Edge-partitioning a graph into paths: beyond the Barát-Thomassen conjecture

Julien Bensmail, Ararat Harutyunyan and Stéphan Thomassé

LIP, ÉNS de Lyon, France

AGH University, Kraków April 14th, 2015

Part 1: Introduction to the problem

- Part 2: Fractions of graphs
- Part 3: Path-graphs
- Part 4: Constructing path-trees
- Part 5: Using everything together
- Part 6: Conclusion

G: undirected simple graph.

T: tree with |E(T)| dividing |E(G)|.

- G: undirected simple graph.
- T: tree with |E(T)| dividing |E(G)|.

Definition: T-decomposition

A *T*-decomposition of *G* is a partition $E_1, ..., E_k$ of E(G) such that E_i induces an isomorphic copy of *T* for every i = 1, ..., k.

- G: undirected simple graph.
- T: tree with |E(T)| dividing |E(G)|.

Definition: T-decomposition

A *T*-decomposition of G is a partition $E_1, ..., E_k$ of E(G) such that E_i induces an isomorphic copy of T for every i = 1, ..., k.

- G: undirected simple graph.
- T: tree with |E(T)| dividing |E(G)|.

Definition: *T*-decomposition

A *T*-decomposition of G is a partition $E_1, ..., E_k$ of E(G) such that E_i induces an isomorphic copy of T for every i = 1, ..., k.

P₃-decomposition

The Barát-Thomassen conjecture

Divisibility condition is understood throughout.

Conjecture [Barát, Thomassen - 2006]

For every fixed tree T, there exists a positive constant c_T such that every c_T -edge-connected graph admits a T-decomposition.

The Barát-Thomassen conjecture

Divisibility condition is understood throughout.

Conjecture [Barát, Thomassen – 2006]

For every fixed tree T, there exists a positive constant c_T such that every c_T -edge-connected graph admits a T-decomposition.

Verified for *T* being:

- a star [Thomassen 2012],
- a bistar of the form $S_{k,k+1}$ [Thomassen 2014],
- the tree with degree sequence (1, 1, 1, 2, 3) [Barát, Gerbner 2014],
- of diameter at most 4 [Merker 2015+],

 \bullet among some family of trees with diameter 5 [Merker – 2015+], and...

The Barát-Thomassen conjecture

Divisibility condition is understood throughout.

Conjecture [Barát, Thomassen – 2006]

For every fixed tree T, there exists a positive constant c_T such that every c_T -edge-connected graph admits a T-decomposition.

and...

- the path of length 3 [Thomassen 2008],
- the path of length 4 [Thomassen 2008],
- a path of length 2^k [Thomassen 2014],
- the path of length 5 [Botler, Mota, Oshiro, Wakabayashi 2015],
- any path [Botler, Mota, Oshiro, Wakabayashi 2015+]!

Theorem [Botler, Mota, Oshiro, Wakabayashi – 2015+]

The Barát-Thomassen conjecture is true for T being any path.

About the proof:

• Generalization of a proof for P_5 .

Theorem [Botler, Mota, Oshiro, Wakabayashi – 2015+]

The Barát-Thomassen conjecture is true for T being any path.

About the proof:

- Generalization of a proof for P_5 .
- Technical due to risky path-uncrossing procedures.

Theorem [Botler, Mota, Oshiro, Wakabayashi – 2015+]

The Barát-Thomassen conjecture is true for T being any path.

About the proof:

- Generalization of a proof for P_5 .
- Technical due to risky path-uncrossing procedures.

Our goal: give a somewhat simpler proof with reasonable technicalities.

'Stronger' = **degree** is more important than **edge-connectivity**.

'Stronger' = **degree** is more important than **edge-connectivity**.

Theorem [B., Harutyunyan, Thomassé – 2015+]

For every $\ell \geq 1$, every 64-edge-connected graph admits a P_{ℓ} -decomposition provided its minimum degree is large enough.

'Stronger' = **degree** is more important than **edge-connectivity**.

Theorem [B., Harutyunyan, Thomassé – 2015+]

For every $\ell \geq 1$, every 64-edge-connected graph admits a P_{ℓ} -decomposition provided its minimum degree is large enough.

More general question

2-edge-connectivity + large minimum degree \Rightarrow path-decomposition???

Main ideas:

- 1. See G as a 'convenient' system H of induced paths.
- 2. Remove some P_{ℓ} 's from G so that H is eulerian.
- 3. Finish the decomposition by following a eulerian trail of H.

Main ideas:

- 1. See G as a 'convenient' system H of induced paths.
- 2. Remove some P_{ℓ} 's from G so that H is eulerian.
- 3. Finish the decomposition by following a eulerian trail of H.

Issues:

1. What does 'convenient' mean?

Main ideas:

- 1. See G as a 'convenient' system H of induced paths.
- 2. Remove some P_{ℓ} 's from G so that H is eulerian.
- 3. Finish the decomposition by following a eulerian trail of H.

- 1. What does 'convenient' mean?
- 2. What does it mean for H to be eulerian?

Main ideas:

- 1. See G as a 'convenient' system H of induced paths.
- 2. Remove some P_{ℓ} 's from G so that H is eulerian.
- 3. Finish the decomposition by following a eulerian trail of H.

- 1. What does 'convenient' mean?
- 2. What does it mean for H to be eulerian?
- 2. How to ensure connectedness of H (after 2., especially)?

