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Decomposing graphs

G : (undirected simple) graph.
H: (undirected simple) graph with |E (H)| dividing |E (G )| (implicit).

Definition: H-decomposition

An H-decomposition of G is a partition E1, ...,Ek of E (G ) such that each
G [Ei ] is isomorphic to H.

S4-decomposition P3-decomposition

When does G admit H-decompositions?
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Tree decompositions

What for H being a tree?

Theorem [Wilson, 1976]

For every tree T and large enough n, graph Kn admits T -decompositions.

⇒ Intuitively, need large degree + some edge-connectivity (2nd ⇒ 1st).

For instance, no P3-decomposition of:

≡ 1[3]

≡ 1[3] ≡ 1[3]

≡ 1[3]

≡ 1[3]≡ 1[3]

≡ 1[3]≡ 1[3]
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The Barát-Thomassen Conjecture

Conjecture [Barát, Thomassen, 2006]

For every tree T , there exists kT such that every kT -edge-connected graph
admits T -decompositions.

General remark:

Large edge-co. 6⇒ H-decompositions (e.g. H = C4: need close cut edges)
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Progress towards the conjecture

Was verified for T being:

a star [Thomassen, 2012],

the tree with degree sequence (1, 1, 1, 2, 3) [Barát, Gerbner, 2014],

a bistar of the form Sk,k+1 [Thomassen, 2014],

of diameter at most 4 [Merker, 2017],

among some family of trees with diameter 5 [Merker, 2017],

and...

the path of length 3 [Thomassen, 2008],

the path of length 4 [Thomassen, 2008],

a path of length 2k [Thomassen, 2014],

any path [Botler, Mota, Oshiro, Wakabayashi, 2017].

6 / 26



Main result

Theorem [B., Harutyunyan, Le, Merker, Thomassé, 2017]

The Barát-Thomassen Conjecture is true.

Please: Do not ask me about kT ,.
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Proof

8 / 26



Say hello

Our toy T for today:
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Going bipartite

First tool:

Theorem [Thomassen, 2013]

It is sufficient to prove the conjecture for G bipartite.

Idea: Take a max cut and “clean”.

edge-co: ∼ kT/2 →

⇒ Use R + cut-edges to make further copies of T .
|E (T )| fixed ⇒ constant amount of consumed edge-connectivity. �
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Going bipartite (cont’d)

Theorem [Thomassen, 2013]

It is sufficient to prove the conjecture for G = (A,B) bipartite, with the
further assumption that all degrees in A are divisible by |E (T )|.

Idea. Decompose G into G1,G2 with large edge-connectivity, where the desired
property in G1 (resp. G2) is fulfilled in A (resp. B).

1 Decompose G into lots of spanning trees.

2 ⇒ Decompose G into G1,G2,G3 with large edge-connectivity.

Want: A-degrees in G1 divisible by |E (T )|, B-degrees in G2 divisible by |E (T )|.
3 Orient G3 so that the convenient degrees modulo |E (T )| are attained (i.e.
|E (T )| − dG1(v) for v ∈ G1, and |E (T )| − dG2(v) otherwise).

4 Add all arcs from A to B to G1, to G2 otherwise. �
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Decomposition strategy

G ,T bipartite ⇒ Make the bipartitions coincide:

Strategy:
1 Edge-colour G with { , , , , };
2 Repeatedly combine a , a , a , a and a to form a copy of T .

Problems / :
1 # of ’s , ’s , ’s , ’s and ’s should locally be the same.
2 We do not necessarily get a copy isomorphic to T :
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Dealing with Issue 1

v ∈ V (G ) and t ∈ V (T ) compatible = Same side of the bipartitions.

To deal with Issue 1:

Definition: T -equitability

An edge-colouring E (G ) → E (T ) is T -equitable if, for every compatible
vertices v ∈ G and t ∈ T , we have di (v) = dj(v) for any two edges i , j
of T incident to t.

