remark: We may suppose ` is even.

33 / 41

Setting up

G : 64-edge-connected, δ(G)� `.

Start from a maximum cut (V1,V2) of G , and let F be the edges across the cut.

Set G ′ := (V ,F).

V1

V2

G ′

Max cut ⇒ G ′ is 32-edge-connected and δ(G ′)� `.
⇒ there exist 16 edge-disjoint spanning trees of G ′ [Tutte – 1965].
⇒ G ′ = G ′1, ...,G

′
8 (2-edge-connected).

⇒ there exist T1, ...,T8 1/2-sparse spanning trees.

34 / 41

Setting up

G : 64-edge-connected, δ(G)� `.

Start from a maximum cut (V1,V2) of G , and let F be the edges across the cut.

Set G ′ := (V ,F).

V1

V2

G ′

Max cut ⇒ G ′ is 32-edge-connected and δ(G ′)� `.
⇒ there exist 16 edge-disjoint spanning trees of G ′ [Tutte – 1965].
⇒ G ′ = G ′1, ...,G

′
8 (2-edge-connected).

⇒ there exist T1, ...,T8 1/2-sparse spanning trees.

34 / 41

Setting up

G : 64-edge-connected, δ(G)� `.

Start from a maximum cut (V1,V2) of G , and let F be the edges across the cut.

Set G ′ := (V ,F).

V1

V2

G ′

Max cut ⇒ G ′ is 32-edge-connected and δ(G ′)� `.
⇒ there exist 16 edge-disjoint spanning trees of G ′ [Tutte – 1965].
⇒ G ′ = G ′1, ...,G

′
8 (2-edge-connected).

⇒ there exist T1, ...,T8 1/2-sparse spanning trees.

34 / 41

Setting up

G : 64-edge-connected, δ(G)� `.

Start from a maximum cut (V1,V2) of G , and let F be the edges across the cut.

Set G ′ := (V ,F).

V1

V2

G ′

Max cut ⇒ G ′ is 32-edge-connected and δ(G ′)� `.

⇒ there exist 16 edge-disjoint spanning trees of G ′ [Tutte – 1965].
⇒ G ′ = G ′1, ...,G

′
8 (2-edge-connected).

⇒ there exist T1, ...,T8 1/2-sparse spanning trees.

34 / 41

Setting up

G : 64-edge-connected, δ(G)� `.

Start from a maximum cut (V1,V2) of G , and let F be the edges across the cut.

Set G ′ := (V ,F).

V1

V2

G ′

Max cut ⇒ G ′ is 32-edge-connected and δ(G ′)� `.
⇒ there exist 16 edge-disjoint spanning trees of G ′ [Tutte – 1965].

⇒ G ′ = G ′1, ...,G
′
8 (2-edge-connected).

⇒ there exist T1, ...,T8 1/2-sparse spanning trees.

34 / 41

Setting up

G : 64-edge-connected, δ(G)� `.

Start from a maximum cut (V1,V2) of G , and let F be the edges across the cut.

Set G ′ := (V ,F).

V1

V2

G ′

Max cut ⇒ G ′ is 32-edge-connected and δ(G ′)� `.
⇒ there exist 16 edge-disjoint spanning trees of G ′ [Tutte – 1965].
⇒ G ′ = G ′1, ...,G

′
8 (2-edge-connected).

⇒ there exist T1, ...,T8 1/2-sparse spanning trees.

34 / 41

Setting up

G : 64-edge-connected, δ(G)� `.

Start from a maximum cut (V1,V2) of G , and let F be the edges across the cut.

Set G ′ := (V ,F).

V1

V2

G ′

Max cut ⇒ G ′ is 32-edge-connected and δ(G ′)� `.
⇒ there exist 16 edge-disjoint spanning trees of G ′ [Tutte – 1965].
⇒ G ′ = G ′1, ...,G

′
8 (2-edge-connected).

⇒ there exist T1, ...,T8 1/2-sparse spanning trees.

34 / 41

Setting up

Set H1 := T1 ∪T2, H2 := T3 ∪T4, H3 := T5 ∪T6, H4 := T7 ∪T8, and H5 the rest.

V1

V2

G ′H1 H2 H3 H4 H5

G ′ = H1, H2, H3, H4

• connected
• bridgeless

• 1/2-sparse

+ H5

• 1/2-dense

35 / 41

Setting up

Set H1 := T1 ∪T2, H2 := T3 ∪T4, H3 := T5 ∪T6, H4 := T7 ∪T8, and H5 the rest.