Main ideas:

- 1. See G as a 'convenient' system H of induced paths.
- 2. Remove some P_{ℓ} 's from G so that H is eulerian.
- 3. Finish the decomposition by following a eulerian trail of H.

- 1. What does 'convenient' mean?
- 2. What does it mean for H to be eulerian?
- 2. How to ensure connectedness of H (after 2., especially)?
- 3. How to be sure that the trail is properly decomposable?

Main ideas:

- 1. See G as a 'convenient' system H of induced paths.
- 2. Remove some P_{ℓ} 's from G so that H is eulerian.
- 3. Finish the decomposition by following a eulerian trail of H.

- 1. What does 'convenient' mean?
- 2. What does it mean for H to be eulerian?
- 2. How to ensure connectedness of H (after 2., especially)?
- 3. How to be sure that the trail is properly decomposable?
- 3. is a crucial concern in Botler, Mota, Oshiro and Wakabayashi's proof.

Main ideas:

- 1. See G as a 'convenient' system H of induced paths.
- 2. Remove some P_{ℓ} 's from G so that H is eulerian.
- 3. Finish the decomposition by following a eulerian trail of H.

- 1. What does 'convenient' mean?
- 2. What does it mean for H to be eulerian?
- 2. How to ensure connectedness of H (after 2., especially)?
- 3. How to be sure that the trail is properly decomposable?
- 3. is a crucial concern in Botler, Mota, Oshiro and Wakabayashi's proof.

Main ideas:

- 1. See G as a 'convenient' system H of induced paths.
- 2. Remove some P_{ℓ} 's from G so that H is eulerian.
- 3. Finish the decomposition by following a eulerian trail of H.

- 1. What does 'convenient' mean?
- 2. What does it mean for H to be eulerian?
- 2. How to ensure connectedness of H (after 2., especially)?
- 3. How to be sure that the trail is properly decomposable?
- 3. is a crucial concern in Botler, Mota, Oshiro and Wakabayashi's proof.

Main ideas:

- 1. See G as a 'convenient' system H of induced paths.
- 2. Remove some P_{ℓ} 's from G so that H is eulerian.
- 3. Finish the decomposition by following a eulerian trail of H.

- 1. What does 'convenient' mean?
- 2. What does it mean for H to be eulerian?
- 2. How to ensure connectedness of H (after 2., especially)?
- 3. How to be sure that the trail is properly decomposable?
- 3. is a crucial concern in Botler, Mota, Oshiro and Wakabayashi's proof.

Source of degree + small edge-connectivity \Rightarrow 'convenient' objects.

Source of degree + small edge-connectivity \Rightarrow 'convenient' objects.

• Part 2: sparse and dense subgraphs.

Source of degree + small edge-connectivity \Rightarrow 'convenient' objects.

- Part 2: sparse and dense subgraphs.
- Part 3: constructing systems of edge-disjoint paths.

Source of degree + small edge-connectivity \Rightarrow 'convenient' objects.

- Part 2: sparse and dense subgraphs.
- Part 3: constructing systems of edge-disjoint paths.
- Part 4: obtaining such systems with a tree structure.

Part 1: Introduction to the problem

Part 2: Fractions of graphs

- Part 3: Path-graphs
- Part 4: Constructing path-trees
- Part 5: Using everything together
- Part 6: Conclusion

 α : real number in [0, 1].

Definitions: α -sparse, α -dense, α -fraction

Let *H* be a spanning subgraph of *G*. We say that *H* is α -sparse (resp. α -dense) if $d_H(v) \leq \alpha d_G(v)$ (resp. $d_H(v) \geq \alpha d_G(v)$) for every $v \in V(G)$. We say that *H* is an α -fraction of *G* if *H* is both α -sparse and α -dense. α : real number in [0, 1].

Definitions: α -sparse, α -dense, α -fraction

Let *H* be a spanning subgraph of *G*. We say that *H* is α -sparse (resp. α -dense) if $d_H(v) \leq \alpha d_G(v)$ (resp. $d_H(v) \geq \alpha d_G(v)$) for every $v \in V(G)$. We say that *H* is an α -fraction of *G* if *H* is both α -sparse and α -dense.

k-edge-connectivity + large degree $\Rightarrow 1/k$ -sparse spanning tree.

Theorem [Ellingham, Nam, Voss – 2002]

Every k-edge-connected graph admits a 1/k-sparse spanning tree.

(with error term +2)

On fractions of graphs

Proposition

Every graph G has a 1/2-fraction (with error term ± 1).

Proof: If *G* has an even cycle *C*, remove the edges of *C*, apply induction and add the edges of a perfect matching of *C* to the solution. Otherwise, *G* is either an odd cycle (in which case the conclusion follows), or has a cutvertex *z* incident to an 'endblock' *B* which is either an edge or an odd cycle. Then contract *B* to *z*, apply induction, and extend the solution by conveniently choosing some edges of *B*.

Proposition

Every graph G has a 1/2-fraction (with error term ± 1).

Proof: If *G* has an even cycle *C*, remove the edges of *C*, apply induction and add the edges of a perfect matching of *C* to the solution. Otherwise, *G* is either an odd cycle (in which case the conclusion follows), or has a cutvertex *z* incident to an 'endblock' *B* which is either an edge or an odd cycle. Then contract *B* to *z*, apply induction, and extend the solution by conveniently choosing some edges of *B*.

Corollary

If α has a finite binary extension, then G has an α -fraction.