What will save us:

Theorem [Merker, 2017]

If G = (A,B) is a bipartite graph with

sufficiently large edge-connectivity, and

all degrees in A are divisible by |E (T )|,
⇒ T -equitable edge-colouring where all coloured degrees are “huge”.

⇒ May assume G is edge-coloured in a T -equitable way.

13 / 26
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Building a decomposition

Locally, “palettes” of colours are good, now , .

Construct copies of T :
1 For each v ∈ G that can play the role of t ∈ T :

choose one edge of each colour;
create a star centred at v .

2 Identify stars to create copies.

t

t′

v

v ′ v ′

v
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Dealing with Issue 2

Remember: + + + + may not give a “real” copy of T :

⇒ Collection H := G ∪B, where G (resp. B) contains “real” (resp. “bad”) copies.

G will be used to “repair” B.
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Repairing process

Let B ∈ B, and label vertices following a BFS.

t1

t2 t3 t4

t5 t6

v1

v2 v3 v4

v5 = v6

In B, vertices v1, ..., v5 are good. Edge v4v6 is problematic.

Repairing process:

1 Pick R ∈ G s.t. B and R intersect only intersect in v4; and

2 “Switch” the subgraph “rooted” at the edge v4v6.
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Illustration

v1

v2 v3 v4

v5 = v6

B

v ′
1

v ′
2v ′

3v ′
4

v ′
5v ′

6

R
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On the repairing operation

Schematized:

v4 v6

B

← switch →

v ′
4

R

Remarks:

B and R might be bad (because of later vertices) / ...

... but their first six vertices are good , .

Whole repairing strategy:
1 Repair all bad copies where the edge simulating t1t2 is problematic;
2 Then, those where the edge simulating t1t3 is problematic;
3 etc.

|G| � |B| (+ intersection property) ⇒ Repair everything.

18 / 26



On the repairing operation

Schematized:

v4 v6

B

← switch →

v ′
4

R

Remarks:

B and R might be bad (because of later vertices) / ...

... but their first six vertices are good , .

Whole repairing strategy:
1 Repair all bad copies where the edge simulating t1t2 is problematic;
2 Then, those where the edge simulating t1t3 is problematic;
3 etc.

|G| � |B| (+ intersection property) ⇒ Repair everything.

18 / 26



On the repairing operation

Schematized:

v4 v6

B

← switch →

v ′
4

R

Remarks:

B and R might be bad (because of later vertices) / ...

... but their first six vertices are good , .

Whole repairing strategy:
1 Repair all bad copies where the edge simulating t1t2 is problematic;
2 Then, those where the edge simulating t1t3 is problematic;
3 etc.

|G| � |B| (+ intersection property) ⇒ Repair everything.

18 / 26



On the repairing operation

Schematized:

v4 v6

B

← switch →

v ′
4

R

Remarks:

B and R might be bad (because of later vertices) / ...

... but their first six vertices are good , .

Whole repairing strategy:
1 Repair all bad copies where the edge simulating t1t2 is problematic;
2 Then, those where the edge simulating t1t3 is problematic;
3 etc.

|G| � |B| (+ intersection property) ⇒ Repair everything.

18 / 26



On the repairing operation

Schematized:

v4 v6

B

← switch →

v ′
4

R

Remarks:

B and R might be bad (because of later vertices) / ...

... but their first six vertices are good , .

Whole repairing strategy:
1 Repair all bad copies where the edge simulating t1t2 is problematic;
2 Then, those where the edge simulating t1t3 is problematic;
3 etc.

|G| � |B| (+ intersection property) ⇒ Repair everything.

18 / 26



Proof summary

Assumption: G is edge-coloured in a T -equitable way + Large coloured degrees.

Main steps:

1 Combine edges in G to get a decomposition H := G ∪ B.

2 Repair bad copies in B step by step, until none remains.

So that Step 2 can be achieved, we need H to fulfil:

|G| � |B|;
for compatible v ∈ V (G ) and t ∈ V (T ), a wide bunch of copies where v
plays the role of t, most of which are good, with many different vertices of G .

