An introduction to the 1-2-3 Conjecture (and related problems)

Julien Bensmail

Université Côte d'Azur, France

42èmes Journées Franciliennes de Recherche Opérationnelle (JFRO)

Conjectures – Des réponses aux grandes questions sur la recherche opérationnelle, l'univers et le reste

Julien Bensmail

Université Côte d'Azur, France

42èmes Journées Franciliennes de Recherche Opérationnelle (JFRO)

Conjectures – Des réponses aux grandes questions sur la recherche opérationnelle, l'univers et le reste

• Families of variations:

- Playing with parameters to approach the conjecture
- Generalisations to more general structures
- Distinguishing at larger distance
- Getting somewhat optimal

• Families of variations:

- Playing with parameters to approach the conjecture
- Generalisations to more general structures
- Distinguishing at larger distance
- Getting somewhat optimal

• A final picture

• Families of variations:

- Playing with parameters to approach the conjecture
- Generalisations to more general structures
- Distinguishing at larger distance
- Getting somewhat optimal
- A final picture
- Conclusion and perspectives

- Main goal: tell you a bit about the 1-2-3 Conjecture...
- $\bullet \ \ldots$ and about the many open questions revolving around it
- \bullet \Rightarrow Mostly about connections between the different problems

- Main goal: tell you a bit about the 1-2-3 Conjecture...
- $\bullet \ \ldots$ and about the many open questions revolving around it
- \bullet \Rightarrow Mostly about connections between the different problems
- \Rightarrow Not much overwhelming details, technicalities, etc.
 - all considered graphs are simple, loopless, undirected, connected
 - results obtained by numerous authors, since 2004
 - presented results do not follow chronological order
 - check the survey by Seamone (arXiv:1211.5122) for anything omitted

The 1-2-3 Conjecture, in few words

"Given a graph, can we assign 1,2,3 to its edges, so that no two adjacent vertices are incident to the same sum of labels?"

The 1-2-3 Conjecture, in few words

"Given a graph, can we assign 1,2,3 to its edges, so that no two adjacent vertices are incident to the same sum of labels?"

Edge weights and vertex colours
Michał Karoński and Tomasz Łuczak
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland E-mail: karonski@amu.edu.pl and tomasz@amu.edu.pl
and
Andrew Thomason
DPMMS, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, England E-mail: a.g.thomason@dpmms.cam.ac.uk
Received 24th September 2002
Can the edges of any non-trivial graph be assigned weights from $\{1, 2, 3\}$ so that adjacent vertices have different sums of incident edge weights? We give a positive answer when the graph is 3-colourable, or when a finite number of real weights is allowed.

The 1-2-3 Conjecture, in few words

"Given a graph, can we assign 1,2,3 to its edges, so that no two adjacent vertices are incident to the same sum of labels?"

Terminology (may vary slightly along the talk):

- Labelling: labels 1, ..., k assigned to the edges (for some $k \ge 1$)
- Colouring: colours (sums) of the vertices resulting from the labelling

Sample example

Sample example

Sample example

Sample example, 2nd try (again)

Sample example, 2nd try (again)

• K_2 is the **only** connected graph that does not admit such *proper labellings*

- K_2 is the **only** connected graph that does not admit such *proper labellings*
- For all other graphs, assign $1, \ldots, k$ as desired, with k as small as possible?

- K_2 is the **only** connected graph that does not admit such *proper labellings*
- For all other graphs, assign $1, \ldots, k$ as desired, with k as small as possible?

1-2-3 Conjecture (Karoński, Łuczak, Thomason, 2004)

This is always possible with $k \leq 3$.

- K_2 is the **only** connected graph that does not admit such *proper labellings*
- For all other graphs, assign $1, \ldots, k$ as desired, with k as small as possible?

1-2-3 Conjecture (Karoński, Łuczak, Thomason, 2004)

This is always possible with $k \leq 3$.

• But where does that come from?

• One of many distinguishing labelling problems

- K_2 is the **only** connected graph that does not admit such *proper labellings*
- For all other graphs, assign $1, \ldots, k$ as desired, with k as small as possible?

1-2-3 Conjecture (Karoński, Łuczak, Thomason, 2004)

This is always possible with $k \leq 3$.

• But where does that come from?