(with constant additive error term)

- Part 1: Introduction to the problem
- Part 2: Fractions of graphs
- Part 3: Path-graphs
- Part 4: Constructing path-trees
- Part 5: Using everything together
- Part 6: Conclusion

Definition: path-graph

A path-graph H on G = (V, E) is a couple (V, \mathcal{P}) where \mathcal{P} is a set of edge-disjoint paths of G. For every $v \in V$, we define \mathcal{P}_v as the set of paths of \mathcal{P} having v as an endvertex. To H, we associate the (multi)graph H^* on vertex set V and edge set contains the pairs of endvertices of \mathcal{P} .
Definition: path-graph

A path-graph H on G = (V, E) is a couple (V, \mathcal{P}) where \mathcal{P} is a set of edge-disjoint paths of G. For every $v \in V$, we define \mathcal{P}_v as the set of paths of \mathcal{P} having v as an endvertex. To H, we associate the (multi)graph H^* on vertex set V and edge set contains the pairs of endvertices of \mathcal{P} .

Definition: path-graph

A path-graph H on G = (V, E) is a couple (V, \mathcal{P}) where \mathcal{P} is a set of edge-disjoint paths of G. For every $v \in V$, we define \mathcal{P}_v as the set of paths of \mathcal{P} having v as an endvertex. To H, we associate the (multi)graph H^* on vertex set V and edge set contains the pairs of endvertices of \mathcal{P} .

- *H* connected \Leftrightarrow *H*^{*} connected.
- H tree \Leftrightarrow H^* tree.

- *H* connected \Leftrightarrow *H*^{*} connected.
- H tree \Leftrightarrow H^* tree.
- For every $v \in V$, $d_H(v) = d_{H^*}(v)$.
- *H* eulerian \Leftrightarrow *H* connected + $d_H(v)$ even for every $v \in V$.

- *H* connected \Leftrightarrow *H*^{*} connected.
- H tree \Leftrightarrow H^* tree.
- For every $v \in V$, $d_H(v) = d_{H^*}(v)$.
- *H* eulerian \Leftrightarrow *H* connected + $d_H(v)$ even for every $v \in V$.
- *H* **q**-path-graph \Leftrightarrow all paths of \mathcal{P} have length *q*.
- $H \ (\leq \mathbf{q})$ -path-graph \Leftrightarrow all paths of \mathcal{P} have length at most q.
- $H \ (\geq \mathbf{q})$ -path-graph \Leftrightarrow all paths of \mathcal{P} have length at least q.
- $H(\mathbf{q_1}, \mathbf{q_2})$ -path-graph \Leftrightarrow all paths of \mathcal{P} have length q_1 or q_2 .

Previous example: disconnected (\leq 3)-path-graph.

- **Conflicting paths** \Leftrightarrow paths sharing more than just one end.
- **Conflictless trail** \Leftrightarrow trail with no subsequent conflicting paths.
- *H* conflictless eulerian \Leftrightarrow *H* has a conflictless eulerian closed trail.

More terminology for conflicts

Definition: *multiplicity*

For distinct $w, v \in V$, the *multiplicity* of *w* around *v* is

$$\operatorname{mult}_{v}(w) := |\{P \in \mathcal{P}_{v} : w \in P\}|/|\mathcal{P}_{v}|.$$

The *multiplicity* of *H* is the maximum multiplicity of its vertices.

More terminology for conflicts

Definition: *multiplicity*

For distinct $w, v \in V$, the *multiplicity* of *w* around *v* is

$$\operatorname{mult}_{v}(w) := |\{P \in \mathcal{P}_{v} : w \in P\}|/|\mathcal{P}_{v}|.$$

The *multiplicity* of *H* is the maximum multiplicity of its vertices.

Definitions: conflict graph, conflict ratio

For every $v \in V$, the *conflict graph* H_v is the graph on vertex set \mathcal{P}_v in which P_1P_2 is an edge if P_1 and P_2 intersect. The *conflict ratio* of H is defined as

 $\max\{(\Delta(H_v)+1)/|\mathcal{P}_v|: v \in V\}.$

Remark: Every path is self-conflicting.

Eulerian closed trails and conflict ratio

Eulerian path-graph + reasonable conflict ratio \Rightarrow conflictless eulerian closed trail.

Theorem

Every eulerian path-graph H with conflict ratio at most 1/8 has a conflictless eulerian closed trail.

Eulerian closed trails and conflict ratio

Eulerian path-graph + reasonable conflict ratio \Rightarrow conflictless eulerian closed trail.

Theorem Every eulerian path-graph H with conflict ratio at most 1/8 has a conflictless eulerian closed trail.

Proof: Since the antidegree of every vertex in H_v is greater than $|\mathcal{P}_v|/2$, necessarily H_v admits a hamiltonian anticycle (by Dirac's Theorem). So there is a pairing $M_v = P_1P_2, P_3P_4, \dots$ of the paths in \mathcal{P}_v such that each pair is non-conflicting.

Eulerian path-graph + reasonable conflict ratio \Rightarrow conflictless eulerian closed trail.

Theorem

Every eulerian path-graph H with conflict ratio at most 1/8 has a conflictless eulerian closed trail.

Proof: Since the antidegree of every vertex in H_v is greater than $|\mathcal{P}_v|/2$, necessarily H_v admits a hamiltonian anticycle (by Dirac's Theorem). So there is a pairing $M_v = P_1 P_2, P_3 P_4, \dots$ of the paths in \mathcal{P}_v such that each pair is non-conflicting.

