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Outline of the talk

Introduction to the 1-2-3 Conjecture

Families of variations:
Playing with parameters to approach the conjecture
Generalisations to more general structures
Distinguishing at larger distance
Getting somewhat optimal

A final picture
Conclusion and perspectives
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A disclaimer before we go

Main goal: tell you a bit about the 1-2-3 Conjecture...
... and about the many open questions revolving around it
⇒ Mostly about connections between the different problems

⇒ Not much overwhelming details, technicalities, etc.
all considered graphs are simple, loopless, undirected, connected
results obtained by numerous authors, since 2004
presented results do not follow chronological order
check the survey by Seamone (arXiv:1211.5122) for anything omitted
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The 1-2-3 Conjecture, in few words

“Given a graph, can we assign 1,2,3 to its edges, so that
no two adjacent vertices are incident to the same sum of labels?”

Terminology (may vary slightly along the talk):
Labelling: labels 1, . . . ,k assigned to the edges (for some k ≥ 1)
Colouring: colours (sums) of the vertices resulting from the labelling
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Sample example, 2nd try
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Sample example, 2nd try (again)
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Early remarks

K2 is the only connected graph that does not admit such proper labellings

For all other graphs, assign 1, . . . ,k as desired, with k as small as possible?

1-2-3 Conjecture (Karoński, Łuczak, Thomason, 2004)

This is always possible with k ≤ 3.

But where does that come from?
One of many distinguishing labelling problems
From the application p.o.v., vaguely related to complex networks
Related to graph irregularity, proper vertex-colourings, etc.

But if you ask me, I would just suggest to see this all as a fun problem ,
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Two interpretations/motivations...

... leading to different questions

Interpretation 1
Encode a proper vertex-colouring

1
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3
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4

1-2-3 Conjecture
⇔

Some proper vertex-colouring can be
“encoded” by a proper 3-labelling

Interpretation 2
Make a graph locally irregular

1

12

2

 

1-2-3 Conjecture
⇔

“Make” a graph locally irregular by
multiplying every edge by at most 3
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Most of what we know on the 1-2-3 Conjecture

Verification of the conjecture:
mainly for complete graphs and 3-colourable graphs
other partial classes...

Complexity aspects:
Deciding if 1,2 suffice is NP-hard, but...
... polytime solvable for bipartite graphs
bipartite graphs needing 1,2,3 are the so-called odd multi-cacti

Approaching the conjecture:
Best result to date: 1,2,3,4,5 suffice for all graphs
Better result: 1,2,3,4 suffice when regular or 4-chromatic

Also, many side aspects, variants, etc., which are the topic of the talk ,
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– Families of variations –
Playing with parameters to approach the conjecture
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Multiset version

Main difference: vertex colour = multiset of incident labels

{{1,1,1}}

{{1,2}}

{{1,1}}

{{1,1,2,3}}

{{2,3}}

{{2}}

1

1

1

2

1

3 2

“Easier” than the sum version:
Distinct sums ⇒ Distinct multisets
Distinct degrees ⇒ Distinct multisets

Conjecture (Addario-Berry et al., 2005): 1,2,3 for all graphs?
Same authors: 1,2,3,4 for all graphs
Vučković (2018): the conjecture is true!
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Product version

Main difference: vertex colour = product of incident labels

1

2

2
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2
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1
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2

3 2

“In between” the multiset and sum versions:
Distinct products ⇒ Distinct multisets
Distinct prime decompositions (into 2’s and 3’s) ⇒ Distinct products
1’s ∼ Deleting edge Skipping labelling an edge

Conjecture (Skowronek-Kaziów, 2012): 1,2,3 for all graphs?
Same author: 1,2,3,4 for all graphs
Same author: conjecture true for 3-colourable graphs
Multiset result ⇒ Conjecture true for regular graphs
B. et al. (2020+): conjecture true for 4-chromatic graphs
B. et al. (2021+): the conjecture is true!
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Total version

Main difference: label edges and vertices
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“Easier” than the sum (edge) version:
Alter colours locally
Similar to having a pending edge at every vertex
Labelling edges with 1,2,3 ⇒ Labelling edges and vertices with 1,2,3