- One of many distinguishing labelling problems
- From the application p.o.v., vaguely related to complex networks
- Related to graph irregularity, proper vertex-colourings, etc.
- $\bullet\,$ But if you ask me, I would just suggest to see this all as a fun problem $\odot\,$

... leading to different questions

... leading to different questions

Interpretation 1

Encode a proper vertex-colouring

... leading to different questions

Interpretation 1

Encode a proper vertex-colouring

... leading to different questions

Interpretation 1

Encode a proper vertex-colouring

... leading to different questions

Interpretation 1

Encode a proper vertex-colouring

Interpretation 2

Make a graph locally irregular

... leading to different questions

Interpretation 1

Encode a proper vertex-colouring

Interpretation 2

Make a graph locally irregular

... leading to different questions

Interpretation 1 Encode a proper vertex-colouring 1-2-3 Conjecture \Leftrightarrow **Some** proper vertex-colouring can be "encoded" by a proper 3-labelling

Most of what we know on the 1-2-3 Conjecture

• Verification of the conjecture:

- mainly for complete graphs and 3-colourable graphs
- other partial classes...

Most of what we know on the 1-2-3 Conjecture

• Verification of the conjecture:

- mainly for complete graphs and 3-colourable graphs
- other partial classes...

• Complexity aspects:

- Deciding if 1,2 suffice is NP-hard, but...
- ... polytime solvable for bipartite graphs
- bipartite graphs needing 1,2,3 are the so-called odd multi-cacti

• Verification of the conjecture:

- mainly for complete graphs and 3-colourable graphs
- other partial classes...

• Complexity aspects:

- Deciding if 1,2 suffice is NP-hard, but...
- ... polytime solvable for bipartite graphs
- bipartite graphs needing 1,2,3 are the so-called odd multi-cacti

• Approaching the conjecture:

- Best result to date: 1,2,3,4,5 suffice for all graphs
- Better result: 1,2,3,4 suffice when regular or 4-chromatic

• Verification of the conjecture:

- mainly for complete graphs and 3-colourable graphs
- other partial classes...

• Complexity aspects:

- Deciding if 1,2 suffice is NP-hard, but...
- ... polytime solvable for bipartite graphs
- bipartite graphs needing 1,2,3 are the so-called odd multi-cacti

• Approaching the conjecture:

- Best result to date: 1,2,3,4,5 suffice for all graphs
- Better result: 1,2,3,4 suffice when regular or 4-chromatic

Also, many side aspects, variants, etc., which are the topic of the talk ©

- Families of variations -

Playing with parameters to approach the conjecture

• "Easier" than the sum version:

- Distinct sums \Rightarrow Distinct multisets
- Distinct degrees ⇒ Distinct multisets

• "Easier" than the sum version:

- Distinct sums \Rightarrow Distinct multisets
- Distinct degrees ⇒ Distinct multisets
- Conjecture (Addario-Berry et al., 2005): 1,2,3 for all graphs?
 - Same authors: 1,2,3,4 for all graphs

• "Easier" than the sum version:

- Distinct sums ⇒ Distinct multisets
- Distinct degrees ⇒ Distinct multisets
- Conjecture (Addario-Berry et al., 2005): 1,2,3 for all graphs?
 - Same authors: 1,2,3,4 for all graphs
 - Vučković (2018): the conjecture is true!

• Main difference: vertex colour = product of incident labels

- Distinct products ⇒ Distinct multisets
- Distinct prime decompositions (into 2's and 3's) \Rightarrow Distinct products
- 1's ~ Deleting edge Skipping labelling an edge

• Main difference: vertex colour = product of incident labels

- Distinct products \Rightarrow Distinct multisets
- Distinct prime decompositions (into 2's and 3's) ⇒ Distinct products
- 1's ~ Deleting edge Skipping labelling an edge
- Conjecture (Skowronek-Kaziów, 2012): 1,2,3 for all graphs?
 - Same author: 1,2,3,4 for all graphs
 - Same author: conjecture true for 3-colourable graphs