Having such a pairing M_v for every $v \in V$ defines a set of conflictless closed trails $T_1, ..., T_t$, where a pair $\{P_i, P_{i+1}\}$ means that when entering at a vertex via P_i , we must leave via P_{i+1} (and vice-versa). If t = 1, we are done. Otherwise, we merge two trails so that t decreases.

By our terminology, there is a $v \in V$ whose some paths of \mathcal{P}_v belong to, say, \mathcal{T}_1 . We may assume that no more than half of its paths appear in \mathcal{T}_1 .

By our terminology, there is a $v \in V$ whose some paths of \mathcal{P}_v belong to, say, \mathcal{T}_1 . We may assume that no more than half of its paths appear in \mathcal{T}_1 .

$$\frac{|P_1, P_2|}{|T_1| \le \text{half}} \ge \text{half}$$

By our terminology, there is a $v \in V$ whose some paths of \mathcal{P}_v belong to, say, \mathcal{T}_1 . We may assume that no more than half of its paths appear in \mathcal{T}_1 .

By our terminology, there is a $v \in V$ whose some paths of \mathcal{P}_v belong to, say, \mathcal{T}_1 . We may assume that no more than half of its paths appear in \mathcal{T}_1 .

By our terminology, there is a $v \in V$ whose some paths of \mathcal{P}_v belong to, say, \mathcal{T}_1 . We may assume that no more than half of its paths appear in \mathcal{T}_1 .

By our terminology, there is a $v \in V$ whose some paths of \mathcal{P}_v belong to, say, \mathcal{T}_1 . We may assume that no more than half of its paths appear in \mathcal{T}_1 .

By our terminology, there is a $v \in V$ whose some paths of \mathcal{P}_v belong to, say, \mathcal{T}_1 . We may assume that no more than half of its paths appear in \mathcal{T}_1 .

By our terminology, there is a $v \in V$ whose some paths of \mathcal{P}_v belong to, say, \mathcal{T}_1 . We may assume that no more than half of its paths appear in \mathcal{T}_1 .

To larger paths with reasonable conflicts

Growing paths with still 'reasonable' path conflicts?

Lemma

Let q be some fixed positive integer and c > 0 be some real number such that cq < 1/100. Let $H = (V, \mathcal{P})$ be an α -dense q-path-graph of some graph G with multiplicity at most c and minimum degree k large with respect to 1/c and q. Then one can form an $\alpha/5$ -dense 2q-path-graph on G with multiplicity at most 16cq.

To larger paths with reasonable conflicts

Growing paths with still 'reasonable' path conflicts?

Lemma

Let q be some fixed positive integer and c > 0 be some real number such that cq < 1/100. Let $H = (V, \mathcal{P})$ be an α -dense q-path-graph of some graph G with multiplicity at most c and minimum degree k large with respect to 1/c and q. Then one can form an $\alpha/5$ -dense 2q-path-graph on G with multiplicity at most 16cq.

Proof idea: Consider a cut (V_1, V_2) of V maximizing the size of the set \mathcal{P}' of edges of H^* 'between' V_1 and V_2 . Let $H' = (V, \mathcal{P}')$. Then H' is $\alpha/2$ -dense and has multiplicity at most 2c. Now split H' into two 1/2-fractions $H'_1 = (V, \mathcal{P}'_1)$ and $H'_2 = (V, \mathcal{P}'_2)$. These two path-graphs are $\alpha/4$ -dense and have multiplicity at most 4c. We use H'_1 only to form a 2q-path graph on V_1 with required density (almost automatic) and multiplicity (much harder).

$$\underbrace{2q-path}_{\bullet} V_1$$

Problem: The two paths may be conflicting, and w can have degree so large that it carries too many path dependencies (making impossible *e.g.* the application of Lovász Local Lemma).

Solution: Group the *q*-paths arriving at *w* into small subsets of non-conflicting paths \rightarrow Possible because of the multiplicity assumption.

Generalization of Hajnal-Szemerédi Theorem

Let G be some graph of order n. Then, for every integer $t \ge \Delta(G) + 1$, the set V(G) can be partitioned into $V_1, ..., V_t$ such that each V_i is an independent set of size $\lfloor \frac{n}{t} \rfloor$ or $\lfloor \frac{n}{t} \rfloor$.

Solution: Group the *q*-paths arriving at *w* into small subsets of non-conflicting paths \rightarrow Possible because of the multiplicity assumption.

Generalization of Hajnal-Szemerédi Theorem

Let G be some graph of order n. Then, for every integer $t \ge \Delta(G) + 1$, the set V(G) can be partitioned into $V_1, ..., V_t$ such that each V_i is an independent set of size $\lfloor \frac{n}{t} \rfloor$ or $\lceil \frac{n}{t} \rceil$.

Now randomly pairing the q-paths arriving at every vertex w of V_2 , we get a 2q-path graph H_1'' spanning V_1 . Multiplicity around every vertex v of V_1 is shown to be smaller than 16cq by combining LLL and Chernoff's bound.

Using H'_2 instead H'_1 , we also obtain a 2q-path graph H''_2 spanning V_2 .

From repeated applications, we get:

Theorem

Let p be some integer and 0 < c < 1 be some real number. There is an integer k depending on p and c such that every graph G with minimum degree at least k admits a $1/5^{p}$ -dense 2^{p} -path graph H with multiplicity at most c.

