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Barát-Thomassen conjecture

Conjecture [Barát, Thomassen – 2006]

For every fixed tree T , there exists a positive constant cT such that
every cT -edge-connected graph with size divisible by |E (T )| admits a T -
decomposition.

Verified for T being

stars
[Thomassen – 2012]

1
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k

1

2

k+1

(k, k + 1)-bistars
[Thomassen – 2013]

of deg. sequence (1, 1, 1, 2, 3)
[Barát, Garbner – 2014]

... and actually whenever diam(T ) ≤ 4 [Merker – 2015+].
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Barát-Thomassen conjecture for paths

Also true for T = P` when (chronological order):

` ∈ {3, 4} [Thomassen – 2008],

` = 2k for any k [Thomassen – 2013],

` = 5 [Botler, Mota, Oshiro, Wakabayashi – 2015+],

` is any value [Botler, Mota, Oshiro, Wakabayashi – 2015+].

Proof of last item complicated and lengthy.

Shorter and “easier” proof of the path case?
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Our results

Contribution: New proof of the path case under weaker assumptions.

Mild edge-connectivity is sufficient provided minimum degree is large enough.

Theorem [B., Harutyunyan, Le, Thomassé – 2015+]

For every ` ≥ 1, every 24-edge-connected graph admits a P`-
decomposition (+1 smaller path) provided its minimum degree is large
enough.

Even less edge-connectivity needed for eulerian graphs.

Theorem [B., Harutyunyan, Le, Thomassé – 2015+]

For every ` ≥ 1, every 4-edge-connected eulerian graph admits a P`-
decomposition (+1 smaller path) provided its minimum degree is large
enough.

Note: size condition is dropped.
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About tightness

The following is optimal:

3-edge-connectivity for non-eulerian graphs,

2-edge-connectivity for eulerian graphs.

Note: 2-edge-connectivity does not suffice for the first item; e.g. for

... and make δ increase with preserving non P9-decomposability.
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Outline of the proof

Theorem [B., Harutyunyan, Le, Thomassé]

For every ` ≥ 1, every 24-edge-connected graph admits a P`-
decomposition provided its minimum degree is large enough.

Proof ideas. Assume G has an euler tour Γ, and pick consecutive P`’s.

P` P` @@��P`

Problem: Γ may be of small girth.
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Notion of path-graph

Solution: Decompose G into paths of length at least ` (i.e. express G as an
(≥ `)-path-graph H), and decompose an euler tour Γ going through the paths.

`

` `

Remarks:

`-path included into a path of Γ ⇒ `-path,

an obtained `-path belongs to at most two consecutive paths of Γ.

Problem: Two consecutive paths of Γ may intersect on more than one endvertex.

v v
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Paths and conflicts

Solution: Have low conflicts around the vertices so that Γ is conflictless.

“low conflicts”?

conflicts

conf(v) :=
maxw 6=v

∣∣{P∈PH (v) : w∈P}
∣∣

dH (v)
conf(H) := maxv conf(v)

Theorem [Jackson – 1993]

Every eulerian path-graph H with conf(H) ≤ 1/2 has a conflictless euler
tour.

9 / 15



Paths and conflicts

Solution: Have low conflicts around the vertices so that Γ is conflictless.

“low conflicts”?

conflicts

conf(v) :=
maxw 6=v

∣∣{P∈PH (v) : w∈P}
∣∣

dH (v)
conf(H) := maxv conf(v)

Theorem [Jackson – 1993]

Every eulerian path-graph H with conf(H) ≤ 1/2 has a conflictless euler
tour.

9 / 15



Paths and conflicts

Solution: Have low conflicts around the vertices so that Γ is conflictless.

“low conflicts”?

conflicts

conf(v) :=
maxw 6=v

∣∣{P∈PH (v) : w∈P}
∣∣

dH (v)
conf(H) := maxv conf(v)

Theorem [Jackson – 1993]

Every eulerian path-graph H with conf(H) ≤ 1/2 has a conflictless euler
tour.

9 / 15



From graphs to path-graphs

Graph with large δ ⇒ (≥ `)-path-graph with arbitrarily low conflicts.

Theorem [B., Harutyunyan, Le, Thomassé – 2015+]

For every ` ≥ 1, every graph with large enough minimum degree can be
expressed as an (≥ `)-path-graph H with arbitrarily low conf(H).

Proved via probabilistic arguments.

Problem remaining: Ensuring Eulerianity of H??

Solution: Extract subgraphs of G that will be used to “repair” the connectivity
and the degrees of H (if necessary).
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Ensuring Eulerianity of a path-graph

Cautious: Adding paths to H may increase conf(H) too much.

Solution: Add very very few (= constant) number of paths.

Connectivity? ⇒ Add to H a path-graph tree with bounded maximum degree.

C1

C2

H
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Making all vertices being of even degree

Even degrees? ⇒ Add paths to H joining vertices of odd degree.

Just need an (≥ `)-path-graph tree with bounded maximum degree.

H

Problem: What to do with the leftover paths?

Solution: Make sure these paths have length multiple of `.
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Finding (`, 2`)-trees with bounded maximum degree

(`, 2`)-tree: path-graph tree whose paths have length ` or 2`.

Repairing connectivity and degrees ⇒ Two (`, 2`)-trees with bounded ∆.

Existence under mild requirements.

Theorem [B., Harutyunyan, Le, Thomassé]

For every ` ≥ 1, given a 2-edge-connected graph and a large enough
disjoint source of degree, one can obtain an (`, 2`)-tree with maximum
degree bounded by a function of ` only.

Proof idea:

2-edge-connected ⇒ subcubic (1, 2)-tree.

(1, k)-tree with bounded ∆ + degree ⇒ (1, k + 1)-tree with bounded ∆.

(1, k + 1)-tree with bounded ∆ + degree ⇒ (k, 2k)-tree with bounded ∆.
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Final picture

24-edge-connected
large δ

2-edge-connected
sparse dense

2-edge-connected
sparse

(`, 2`)-tree
bounded ∆
sparse

(`, 2`)-tree
bounded ∆
sparse

(≥ `)-path-graph
low conflicts
dense

(≥ `)-path-graph
low conflicts
eulerian
dense

⇒ conflictless euler tour ⇒ P`-decomposition.
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Concluding remarks and questions

If G is eulerian, no degree repairing ⇒ 4-edge-connectivity suffices.

Proof for 3-edge-connectivity uses the result on 24-edge-connected graphs.

Generalization:

Conjecture [B., Harutyunyan, Le, Thomassé – 2015+]

For every d ≥ 2, there exists a positive constant cd such that, for
every T with ∆(T ) ≤ d , every cd -edge-connected graph with size di-
visible by |E (T )| and large enough degree admits a T -decomposition.

(we have c2 = 3)

Thank you for your attention.
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For every d ≥ 2, there exists a positive constant cd such that, for
every T with ∆(T ) ≤ d , every cd -edge-connected graph with size di-
visible by |E (T )| and large enough degree admits a T -decomposition.

(we have c2 = 3)

Thank you for your attention.

15 / 15



Concluding remarks and questions

If G is eulerian, no degree repairing ⇒ 4-edge-connectivity suffices.

Proof for 3-edge-connectivity uses the result on 24-edge-connected graphs.

Generalization:

Conjecture [B., Harutyunyan, Le, Thomassé – 2015+]
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