• Main difference: vertex colour = product of incident labels

- Distinct products \Rightarrow Distinct multisets
- Distinct prime decompositions (into 2's and 3's) ⇒ Distinct products
- 1's ~ Deleting edge Skipping labelling an edge
- Conjecture (Skowronek-Kaziów, 2012): 1,2,3 for all graphs?
 - Same author: 1,2,3,4 for all graphs
 - Same author: conjecture true for 3-colourable graphs
 - Multiset result \Rightarrow Conjecture true for regular graphs
 - B. et al. (2020+): conjecture true for 4-chromatic graphs

• Main difference: vertex colour = product of incident labels

- Distinct products \Rightarrow Distinct multisets
- Distinct prime decompositions (into 2's and 3's) ⇒ Distinct products
- 1's ~ Deleting edge Skipping labelling an edge
- Conjecture (Skowronek-Kaziów, 2012): 1,2,3 for all graphs?
 - Same author: 1,2,3,4 for all graphs
 - Same author: conjecture true for 3-colourable graphs
 - Multiset result \Rightarrow Conjecture true for regular graphs
 - B. et al. (2020+): conjecture true for 4-chromatic graphs
 - B. et al. (2021+): the conjecture is true!

Total version

• Main difference: label edges and vertices

Total version

• Main difference: label edges and vertices

• Main difference: label edges and vertices

• Main difference: label edges and vertices

• Main difference: label edges and vertices

• "Easier" than the sum (edge) version:

- Alter colours locally
- Similar to having a pending edge at every vertex
- Labelling edges with $1,2,3 \Rightarrow$ Labelling edges and vertices with 1,2,3

• Main difference: label edges and vertices

• "Easier" than the sum (edge) version:

- Alter colours locally
- Similar to having a pending edge at every vertex
- Labelling edges with $1,2,3 \Rightarrow$ Labelling edges and vertices with 1,2,3

• Main difference: label edges and vertices

• "Easier" than the sum (edge) version:

- Alter colours locally
- Similar to having a pending edge at every vertex
- Labelling edges with 1,2,3 \Rightarrow Labelling edges and vertices with 1,2,3

• Conjecture (Przybyło, Woźniak, 2010): 1,2 for all graphs?

- Same authors: 1,...,11 for all graphs
- Same authors: conjecture true for 3-colourable, complete, 4-regular graphs

• Main difference: label edges and vertices

• "Easier" than the sum (edge) version:

- Alter colours locally
- Similar to having a pending edge at every vertex
- Labelling edges with 1,2,3 \Rightarrow Labelling edges and vertices with 1,2,3

• Conjecture (Przybyło, Woźniak, 2010): 1,2 for all graphs?

- Same authors: 1,...,11 for all graphs
- Same authors: conjecture true for 3-colourable, complete, 4-regular graphs
- Kalkowski (2012?): 1,2,3 on edges and 1,2 on vertices for all graphs

• Much stronger than the 1-2-3 Conjecture:

- When all lists are {1,2,3}, this is as in the 1-2-3 Conjecture
- In general, the lists can be anything

• Much stronger than the 1-2-3 Conjecture:

- When all lists are {1,2,3}, this is as in the 1-2-3 Conjecture
- In general, the lists can be anything

• Conjecture (Bartnicki et al., 2009): lists of size 3 for every graph?

Any constant list size ℓ?

• Much stronger than the 1-2-3 Conjecture:

- When all lists are {1,2,3}, this is as in the 1-2-3 Conjecture
- In general, the lists can be anything

• Conjecture (Bartnicki et al., 2009): lists of size 3 for every graph?

- Any constant list size ℓ?
- Cao (2021): Yes, ℓ = 7
- Zhu (2021+): ℓ = 5!

• Main difference: assign labels to about the same number of edges

• "Force the use" of all three label values:

- Tightness of the 1-2-3 Conjecture?
- "Explore" the space of all 3-labellings

• Main difference: assign labels to about the same number of edges

• "Force the use" of all three label values:

- Tightness of the 1-2-3 Conjecture?
- "Explore" the space of all 3-labellings

• "Conjecture" (Baudon et al., 2017): 1,2,3 for all graphs, but K₄?

- Same authors: true for trees and complete graphs
- B. et al. (2021): true for cubic bipartite graphs
- Also, infinitely many graphs that can be labelled with 1,2 require 1,2,3 here

• Main difference: assign labels to about the same number of edges

• "Force the use" of all three label values:

- Tightness of the 1-2-3 Conjecture?
- "Explore" the space of all 3-labellings

• "Conjecture" (Baudon et al., 2017): 1,2,3 for all graphs, but K₄?