- Part 1: Introduction to the problem
- Part 2: Fractions of graphs
- Part 3: Path-graphs

Part 4: Constructing path-trees

- Part 5: Using everything together
- Part 6: Conclusion

2-edge-connectivity + large degree \Rightarrow (1, $\ell)$ -(path-)tree with 'small' degree.

Theorem

Every 2-edge-connected graph G admits a subcubic spanning (1, 2)-tree.

Theorem

2-edge-connectivity + large degree \Rightarrow (1, ℓ)-(path-)tree with 'small' degree.

Every 2-edge-connected graph G admits a subcubic spanning (1,2)-tree.

Proof idea: Assume G is minimal and perform a DFS from some vertex. This defines some *forward edges*. The other edges of G are *backward edges*.

2-edge-connectivity + large degree \Rightarrow (1, ℓ)-(path-)tree with 'small' degree.

Theorem

Every 2-edge-connected graph G admits a subcubic spanning (1, 2)-tree.

Proof idea: Assume G is minimal and perform a DFS from some vertex. This defines some *forward edges*. The other edges of G are *backward edges*.

To every vertex v of G, we initially associate the empty (1, 2)-tree X on $\{v\}$. The procedure mainly consists in iteratively considering vertices at the highest depth, and 'merging' their corresponding (1, 2)-trees somehow. This is done with preserving 2-edge-connectivity.

2-edge-connectivity + large degree \Rightarrow (1, ℓ)-(path-)tree with 'small' degree.

Theorem

Every 2-edge-connected graph G admits a subcubic spanning (1,2)-tree.

Proof idea: Assume G is minimal and perform a DFS from some vertex. This defines some *forward edges*. The other edges of G are *backward edges*.

To every vertex v of G, we initially associate the empty (1, 2)-tree X on $\{v\}$. The procedure mainly consists in iteratively considering vertices at the highest depth, and 'merging' their corresponding (1, 2)-trees somehow. This is done with preserving 2-edge-connectivity.

The key to respect the degree condition is that there are only two possibilities for increasing the degree of a vertex in a merged (1, 2)-tree, namely by adding its incident forward and backward edges.

Sample cases – One child

Xj 🔸

Sample cases – One child

Sample cases – One child

Sample cases – One child

From (1, 2)-trees to (1, k)-trees

spanning (1, k)-tree + disjoint 'source' of degree = spanning (1, k + 1)-tree.

Theorem

Let T be a spanning (1, k)-tree of some graph G = (V, E), and let H be some additional graph on V, edge-disjoint from G, and satisfying $d_H(v) \ge 2(d_T(v) + 2k)$ for every $v \in V$. Then $G \cup H$ is spanned by a (1, k + 1)-tree T'.

From (1, 2)-trees to (1, k)-trees

spanning (1, k)-tree + disjoint 'source' of degree = spanning (1, k + 1)-tree.

Theorem

Let T be a spanning (1, k)-tree of some graph G = (V, E), and let H be some additional graph on V, edge-disjoint from G, and satisfying $d_H(v) \ge 2(d_T(v) + 2k)$ for every $v \in V$. Then $G \cup H$ is spanned by a (1, k + 1)-tree T'.

Proof idea: Same kind of proof. Start from the leaves of T and iteratively concatenate incident *k*-paths of T with some edges of H in order to form (k + 1)-paths. This is always possible by the assumption on the degrees in H.

From (1, 2)-trees to (1, k)-trees

spanning (1, k)-tree + disjoint 'source' of degree = spanning (1, k + 1)-tree.

Theorem

Let T be a spanning (1, k)-tree of some graph G = (V, E), and let H be some additional graph on V, edge-disjoint from G, and satisfying $d_H(v) \ge 2(d_T(v) + 2k)$ for every $v \in V$. Then $G \cup H$ is spanned by a (1, k + 1)-tree T'.

Proof idea: Same kind of proof. Start from the leaves of T and iteratively concatenate incident *k*-paths of T with some edges of H in order to form (k + 1)-paths. This is always possible by the assumption on the degrees in H.

To make sure that the edges of H are equitably used and not 'saturated' by some vertex, we orient them in a balanced way beforehand (hence defining *private edges* for every vertex).

2-edge-connectivity + disjoint 'source' of degree = spanning (1, ℓ)-tree.

Corollary

For every $\ell \geq 1$, there exists k_{ℓ} such that if G = (V, E) is a 2-edgeconnected graph and H is some additional graph on V with minimum degree k_{ℓ} , then $G \cup H$ is spanned by a $(1, \ell + 1)$ -tree T where $d_T(v) \leq d_H(v)$ for every $v \in V$. 2-edge-connectivity + disjoint 'source' of degree = spanning $(1, \ell)$ -tree.

Corollary

For every $\ell \geq 1$, there exists k_{ℓ} such that if G = (V, E) is a 2-edgeconnected graph and H is some additional graph on V with minimum degree k_{ℓ} , then $G \cup H$ is spanned by a $(1, \ell + 1)$ -tree T where $d_T(v) \leq d_H(v)$ for every $v \in V$.

Proof: First deduce a subcubic (1, 2)-tree T_2 spanning G. Then consider a sequence of disjoint small fraction $H_1, ..., H_{\ell-1}$ of H, where each H_i is an ε_i -fraction of H. By the assumption on k_ℓ , we can assume $\varepsilon_{i+1} \ge 4\varepsilon_i$.