V1

V2

G ′H1 H2 H3 H4 H5

G ′ = H1, H2, H3, H4

• connected
• bridgeless

• 1/2-sparse

+ H5

• 1/2-dense

35 / 41

Setting up

Set H1 := T1 ∪T2, H2 := T3 ∪T4, H3 := T5 ∪T6, H4 := T7 ∪T8, and H5 the rest.

V1

V2

G ′H1 H2 H3 H4 H5

G ′ = H1, H2, H3, H4

• connected
• bridgeless

• 1/2-sparse

+ H5

• 1/2-dense

35 / 41

Creating (`, 2`)-trees over V1 and V2

H1 + tiny c-fraction of H5 = c-sparse (`, 2`)-tree T ′1 spanning V1.
H2 + tiny c-fraction of H5 = c-sparse (`, 2`)-tree T ′2 spanning V1.

H3 + tiny c-fraction of H5 = c-sparse (`, 2`)-tree T ′3 spanning V2.
H4 + tiny c-fraction of H5 = c-sparse (`, 2`)-tree T ′4 spanning V2.

Because δ(H5)� `, we can find a proper (`+ 1)-path P in H5.

T = T ′1 ∪ T ′3 ∪ P is a sparse (≥ `)-tree spanning G .

V1

V2

G ′

T ′1

T ′3

P

36 / 41

Creating (`, 2`)-trees over V1 and V2

H1 + tiny c-fraction of H5 = c-sparse (`, 2`)-tree T ′1 spanning V1.
H2 + tiny c-fraction of H5 = c-sparse (`, 2`)-tree T ′2 spanning V1.

H3 + tiny c-fraction of H5 = c-sparse (`, 2`)-tree T ′3 spanning V2.
H4 + tiny c-fraction of H5 = c-sparse (`, 2`)-tree T ′4 spanning V2.

Because δ(H5)� `, we can find a proper (`+ 1)-path P in H5.

T = T ′1 ∪ T ′3 ∪ P is a sparse (≥ `)-tree spanning G .

V1

V2

G ′

T ′1

T ′3

P

36 / 41

Creating (`, 2`)-trees over V1 and V2

H1 + tiny c-fraction of H5 = c-sparse (`, 2`)-tree T ′1 spanning V1.
H2 + tiny c-fraction of H5 = c-sparse (`, 2`)-tree T ′2 spanning V1.

H3 + tiny c-fraction of H5 = c-sparse (`, 2`)-tree T ′3 spanning V2.
H4 + tiny c-fraction of H5 = c-sparse (`, 2`)-tree T ′4 spanning V2.

Because δ(H5)� `, we can find a proper (`+ 1)-path P in H5.

T = T ′1 ∪ T ′3 ∪ P is a sparse (≥ `)-tree spanning G .

V1

V2

G ′

T ′1

T ′3

P

36 / 41

Creating (`, 2`)-trees over V1 and V2

H1 + tiny c-fraction of H5 = c-sparse (`, 2`)-tree T ′1 spanning V1.
H2 + tiny c-fraction of H5 = c-sparse (`, 2`)-tree T ′2 spanning V1.

H3 + tiny c-fraction of H5 = c-sparse (`, 2`)-tree T ′3 spanning V2.
H4 + tiny c-fraction of H5 = c-sparse (`, 2`)-tree T ′4 spanning V2.

Because δ(H5)� `, we can find a proper (`+ 1)-path P in H5.

T = T ′1 ∪ T ′3 ∪ P is a sparse (≥ `)-tree spanning G .

V1

V2

G ′

T ′1

T ′3

P

36 / 41

Going on

We may suppose H5 is still 1/2-dense in G ′. Because of the degree assumption, it
has a 1/5p-dense 2p-path-graph H with multiplicity at most c , where p satisfies
` ≤ 2p < 2`.

So far, G is decomposed, saved some `-paths, into:

H +

• 2p-path-graph

• 1/5p-dense

• multiplicity c

T +

• [`, 2`]-tree

• c-sparse

T ′2 +

• (`, 2`)-tree on V1

• c-sparse

T ′4 +

• (`, 2`)-tree on V2

• c-sparse

R

• rest

As long as possible, remove `-paths from R. Call GR what remains.

Theorem [Thomassen – 2008]

GR admits a (< `)-path-graph with maximum degree at most `− 1.

37 / 41

Going on

We may suppose H5 is still 1/2-dense in G ′. Because of the degree assumption, it
has a 1/5p-dense 2p-path-graph H with multiplicity at most c , where p satisfies
` ≤ 2p < 2`.