- Same authors: true for trees and complete graphs
- B. et al. (2021): true for cubic bipartite graphs
- Also, infinitely many graphs that can be labelled with 1,2 require 1,2,3 here
- Still no constant number of labels 1,..., k is known to suffice

Families of variations – Generalisations to more general structures

- Definitions: When are the vertices of a hyperedge distinguished?
 - Weak version: when two vertices have distinct colours
 - Strong version: when all vertices have distinct colours

- Definitions: When are the vertices of a hyperedge distinguished?
 - Weak version: when two vertices have distinct colours
 - Strong version: when all vertices have distinct colours

• "Thread": smallest f_r s.t. 1,..., f_r suffice for all r-uniform hypergraphs?

- Kalkowski et al. (2016): $f_r = r + 1$ for the weak version (r > 2)
- Bennett *et al.* (2016): $f_r > r^2 r$ for the strong version

- Definitions: When are the vertices of a hyperedge distinguished?
 - Weak version: when two vertices have distinct colours
 - Strong version: when all vertices have distinct colours

• "Thread": smallest f_r s.t. 1,..., f_r suffice for all r-uniform hypergraphs?

- Kalkowski et al. (2016): $f_r = r + 1$ for the weak version (r > 2)
- Bennett *et al.* (2016): $f_r > r^2 r$ for the strong version
- No known upper bounds on f_r for the strong version

- Question: A "challenging" variant, for some distinction condition?
 - Can all digraphs be labelled?
 - With a restricted set of labels?
 - Can we classify digraphs w.r.t. labels they need?

- Question: A "challenging" variant, for some distinction condition?
 - Can all digraphs be labelled?
 - With a restricted set of labels?
 - Can we classify digraphs w.r.t. labels they need?
- Some attempts (since 2012):
 - $in(u) + out(u) \neq in(v) + out(v)$: this is almost the 1-2-3 Conjecture \odot
Directed graphs

• Main difference: two "types" of arcs ⇒ many ways to compute colours

- Question: A "challenging" variant, for some distinction condition?
 - Can all digraphs be labelled?
 - With a restricted set of labels?
 - Can we classify digraphs w.r.t. labels they need?
- Some attempts (since 2012):
 - $in(u) + out(u) \neq in(v) + out(v)$: this is almost the 1–2–3 Conjecture \odot
 - $in(u) out(u) \neq in(v) out(v)$: 1,2 suffice (optimal)

Directed graphs

• Main difference: two "types" of arcs ⇒ many ways to compute colours

- Question: A "challenging" variant, for some distinction condition?
 - Can all digraphs be labelled?
 - With a restricted set of labels?
 - Can we classify digraphs w.r.t. labels they need?
- Some attempts (since 2012):
 - $in(u) + out(u) \neq in(v) + out(v)$: this is almost the 1-2-3 Conjecture \odot
 - $in(u) out(u) \neq in(v) out(v)$: 1,2 suffice (optimal)
 - $in(u) \neq in(v)$ (or $out(u) \neq out(v)$): 1,2,3 suffice (optimal), listing NP-hard
 - $out(u) \neq in(v)$: equivalent to the 1-2-3 Conjecture in bipartite graphs
 - $in(u) \neq out(v)$: 1,2,3 suffice (optimal), listing NP-hard

Directed graphs

• Main difference: two "types" of arcs ⇒ many ways to compute colours

- Question: A "challenging" variant, for some distinction condition?
 - Can all digraphs be labelled?
 - With a restricted set of labels?
 - Can we classify digraphs w.r.t. labels they need?
- Some attempts (since 2012):
 - $in(u) + out(u) \neq in(v) + out(v)$: this is almost the 1-2-3 Conjecture \odot
 - $in(u) out(u) \neq in(v) out(v)$: 1,2 suffice (optimal)
 - $in(u) \neq in(v)$ (or $out(u) \neq out(v)$): 1,2,3 suffice (optimal), listing NP-hard
 - $out(u) \neq in(v)$: equivalent to the 1-2-3 Conjecture in bipartite graphs
 - $in(u) \neq out(v)$: 1,2,3 suffice (optimal), listing NP-hard