2-edge-connectivity + disjoint 'source' of degree = spanning $(1, \ell)$ -tree.

Corollary

For every $\ell \geq 1$, there exists k_{ℓ} such that if G = (V, E) is a 2-edgeconnected graph and H is some additional graph on V with minimum degree k_{ℓ} , then $G \cup H$ is spanned by a $(1, \ell + 1)$ -tree T where $d_T(v) \leq d_H(v)$ for every $v \in V$.

Proof: First deduce a subcubic (1, 2)-tree T_2 spanning G. Then consider a sequence of disjoint small fraction $H_1, ..., H_{\ell-1}$ of H, where each H_i is an ε_i -fraction of H. By the assumption on k_ℓ , we can assume $\varepsilon_{i+1} \ge 4\varepsilon_i$.

Using H_1 , from T_2 we can deduce a (1, 3)-tree T_3 spanning G. Note that $d_{T_3}(v) \leq d_{T_2}(v) + d_{H_1}(v)$ for every vertex $v \in V$. Since $4d_{H_1}(v) \leq d_{H_2}(v)$, we can use H_2 to extend T_3 to a (1, 4)-tree T_4 spanning G. Due to the choice of the ε_i 's, this process can be repeated until we get T.

Path-trees with paths of lengths multiple of ℓ ?

Theorem

For every even $\ell \ge 2$, there exists k_{ℓ} such that if G = (V, E) is a 2-edgeconnected bipartite graph with vertex partition (A, B) and H is some additional bipartite graph with vertex bipartition (A, B) and minimum degree k_{ℓ} , then $G \cup H$ admits a $(\ell, 2\ell)$ -tree T spanning A where $d_T(v) \le d_H(v)$ for every $v \in V$. Path-trees with paths of lengths multiple of ℓ ?

Theorem

For every even $\ell \geq 2$, there exists k_{ℓ} such that if G = (V, E) is a 2-edgeconnected bipartite graph with vertex partition (A, B) and H is some additional bipartite graph with vertex bipartition (A, B) and minimum degree k_{ℓ} , then $G \cup H$ admits a $(\ell, 2\ell)$ -tree T spanning A where $d_T(v) \leq d_H(v)$ for every $v \in V$.

Proof idea: Using a tiny ε -fraction of H, we can obtain a $(1, \ell + 1)$ -tree T' spanning G verifying $d_{T'}(v) \le \varepsilon d_H(v)$ for every $v \in V$.

Path-trees with paths of lengths multiple of ℓ ?

Theorem

For every even $\ell \geq 2$, there exists k_{ℓ} such that if G = (V, E) is a 2-edgeconnected bipartite graph with vertex partition (A, B) and H is some additional bipartite graph with vertex bipartition (A, B) and minimum degree k_{ℓ} , then $G \cup H$ admits a $(\ell, 2\ell)$ -tree T spanning A where $d_T(v) \leq d_H(v)$ for every $v \in V$.

Proof idea: Using a tiny ε -fraction of H, we can obtain a $(1, \ell + 1)$ -tree T' spanning G verifying $d_{T'}(v) \leq \varepsilon d_H(v)$ for every $v \in V$.

We may assume $4\varepsilon \leq 1/5^p$, where $p = \lceil \log_2 \ell \rceil$. Also, we can deduce a $1/5^p$ -dense 2^p -path-graph H' on H with multiplicity at most $1/16.2^p$. Orienting H'^* in a balanced way, every vertex v is the origin of at least $d_H(v)/2.5^p$ private 2^p -paths of H' (with multiplicity at most $1/8.2^p$). Furthermore, $2^p \geq \ell - 1$.

- Part 1: Introduction to the problem
- Part 2: Fractions of graphs
- Part 3: Path-graphs
- Part 4: Constructing path-trees
- Part 5: Using everything together
- Part 6: Conclusion

- 1. See G as a 'convenient' system H of induced paths.
- 2. Remove some P_{ℓ} 's from G so that H is eulerian.
- 3. Finish the decomposition by following a eulerian trail of H.

- 1. See G as a 'convenient' system H of induced paths.
- 2. Remove some P_{ℓ} 's from G so that H is eulerian.
- 3. Finish the decomposition by following a eulerian trail of H.

Refined to ...

1. Turn G into a ($\geq \ell$)-path graph H.

- 1. See G as a 'convenient' system H of induced paths.
- 2. Remove some P_{ℓ} 's from G so that H is eulerian.
- 3. Finish the decomposition by following a eulerian trail of H.

Refined to ...

- 1. Turn G into a ($\geq \ell$)-path graph H.
- 2. Make H conflictless eulerian by removing some P_{ℓ} 's.

- 1. See G as a 'convenient' system H of induced paths.
- 2. Remove some P_{ℓ} 's from G so that H is eulerian.
- 3. Finish the decomposition by following a eulerian trail of H.

Refined to ...

- 1. Turn G into a ($\geq \ell$)-path graph H.
- 2. Make H conflictless eulerian by removing some P_{ℓ} 's.
- 3. Achieve the decomposition by following the conflictless eulerian trail.

- 1. See G as a 'convenient' system H of induced paths.
- 2. Remove some P_{ℓ} 's from G so that H is eulerian.
- 3. Finish the decomposition by following a eulerian trail of H.

Refined to ...

- 1. Turn G into a ($\geq \ell$)-path graph H.
- 2. Make H conflictless eulerian by removing some P_{ℓ} 's.
- 3. Achieve the decomposition by following the conflictless eulerian trail.