So far, G is decomposed, saved some `-paths, into:

H +

• 2p-path-graph

• 1/5p-dense

• multiplicity c

T +

• [`, 2`]-tree

• c-sparse

T ′2 +

• (`, 2`)-tree on V1

• c-sparse

T ′4 +

• (`, 2`)-tree on V2

• c-sparse

R

• rest

As long as possible, remove `-paths from R. Call GR what remains.

Theorem [Thomassen – 2008]

GR admits a (< `)-path-graph with maximum degree at most `− 1.

37 / 41

Going on

We may suppose H5 is still 1/2-dense in G ′. Because of the degree assumption, it
has a 1/5p-dense 2p-path-graph H with multiplicity at most c , where p satisfies
` ≤ 2p < 2`.

So far, G is decomposed, saved some `-paths, into:

H +

• 2p-path-graph

• 1/5p-dense

• multiplicity c

T +

• [`, 2`]-tree

• c-sparse

T ′2 +

• (`, 2`)-tree on V1

• c-sparse

T ′4 +

• (`, 2`)-tree on V2

• c-sparse

R

• rest

As long as possible, remove `-paths from R. Call GR what remains.

Theorem [Thomassen – 2008]

GR admits a (< `)-path-graph with maximum degree at most `− 1.

37 / 41

Growing the paths of GR

Call GR this path-graph.

Consider a ‘tiny’ 4c`3-fraction of H ′ of H, and orient H ′∗ in a balanced way. Then
every vertex v is the origin of a private set of K = 2c`3dH(v) paths P ′1, ...,P

′
K in

H ′.

Since the multiplicity of H is at most c , every path P ′i is conflicting at v with at
most c |P ′i |dH(v) ≤ 2c`dH(v) other paths of H ′v . Among P ′1, ...,P

′
K , one can

hence find K/2c`dH(v) = `2 non-conflicting paths. Then use these paths to
extend those of Hr starting at v . Then we transform all paths of GR into paths of
length in between ` and 3`.

Call H ′R the resulting (≥ `)-path graph. In particular, this graph is sparse in H.

38 / 41

Growing the paths of GR

Call GR this path-graph.

Consider a ‘tiny’ 4c`3-fraction of H ′ of H, and orient H ′∗ in a balanced way. Then
every vertex v is the origin of a private set of K = 2c`3dH(v) paths P ′1, ...,P

′
K in

H ′.

Since the multiplicity of H is at most c , every path P ′i is conflicting at v with at
most c |P ′i |dH(v) ≤ 2c`dH(v) other paths of H ′v . Among P ′1, ...,P

′
K , one can

hence find K/2c`dH(v) = `2 non-conflicting paths. Then use these paths to
extend those of Hr starting at v . Then we transform all paths of GR into paths of
length in between ` and 3`.

Call H ′R the resulting (≥ `)-path graph. In particular, this graph is sparse in H.

38 / 41

Growing the paths of GR

Call GR this path-graph.

Consider a ‘tiny’ 4c`3-fraction of H ′ of H, and orient H ′∗ in a balanced way. Then
every vertex v is the origin of a private set of K = 2c`3dH(v) paths P ′1, ...,P

′
K in

H ′.

Since the multiplicity of H is at most c , every path P ′i is conflicting at v with at
most c |P ′i |dH(v) ≤ 2c`dH(v) other paths of H ′v . Among P ′1, ...,P

′
K , one can

hence find K/2c`dH(v) = `2 non-conflicting paths. Then use these paths to
extend those of Hr starting at v . Then we transform all paths of GR into paths of
length in between ` and 3`.

Call H ′R the resulting (≥ `)-path graph. In particular, this graph is sparse in H.

38 / 41

Growing the paths of GR

Call GR this path-graph.

Consider a ‘tiny’ 4c`3-fraction of H ′ of H, and orient H ′∗ in a balanced way. Then
every vertex v is the origin of a private set of K = 2c`3dH(v) paths P ′1, ...,P

′
K in

H ′.

Since the multiplicity of H is at most c , every path P ′i is conflicting at v with at
most c |P ′i |dH(v) ≤ 2c`dH(v) other paths of H ′v . Among P ′1, ...,P

′
K , one can

hence find K/2c`dH(v) = `2 non-conflicting paths. Then use these paths to
extend those of Hr starting at v . Then we transform all paths of GR into paths of
length in between ` and 3`.

Call H ′R the resulting (≥ `)-path graph. In particular, this graph is sparse in H.