• Most proofs are easy 🙂

- Families of variations - Distinguishing at larger distance

• Main difference: must distinguish all vertices (not only adjacent ones)

• Obviously (much) stronger than the 1-2-3 Conjecture:

- Look for global irregularity
- Non-connected graphs are challenging
- Minimum number of labels unbounded (consider e.g. degree-1 vertices)

• Main difference: must distinguish all vertices (not only adjacent ones)

• Obviously (much) stronger than the 1-2-3 Conjecture:

- Look for global irregularity
- Non-connected graphs are challenging
- Minimum number of labels unbounded (consider e.g. degree-1 vertices)
- Conjecture (Aigner, Triesch, 1990): 1,...,|V|-1 for all graphs?

• Main difference: must distinguish all vertices (not only adjacent ones)

• Obviously (much) stronger than the 1-2-3 Conjecture:

- Look for global irregularity
- Non-connected graphs are challenging
- Minimum number of labels unbounded (consider e.g. degree-1 vertices)
- Conjecture (Aigner, Triesch, 1990): 1,...,|V|-1 for all graphs?
 - Nierhoff (2000): YES!
 - Improved bounds in some cases
 - Kalkowski, Karoński, Pfender (2011): labels $1, ..., \left\lceil \frac{6|V|}{\delta} \right\rceil$ suffice

• Main difference: distinguish only vertices within a certain distance r

• Irregularity strength with "limited distance":

- r = 1: similar to the 1-2-3 Conjecture
- $r = \infty$: exactly the irregularity strength
- Sort of relates to colourings that are proper "at distance r"

• Main difference: distinguish only vertices within a certain distance r

• Irregularity strength with "limited distance":

- r = 1: similar to the 1-2-3 Conjecture
- $r = \infty$: exactly the irregularity strength
- Sort of relates to colourings that are proper "at distance r"
- "Thread" (Przybyło, 2013): smallest f_r s.t. 1,..., f_r suffice for all graphs?
 - Przybyło proved that $f_r \leq 6\Delta^{r-1}$
 - Moore graphs show that $f_r \ge \Delta^{r-1}$
 - Improved in further works, sometimes for some graph classes

Wide version

Wide version

• Main difference: also colours are fetched at distance at most r

• The two distance parameters coincide:

- r = 1: similar to the 1-2-3 Conjecture
- $r \ge 2$: quite different from the previous problems
- Some connections with irregularity strength and the hypergraph version

• Main difference: also colours are fetched at distance at most r

• The two distance parameters coincide:

- r = 1: similar to the 1-2-3 Conjecture
- $r \ge 2$: quite different from the previous problems
- Some connections with irregularity strength and the hypergraph version
- "Thread" (B. et al., 2021+): smallest f_r s.t. 1,..., f_r suffice for all graphs?
 - The authors proved that $f_r \leq \Delta^{2r-1}$
 - There are graphs showing that $f_r \ge 3 \cdot \Delta^{r-1}$
 - Nice phenomena (for instance, increasing $r \neq$ more labels)

Families of variations – Getting somewhat optimal

- Get a "better" derived proper vertex-colouring/multigraph:
 - Larger label is $3 \neq$ Small number of distinct colours/vertex degrees
 - Can we get close to the chromatic number? With labels from any set?

• Main difference: number of distinct vertex colours as small as possible

• Get a "better" derived proper vertex-colouring/multigraph:

- Larger label is $3 \neq$ Small number of distinct colours/vertex degrees
- Can we get close to the chromatic number? With labels from any set?

• Conjecture (B. et al., 2019): getting at most 2∆ distinct colours?

- The 1-2-3 Conjecture, if true, would give at most 3Δ
- Using relative numbers ⇒ Close to the chromatic number
- Bounds for some graph classes, for 1,2,3 (e.g. logarithmic bounds for trees)

Minimising the maximum colour

• Main difference: maximum vertex colour as small as possible

• Get a "better" derived proper vertex-colouring/multigraph:

- Larger label is $3 \neq$ Small number of distinct colours/vertex degrees
- Might have to assign labels arbitrarily larger than 3!