Remark: We may suppose ℓ is even.

G: 64-edge-connected, $\delta(G) \gg \ell$.

G: 64-edge-connected, $\delta(G) \gg \ell$.

Start from a maximum cut (V_1, V_2) of G, and let F be the edges across the cut.

G: 64-edge-connected, $\delta(G) \gg \ell$.

Start from a maximum cut (V_1, V_2) of G, and let F be the edges across the cut. Set G' := (V, F).

G: 64-edge-connected, $\delta(G) \gg \ell$.

Start from a maximum cut (V_1, V_2) of G, and let F be the edges across the cut. Set G' := (V, F).

Max cut \Rightarrow G' is 32-edge-connected and $\delta(G') \gg \ell$.
G: 64-edge-connected, $\delta(G) \gg \ell$.

Start from a maximum cut (V_1, V_2) of G, and let F be the edges across the cut. Set G' := (V, F).

 $\begin{array}{l} \mathsf{Max} \ \mathsf{cut} \Rightarrow \mathsf{G}' \ \mathsf{is} \ \mathsf{32}\text{-edge-connected} \ \mathsf{and} \ \delta(\mathsf{G}') \gg \ell. \\ \Rightarrow \ \mathsf{there} \ \mathsf{exist} \ \mathsf{16} \ \mathsf{edge-disjoint} \ \mathsf{spanning} \ \mathsf{trees} \ \mathsf{of} \ \mathsf{G}' \ [\mathsf{Tutte} - \mathsf{1965}]. \end{array}$

G: 64-edge-connected, $\delta(G) \gg \ell$.

Start from a maximum cut (V_1, V_2) of G, and let F be the edges across the cut. Set G' := (V, F).

 $\begin{array}{l} \text{Max cut} \Rightarrow G' \text{ is 32-edge-connected and } \delta(G') \gg \ell. \\ \Rightarrow \text{ there exist 16 edge-disjoint spanning trees of } G' \text{ [Tutte - 1965].} \\ \Rightarrow G' = G'_1, ..., G'_8 \text{ (2-edge-connected).} \end{array}$

G: 64-edge-connected, $\delta(G) \gg \ell$.

Start from a maximum cut (V_1, V_2) of G, and let F be the edges across the cut. Set G' := (V, F).

 $\begin{array}{l} \mathsf{Max}\;\mathsf{cut}\Rightarrow G'\;\mathsf{is}\;32\text{-edge-connected}\;\mathsf{and}\;\delta(G')\gg\ell.\\ \Rightarrow\;\mathsf{there\;exist}\;16\;\mathsf{edge-disjoint\;spanning\;trees\;of}\;G'\;[\mathsf{Tutte}-1965].\\ \Rightarrow\;G'=G_1',...,G_8'\;(2\text{-edge-connected}).\\ \Rightarrow\;\mathsf{there\;exist}\;T_1,...,T_8\;1/2\text{-sparse spanning\;trees.} \end{array}$

Set $H_1 := T_1 \cup T_2$, $H_2 := T_3 \cup T_4$, $H_3 := T_5 \cup T_6$, $H_4 := T_7 \cup T_8$, and H_5 the rest.

Set $H_1 := T_1 \cup T_2$, $H_2 := T_3 \cup T_4$, $H_3 := T_5 \cup T_6$, $H_4 := T_7 \cup T_8$, and H_5 the rest.

Set $H_1 := T_1 \cup T_2$, $H_2 := T_3 \cup T_4$, $H_3 := T_5 \cup T_6$, $H_4 := T_7 \cup T_8$, and H_5 the rest.

 H_1 + tiny *c*-fraction of H_5 = *c*-sparse (ℓ , 2 ℓ)-tree T'_1 spanning V_1 . H_2 + tiny *c*-fraction of H_5 = *c*-sparse (ℓ , 2 ℓ)-tree T'_2 spanning V_1 .

 H_1 + tiny *c*-fraction of H_5 = *c*-sparse (ℓ , 2ℓ)-tree T'_1 spanning V_1 . H_2 + tiny *c*-fraction of H_5 = *c*-sparse (ℓ , 2ℓ)-tree T'_2 spanning V_1 .

 H_3 + tiny *c*-fraction of H_5 = *c*-sparse (ℓ , 2 ℓ)-tree T'_3 spanning V_2 . H_4 + tiny *c*-fraction of H_5 = *c*-sparse (ℓ , 2 ℓ)-tree T'_4 spanning V_2 .

 H_1 + tiny *c*-fraction of H_5 = *c*-sparse (ℓ , 2ℓ)-tree T'_1 spanning V_1 . H_2 + tiny *c*-fraction of H_5 = *c*-sparse (ℓ , 2ℓ)-tree T'_2 spanning V_1 .

 H_3 + tiny *c*-fraction of $H_5 = c$ -sparse (ℓ , 2ℓ)-tree T'_3 spanning V_2 . H_4 + tiny *c*-fraction of $H_5 = c$ -sparse (ℓ , 2ℓ)-tree T'_4 spanning V_2 .

Because $\delta(H_5) \gg \ell$, we can find a proper $(\ell + 1)$ -path P in H_5 .

 H_1 + tiny *c*-fraction of H_5 = *c*-sparse (ℓ , 2 ℓ)-tree T'_1 spanning V_1 . H_2 + tiny *c*-fraction of H_5 = *c*-sparse (ℓ , 2 ℓ)-tree T'_2 spanning V_1 .