Conjecture (Przybyło, Woźniak, 2010): 1,2 for all graphs?
Same authors: 1, . . . ,11 for all graphs
Same authors: conjecture true for 3-colourable, complete, 4-regular graphs
Kalkowski (2012?): 1,2,3 on edges and 1,2 on vertices for all graphs
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List version

Main difference: label edges with labels from dedicated lists of size `

4

2

5

6

8

7

{1,2,5}

{2,3,7}

{1,8,9}

{1,2,5}

{3,5,6}

{1,8,9} {5,7,8}

{1,�2,�5}

{2,�3,�7}

{1,�8,�9}

{1,�2,�5}

{3,�5,�6}

{1,�8,�9} {�5,7,�8}

Much stronger than the 1-2-3 Conjecture:
When all lists are {1,2,3}, this is as in the 1-2-3 Conjecture
In general, the lists can be anything

Conjecture (Bartnicki et al., 2009): lists of size 3 for every graph?
Any constant list size `?
Cao (2021): Yes, `= 7
Zhu (2021+): `= 5!
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Equitable version

Main difference: assign labels to about the same number of edges

5

3

4

7

5

2

1

3

1

2

1

3 2

# of 1’s: 3

# of 2’s: 2

# of 3’s: 2

Labels

“Force the use” of all three label values:
Tightness of the 1-2-3 Conjecture?
“Explore” the space of all 3-labellings

“Conjecture” (Baudon et al., 2017): 1,2,3 for all graphs, but K4?
Same authors: true for trees and complete graphs
B. et al. (2021): true for cubic bipartite graphs
Also, infinitely many graphs that can be labelled with 1,2 require 1,2,3 here
Still no constant number of labels 1, . . . ,k is known to suffice
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– Families of variations –
Generalisations to more general structures

18/33



Hypergraphs

Main difference: edge labels count for all vertices in hyperedges

1

2

3

3 6

6 4

Definitions: When are the vertices of a hyperedge distinguished?
Weak version: when two vertices have distinct colours
Strong version: when all vertices have distinct colours

“Thread”: smallest fr s.t. 1, . . . , fr suffice for all r-uniform hypergraphs?
Kalkowski et al. (2016): fr = r +1 for the weak version (r > 2)
Bennett et al. (2016): fr > r2− r for the strong version
No known upper bounds on fr for the strong version
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Directed graphs

Main difference: two “types” of arcs ⇒ many ways to compute colours

2 out, 1 in

2 out, 1 in

0 out, 3 in

3 out,5 in

3 out, 2 in

2 out, 0 in

1

1

1

2

2

3 2

Question: A “challenging” variant, for some distinction condition?
Can all digraphs be labelled?
With a restricted set of labels?
Can we classify digraphs w.r.t. labels they need?

Some attempts (since 2012):
in(u)+out(u) 6= in(v)+out(v): this is almost the 1-2-3 Conjecture ,
in(u)−out(u) 6= in(v)−out(v): 1,2 suffice (optimal)
in(u) 6= in(v) (or out(u) 6= out(v)): 1,2,3 suffice (optimal), listing NP-hard
out(u) 6= in(v): equivalent to the 1-2-3 Conjecture in bipartite graphs
in(u) 6= out(v): 1,2,3 suffice (optimal), listing NP-hard

Most proofs are easy /
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– Families of variations –
Distinguishing at larger distance
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Irregularity strength

Main difference: must distinguish all vertices (not only adjacent ones)

3

4

5

9

2

1

1

1

1

3

4

1 1

Obviously (much) stronger than the 1-2-3 Conjecture:
Look for global irregularity
Non-connected graphs are challenging
Minimum number of labels unbounded (consider e.g. degree-1 vertices)

Conjecture (Aigner, Triesch, 1990): 1, . . . , |V |−1 for all graphs?
Nierhoff (2000): YES!
Improved bounds in some cases
Kalkowski, Karoński, Pfender (2011): labels 1, . . . ,

⌈
6|V |
δ

⌉
suffice
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Distant irregularity strength

