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T-decomposition: edge-partition into copies of T.
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.. and actually whenever diam(T) < 4 [Merker — 2015+].
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Shorter and “easier” proof of the path case?
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Theorem [B., Harutyunyan, Le, Thomassé — 2015+]

For every ¢ > 1, every 24-edge-connected graph admits a P,
decomposition (+1 smaller path) provided its minimum degree is large
enough.

Even less edge-connectivity needed for eulerian graphs.

Theorem [B., Harutyunyan, Le, Thomassé — 2015+]

For every ¢ > 1, every 4-edge-connected eulerian graph admits a P,-
decomposition (+1 smaller path) provided its minimum degree is large
enough.

Note: size condition is dropped.
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About tightness

The following is optimal:

@ 3-edge-connectivity for non-eulerian graphs,

@ 2-edge-connectivity for eulerian graphs.

Note: 2-edge-connectivity does not suffice for the first item; e.g. for

. and make § increase with preserving non Py-decomposability.
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Outline of the proof

Theorem [B., Harutyunyan, Le, Thomassé]

For every ¢ > 1, every 24-edge-connected graph admits a P,
decomposition provided its minimum degree is large enough.

Proof ideas. Assume G has an euler tour I', and pick consecutive Py's.

Problem: I may be of small girth.
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Notion of path-graph

Solution: Decompose G into paths of length at least ¢ (i.e. express G as an
(> ¢)-path-graph H), and decompose an euler tour ' going through the paths.

¢ ¢

Remarks:
@ (-path included into a path of [ = /-path,

@ an obtained /-path belongs to at most two consecutive paths of T.
Problem: Two consecutive paths of [ may intersect on more than one endvertex.
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]

“low conflicts"?

conflicts

conf(v) := T {ij(tgv) L wePy conf(H) := max, conf(v)

Theorem [Jackson — 1993]

Every eulerian path-graph H with conf(H) < 1/2 has a conflictless euler
tour.




From graphs to path-graphs

Graph with large § = (> {)-path-graph with arbitrarily low conflicts.

Theorem [B., Harutyunyan, Le, Thomassé — 2015+]

For every ¢ > 1, every graph with large enough minimum degree can be
expressed as an (> ¢)-path-graph H with arbitrarily low conf(H).
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Graph with large § = (> {)-path-graph with arbitrarily low conflicts.

Theorem [B., Harutyunyan, Le, Thomassé — 2015+]

For every ¢ > 1, every graph with large enough minimum degree can be
expressed as an (> ¢)-path-graph H with arbitrarily low conf(H).

Proved via probabilistic arguments.

Problem remaining: Ensuring Eulerianity of H77

Solution: Extract subgraphs of G that will be used to “repair” the connectivity
and the degrees of H (if necessary).
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Ensuring Eulerianity of a path-graph

Cautious: Adding paths to H may increase conf(H) too much.

Solution: Add very very few (= constant) number of paths.
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Making all vertices being of even degree

Even degrees? = Add paths to H joining vertices of odd degree.

Just need an (> ¢)-path-graph tree with bounded maximum degree.

H

Problem: What to do with the leftover paths?

Solution: Make sure these paths have length multiple of ¢.



Finding (¢, 2()-trees with bounded maximum degree

(¢,20)-tree: path-graph tree whose paths have length ¢ or 2¢.
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(¢,20)-tree: path-graph tree whose paths have length ¢ or 2¢.

Repairing connectivity and degrees = Two (¢, 2¢)-trees with bounded A.

Existence under mild requirements.

Theorem [B., Harutyunyan, Le, Thomassé]

For every ¢ > 1, given a 2-edge-connected graph and a large enough
disjoint source of degree, one can obtain an (¢, 2¢)-tree with maximum
degree bounded by a function of £ only.

Proof idea:

@ 2-edge-connected = subcubic (1, 2)-tree.
@ (1, k)-tree with bounded A + degree = (1, k + 1)-tree with bounded A.

o (1, k + 1)-tree with bounded A + degree = (k, 2k)-tree with bounded A.
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o If G is eulerian, no degree repairing = 4-edge-connectivity suffices.
@ Proof for 3-edge-connectivity uses the result on 24-edge-connected graphs.

@ Generalization:

Conjecture [B., Harutyunyan, Le, Thomassé — 2015+]

For every d > 2, there exists a positive constant ¢, such that, for
every T with A(T) < d, every cy-edge-connected graph with size di-
visible by |E(T)| and large enough degree admits a T-decomposition.

(we have ¢ = 3)

Thank you for your attention.
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