38 / 41

Getting a decomposition

Our objects are:

H +

• 2p-path-graph

• 1/5p-dense

• multiplicity c

T +

• [`, 2`]-tree

• c-sparse

T ′2 +

• (`, 2`)-tree on V1

• c-sparse

T ′4 +

• (`, 2`)-tree on V2

• c-sparse

H ′R

• [`, 3`]-path-graph

• 4c`3-sparse

and form HF . The final objective is to invoke a eulerian closed trail argument.

So that all degrees of V1 (resp. V2) but maybe one are even, we can remove `- or
2`-paths from T ′2 (resp. T ′4). In case V1 and V2 both have a remaining vertex
with odd degree, with join them via a dummy edge.

Now, since the multiplicity of H is arbitrarily small and T ∪ T ′2 ∪ T ′4 ∪ H ′R is, say,
4c`3-sparse, HF is a (≤ 3`)-path-graph with multiplicity less than 1/24`. Then a
conflictless eulerian closed trail exists in HF . Going along it, we finish the
decomposition into `-paths. �

39 / 41

Getting a decomposition

Our objects are:

H +

• 2p-path-graph

• 1/5p-dense

• multiplicity c

T +

• [`, 2`]-tree

• c-sparse

T ′2 +

• (`, 2`)-tree on V1

• c-sparse

T ′4 +

• (`, 2`)-tree on V2

• c-sparse

H ′R

• [`, 3`]-path-graph

• 4c`3-sparse

and form HF . The final objective is to invoke a eulerian closed trail argument.

So that all degrees of V1 (resp. V2) but maybe one are even, we can remove `- or
2`-paths from T ′2 (resp. T ′4). In case V1 and V2 both have a remaining vertex
with odd degree, with join them via a dummy edge.

Now, since the multiplicity of H is arbitrarily small and T ∪ T ′2 ∪ T ′4 ∪ H ′R is, say,
4c`3-sparse, HF is a (≤ 3`)-path-graph with multiplicity less than 1/24`. Then a
conflictless eulerian closed trail exists in HF . Going along it, we finish the
decomposition into `-paths. �

39 / 41

Getting a decomposition

Our objects are:

H +

• 2p-path-graph

• 1/5p-dense

• multiplicity c

T +

• [`, 2`]-tree

• c-sparse

T ′2 +

• (`, 2`)-tree on V1

• c-sparse

T ′4 +

• (`, 2`)-tree on V2

• c-sparse

H ′R

• [`, 3`]-path-graph

• 4c`3-sparse

and form HF . The final objective is to invoke a eulerian closed trail argument.

So that all degrees of V1 (resp. V2) but maybe one are even, we can remove `- or
2`-paths from T ′2 (resp. T ′4). In case V1 and V2 both have a remaining vertex
with odd degree, with join them via a dummy edge.

Now, since the multiplicity of H is arbitrarily small and T ∪ T ′2 ∪ T ′4 ∪ H ′R is, say,
4c`3-sparse, HF is a (≤ 3`)-path-graph with multiplicity less than 1/24`. Then a
conflictless eulerian closed trail exists in HF . Going along it, we finish the
decomposition into `-paths. �

39 / 41

Part 1: Introduction to the problem

Part 2: Fractions of graphs

Part 3: Path-graphs

Part 4: Constructing path-trees

Part 5: Using everything together

Part 6: Conclusion

40 / 41

Conclusion

For paths, 64-edge-connectivity suffices...

... but how far can this be pushed?

Actually 48 works (save two trees for constructing T).

Similar approaches for other kinds of trees?

Thank you for your attention.

41 / 41

Conclusion

For paths, 64-edge-connectivity suffices...

... but how far can this be pushed?

Actually 48 works (save two trees for constructing T).

Similar approaches for other kinds of trees?

Thank you for your attention.

41 / 41

Conclusion

For paths, 64-edge-connectivity suffices...

... but how far can this be pushed?

Actually 48 works (save two trees for constructing T).

Similar approaches for other kinds of trees?

Thank you for your attention.

41 / 41

Conclusion

For paths, 64-edge-connectivity suffices...

... but how far can this be pushed?

Actually 48 works (save two trees for constructing T).

Similar approaches for other kinds of trees?

Thank you for your attention.

41 / 41

Conclusion

For paths, 64-edge-connectivity suffices...

... but how far can this be pushed?

Actually 48 works (save two trees for constructing T).

Similar approaches for other kinds of trees?

Thank you for your attention.

41 / 41