Minimising the maximum colour

• Main difference: maximum vertex colour as small as possible

• Get a "better" derived proper vertex-colouring/multigraph:

- Larger label is $3 \neq$ Small number of distinct colours/vertex degrees
- Might have to assign labels arbitrarily larger than 3!
- Conjecture (B. et al., 2021): getting maximum colour at most 2Δ?
 - $\bullet\,$ The 1-2-3 Conjecture, if true, would give at most 3 $\Delta\,$
 - The best result towards it yields 5Δ
 - True for graphs that are complete, bipartite, etc.

• Main difference: assign labels adding up to the smallest value possible

• Get a "better" derived multigraph:

- Larger label is 3
 → Minimum-size multigraph
- Might have to assign labels arbitrarily larger than 3!

• Main difference: assign labels adding up to the smallest value possible

• Get a "better" derived multigraph:

- Larger label is $3 \neq$ Minimum-size multigraph
- Minimising maximum colour ϕ Minimising sum of labels
- Might have to assign labels arbitrarily larger than 3!

• Conjecture (B. et al., 2020): assigning labels adding up to at most 2|E|?

- The 1-2-3 Conjecture, if true, would give at most 3|E|
- The best result towards it yields 5|E|
- Intuitively, approximately the same number of 1's and 2's, and "a few" 3's
- True for graphs that are complete, bipartite, etc.

• Main difference: assign label 3 to as few edges as possible

• Is it true that 3's are barely needed?

- Presumption from the 1-2 Conjecture, the minimisation variants, etc.
- "Tightness" of the 1-2-3 Conjecture

• Main difference: assign label 3 to as few edges as possible

• Is it true that 3's are barely needed?

- Presumption from the 1-2 Conjecture, the minimisation variants, etc.
- "Tightness" of the 1-2-3 Conjecture

• Conjecture (B. et al., 2021): assigning 3 to at most 1/3 edges?

- Close to the conjecture for the equitable variant
- True for graphs being bipartite, cubic, planar with large girth, cacti, etc.
- Many 3-chromatic families require an unbounded number of 3's
- No general upper bound for all graphs

A final picture

• Distinguishing labelling problems (including the 1-2-3 Conjecture) are fascinating ones, with many aspects of interest...

- Distinguishing labelling problems (including the 1-2-3 Conjecture) are fascinating ones, with many aspects of interest...
- ... but still far from being completely understood

- Distinguishing labelling problems (including the 1-2-3 Conjecture) are fascinating ones, with many aspects of interest...
- ... but still far from being completely understood
- Many variants of the 1-2-3 Conjecture of interest:
 - regarding main aspects...
 - ... and side aspects as well

- Distinguishing labelling problems (including the 1-2-3 Conjecture) are fascinating ones, with many aspects of interest...
- ... but still far from being completely understood
- Many variants of the 1-2-3 Conjecture of interest:
 - regarding main aspects...
 - ... and side aspects as well
- For some variants, we are getting very close to the main question original conjecture, total version, list version, etc.

- Distinguishing labelling problems (including the 1-2-3 Conjecture) are fascinating ones, with many aspects of interest...
- ... but still far from being completely understood
- Many variants of the 1-2-3 Conjecture of interest:
 - regarding main aspects...
 - ... and side aspects as well
- For some variants, we are getting very close to the main question original conjecture, total version, list version, etc.
- For some others, still far from approaching it equitable version, optimisation versions, etc.

- Distinguishing labelling problems (including the 1-2-3 Conjecture) are fascinating ones, with many aspects of interest...
- ... but still far from being completely understood
- Many variants of the 1-2-3 Conjecture of interest:
 - regarding main aspects...
 - ... and side aspects as well
- For some variants, we are getting very close to the main question original conjecture, total version, list version, etc.
- For some others, still far from approaching it equitable version, optimisation versions, etc.
- Other aspects of interest?

- Distinguishing labelling problems (including the 1-2-3 Conjecture) are fascinating ones, with many aspects of interest...
- ... but still far from being completely understood
- Many variants of the 1-2-3 Conjecture of interest:
 - regarding main aspects...
 - ... and side aspects as well
- For some variants, we are getting very close to the main question (9) original conjecture, total version, list version, etc.
- For some others, still far from approaching it equitable version, optimisation versions, etc.
- Other aspects of interest?

Thank you for your attention!