 H_3 + tiny *c*-fraction of H_5 = *c*-sparse (ℓ , 2ℓ)-tree T'_3 spanning V_2 . H_4 + tiny *c*-fraction of H_5 = *c*-sparse (ℓ , 2ℓ)-tree T'_4 spanning V_2 .

Because $\delta(H_5) \gg \ell$, we can find a proper $(\ell + 1)$ -path P in H_5 . $T = T'_1 \cup T'_3 \cup P$ is a sparse $(\geq \ell)$ -tree spanning G.

Going on

We may suppose H_5 is still 1/2-dense in G'. Because of the degree assumption, it has a $1/5^p$ -dense 2^p -path-graph H with multiplicity at most c, where p satisfies $\ell \leq 2^p < 2\ell$.

Going on

We may suppose H_5 is still 1/2-dense in G'. Because of the degree assumption, it has a $1/5^p$ -dense 2^p -path-graph H with multiplicity at most c, where p satisfies $\ell \leq 2^p < 2\ell$.

So far, G is decomposed, saved some ℓ -paths, into:

• multiplicity c

Going on

We may suppose H_5 is still 1/2-dense in G'. Because of the degree assumption, it has a $1/5^p$ -dense 2^p -path-graph H with multiplicity at most c, where p satisfies $\ell \leq 2^p < 2\ell$.

So far, G is decomposed, saved some ℓ -paths, into:

As long as possible, remove ℓ -paths from R. Call G_R what remains.

Theorem [Thomassen – 2008] G_R admits a (< ℓ)-path-graph with maximum degree at most $\ell - 1$.

Consider a 'tiny' $4c\ell^3$ -fraction of H' of H, and orient H'^* in a balanced way. Then every vertex v is the origin of a private set of $K = 2c\ell^3 d_H(v)$ paths $P'_1, ..., P'_K$ in H'.

Consider a 'tiny' $4c\ell^3$ -fraction of H' of H, and orient H'^* in a balanced way. Then every vertex v is the origin of a private set of $K = 2c\ell^3 d_H(v)$ paths $P'_1, ..., P'_K$ in H'.

Since the multiplicity of H is at most c, every path P'_i is conflicting at v with at most $c|P'_i|d_H(v) \le 2c\ell d_H(v)$ other paths of H'_v . Among $P'_1, ..., P'_K$, one can hence find $K/2c\ell d_H(v) = \ell^2$ non-conflicting paths. Then use these paths to extend those of H_r starting at v. Then we transform all paths of G_R into paths of length in between ℓ and 3ℓ .

Consider a 'tiny' $4c\ell^3$ -fraction of H' of H, and orient H'^* in a balanced way. Then every vertex v is the origin of a private set of $K = 2c\ell^3 d_H(v)$ paths $P'_1, ..., P'_K$ in H'.

Since the multiplicity of H is at most c, every path P'_i is conflicting at v with at most $c|P'_i|d_H(v) \le 2c\ell d_H(v)$ other paths of H'_v . Among $P'_1, ..., P'_K$, one can hence find $K/2c\ell d_H(v) = \ell^2$ non-conflicting paths. Then use these paths to extend those of H_r starting at v. Then we transform all paths of G_R into paths of length in between ℓ and 3ℓ .

Call H'_R the resulting ($\geq \ell$)-path graph. In particular, this graph is sparse in H.

Getting a decomposition

Our objects are:

and form H_F . The final objective is to invoke a eulerian closed trail argument.

Getting a decomposition

Our objects are:

and form H_F . The final objective is to invoke a eulerian closed trail argument.

So that all degrees of V_1 (resp. V_2) but maybe one are even, we can remove ℓ - or 2ℓ -paths from T'_2 (resp. T'_4). In case V_1 and V_2 both have a remaining vertex with odd degree, with join them via a dummy edge.

Getting a decomposition

Our objects are:

and form H_F . The final objective is to invoke a eulerian closed trail argument.

So that all degrees of V_1 (resp. V_2) but maybe one are even, we can remove ℓ - or 2ℓ -paths from T'_2 (resp. T'_4). In case V_1 and V_2 both have a remaining vertex with odd degree, with join them via a dummy edge.

Now, since the multiplicity of H is arbitrarily small and $T \cup T'_2 \cup T'_4 \cup H'_R$ is, say, $4c\ell^3$ -sparse, H_F is a $(\leq 3\ell)$ -path-graph with multiplicity less than $1/24\ell$. Then a conflictless eulerian closed trail exists in H_F . Going along it, we finish the decomposition into ℓ -paths.

- Part 1: Introduction to the problem
- Part 2: Fractions of graphs
- Part 3: Path-graphs
- Part 4: Constructing path-trees
- Part 5: Using everything together
- Part 6: Conclusion

• For paths, 64-edge-connectivity suffices...

- For paths, 64-edge-connectivity suffices...
- ... but how far can this be pushed?

- For paths, 64-edge-connectivity suffices...
- ... but how far can this be pushed?
- Actually 48 works (save two trees for constructing T).

- For paths, 64-edge-connectivity suffices...
- ... but how far can this be pushed?
- Actually 48 works (save two trees for constructing T).
- Similar approaches for other kinds of trees?

- For paths, 64-edge-connectivity suffices...
- ... but how far can this be pushed?
- Actually 48 works (save two trees for constructing T).
- Similar approaches for other kinds of trees?

Thank you for your attention.