Main difference: distinguish only vertices within a certain distance r

3

4

5

11

6

3

1

1

1

3

4

3 3

Irregularity strength with “limited distance”:
r = 1: similar to the 1-2-3 Conjecture
r =∞: exactly the irregularity strength
Sort of relates to colourings that are proper “at distance r ”

“Thread” (Przybyło, 2013): smallest fr s.t. 1, . . . , fr suffice for all graphs?
Przybyło proved that fr ≤ 6∆r−1

Moore graphs show that fr ≥∆r−1

Improved in further works, sometimes for some graph classes
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Wide version

Main difference: also colours are fetched at distance at most r
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3 3

The two distance parameters coincide:
r = 1: similar to the 1-2-3 Conjecture
r ≥ 2: quite different from the previous problems
Some connections with irregularity strength and the hypergraph version

“Thread” (B. et al., 2021+): smallest fr s.t. 1, . . . , fr suffice for all graphs?
The authors proved that fr ≤∆2r−1

There are graphs showing that fr ≥ 3 ·∆r−1

Nice phenomena (for instance, increasing r ⇒/ more labels)
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– Families of variations –
Getting somewhat optimal
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Minimising the number of distinct colours

Main difference: number of distinct vertex colours as small as possible

3

2

2

4

2

1

1

1

1

1

1

1 1

1 – 2 – 2 – 2 – 3 – 4
Colours

Four distinct colours

Get a “better” derived proper vertex-colouring/multigraph:
Larger label is 3 ⇒/ Small number of distinct colours/vertex degrees
Can we get close to the chromatic number? With labels from any set?

Conjecture (B. et al., 2019): getting at most 2∆ distinct colours?
The 1-2-3 Conjecture, if true, would give at most 3∆
Using relative numbers ⇒ Close to the chromatic number
Bounds for some graph classes, for 1,2,3 (e.g. logarithmic bounds for trees)
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Minimising the maximum colour

Main difference: maximum vertex colour as small as possible
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1 1

Maximum colour

Get a “better” derived proper vertex-colouring/multigraph:
Larger label is 3 ⇒/ Small number of distinct colours/vertex degrees
Minimising number of colours ⇔/ Minimising maximum colour
Might have to assign labels arbitrarily larger than 3!

Conjecture (B. et al., 2021): getting maximum colour at most 2∆?
The 1-2-3 Conjecture, if true, would give at most 3∆
The best result towards it yields 5∆
True for graphs that are complete, bipartite, etc.
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The best result towards it yields 5∆
True for graphs that are complete, bipartite, etc.
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Minimising the sum of assigned labels

Main difference: assign labels adding up to the smallest value possible
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Minimising maximum colour ⇔/ Minimising sum of labels
Might have to assign labels arbitrarily larger than 3!

Conjecture (B. et al., 2020): assigning labels adding up to at most 2|E |?
The 1-2-3 Conjecture, if true, would give at most 3|E |
The best result towards it yields 5|E |
Intuitively, approximately the same number of 1’s and 2’s, and “a few” 3’s
True for graphs that are complete, bipartite, etc.
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Minimising the number of 3’s

Main difference: assign label 3 to as few edges as possible
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# of 2’s: 3

# of 3’s: 0
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Is it true that 3’s are barely needed?
Presumption from the 1-2 Conjecture, the minimisation variants, etc.
“Tightness” of the 1-2-3 Conjecture

Conjecture (B. et al., 2021): assigning 3 to at most 1/3 edges?
Close to the conjecture for the equitable variant
True for graphs being bipartite, cubic, planar with large girth, cacti, etc.
Many 3-chromatic families require an unbounded number of 3’s
No general upper bound for all graphs
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Conclusions and perspectives

Distinguishing labelling problems (including the 1-2-3 Conjecture) are
fascinating ones, with many aspects of interest...

... but still far from being completely understood

Many variants of the 1-2-3 Conjecture of interest:
regarding main aspects...
... and side aspects as well

For some variants, we are getting very close to the main question ,
original conjecture, total version, list version, etc.
For some others, still far from approaching it /
equitable version, optimisation versions, etc.

Other aspects of interest?

Thank you for your attention!
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