⇒ Because

1) |E (T )| is fixed, and

2) the coloured degrees are arbitrarily large,

such an H exists with non-zero probability.
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Probabilistic tools

20 / 26



Building a decomposition

Construct copies of T randomly:
1 For each v ∈ G that can play the role of t ∈ T :

choose one edge of each colour;
create a star centred at v .

2 Identify stars to create copies.

t

t′

v

v ′ v ′

v
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McDiarmid’s result

Random variables involved:

Xv (ti , tj) := # of bad copies with root v , and ti , tj played by a same vertex.

⇒ Expect such Xv (ti , tj)’s to be quite small (due to the degrees):

(simplified) McDiarmid’s Inequality

Let X be a non-negative random variable, determined by m independent
random permutations Π1, ...,Πm satisfying, for some d , r > 0:

1 interchanging two elements in any Πi can affect X by at most d ;

2 for any s, if X ≥ s then there is a set of at most rs choices whose
outcomes certify that X ≥ s.

Then, for any 0 ≤ t ≤ E[X ],

P
[
|X − E[X ]| > t + 60d

√
rE[X ]

]
≤ 4e

− t2

8d2rE[X ] .

22 / 26



McDiarmid’s result

Random variables involved:

Xv (ti , tj) := # of bad copies with root v , and ti , tj played by a same vertex.

⇒ Expect such Xv (ti , tj)’s to be quite small (due to the degrees):

(simplified) McDiarmid’s Inequality

Let X be a non-negative random variable, determined by m independent
random permutations Π1, ...,Πm satisfying, for some d , r > 0:

1 interchanging two elements in any Πi can affect X by at most d ;

2 for any s, if X ≥ s then there is a set of at most rs choices whose
outcomes certify that X ≥ s.

Then, for any 0 ≤ t ≤ E[X ],

P
[
|X − E[X ]| > t + 60d

√
rE[X ]

]
≤ 4e

− t2

8d2rE[X ] .

22 / 26



McDiarmid’s result (cont’d)

Our random building is all about permutations:

v

1 2 3 4 5 6 7 1 2 7 5 3 6 4 5 1 7 3 6 2 4

Building stars at v (w.r.t. t) = Permute the ’s, ’s and ’s at v , and combine.

Look at McDiarmid’s requirements, for Xv (ti , tj):

1 interchanging two elements in any Πi can affect Xv (ti , tj) by at most d;

⇒ Interchanging, say, two ’s modifies d = 2 copies only.
2 Xv (ti , tj) ≥ s can be certified by the outcomes of at most rs choices.
⇒ vi = vj can be attested by the outcomes where vj was chosen. So r = 1.

McDiarmid’s Inequality applies ⇒ There are Πi ’s for which |G| � |B|.

+ For compatible v ∈ G and t ∈ T , unlikely that two copies where v plays the
role of t have another common vertex (similar reasoning).
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⇒ Interchanging, say, two ’s modifies d = 2 copies only.
2 Xv (ti , tj) ≥ s can be certified by the outcomes of at most rs choices.
⇒ vi = vj can be attested by the outcomes where vj was chosen. So r = 1.

McDiarmid’s Inequality applies ⇒ There are Πi ’s for which |G| � |B|.

+ For compatible v ∈ G and t ∈ T , unlikely that two copies where v plays the
role of t have another common vertex (similar reasoning).
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Lovász’s Local Lemma

We have:

Any Xv (ti , tj) is most likely to be quite small;

Few dependencies between the Xv (ti , tj)’s.

⇒ By LLL, non-zero probability that all Xv (ti , tj)’s are small.

+ Similar arguments for intersections.
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Conclusion and perspectives

Constructive proof?

What is the least kT guaranteeing T -decompositions?

Real importance of huge edge-connectivity over huge degree?

For T = P`, we proved that 24-edge-connectivity and huge degree suffice.

Conjecture [B., Harutyunyan, Le, Thomassé, 2016+]

There is a function f such that, for any fixed tree T with maximum degree
∆T , every f (∆T )-edge-connected graph with sufficiently large minimum
degree can be T -decomposed.

Thanks!
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