Edge-partitioning a graph into paths: beyond the Barát-Thomassen conjecture

> <u>Julien Bensmail</u>, Ararat Harutyunyan, Tien-Nam Le and Stéphan Thomassé

> > LIP, ÉNS de Lyon, France

GT 2015, Denmark August 24th, 2015 *T*-decomposition: edge-partition into copies of T.

T-decomposition: edge-partition into copies of T.

T-decomposition: edge-partition into copies of T.

 P_3 -decomposition

Conjecture [Barát, Thomassen - 2006]

For every fixed tree T, there exists a positive constant c_T such that every c_T -edge-connected graph with size divisible by |E(T)| admits a T-decomposition.

Barát-Thomassen conjecture

Conjecture [Barát, Thomassen – 2006]

For every fixed tree T, there exists a positive constant c_T such that every c_T -edge-connected graph with size divisible by |E(T)| admits a T-decomposition.

Verified for *T* being

Barát-Thomassen conjecture

Conjecture [Barát, Thomassen – 2006]

For every fixed tree T, there exists a positive constant c_T such that every c_T -edge-connected graph with size divisible by |E(T)| admits a T-decomposition.

Verified for *T* being

... and actually whenever $\operatorname{diam}(\mathcal{T}) \leq 4$ [Merker – 2015+].

Also true for $T = P_{\ell}$ when (chronological order):

- $l \in \{3, 4\}$ [Thomassen 2008],
- $\ell = 2^k$ for any k [Thomassen 2013],
- $\ell = 5$ [Botler, Mota, Oshiro, Wakabayashi 2015+],
- ℓ is any value [Botler, Mota, Oshiro, Wakabayashi 2015+].

Also true for $T = P_{\ell}$ when (chronological order):

- $l \in \{3, 4\}$ [Thomassen 2008],
- $\ell = 2^k$ for any k [Thomassen 2013],
- $\ell = 5$ [Botler, Mota, Oshiro, Wakabayashi 2015+],
- ℓ is any value [Botler, Mota, Oshiro, Wakabayashi 2015+].

Proof of last item complicated and lengthy.

Also true for $T = P_{\ell}$ when (chronological order):

- $l \in \{3, 4\}$ [Thomassen 2008],
- $\ell = 2^k$ for any k [Thomassen 2013],
- $\ell = 5$ [Botler, Mota, Oshiro, Wakabayashi 2015+],
- ℓ is any value [Botler, Mota, Oshiro, Wakabayashi 2015+].

Proof of last item complicated and lengthy.

Shorter and "easier" proof of the path case?

Our results

Contribution: New proof of the path case under weaker assumptions.

Our results

Contribution: New proof of the path case under weaker assumptions.

Mild edge-connectivity is sufficient provided minimum degree is large enough.

Theorem [B., Harutyunyan, Le, Thomassé – 2015+]

For every $\ell \geq 1$, every 24-edge-connected graph admits a P_{ℓ} -decomposition (+1 smaller path) provided its minimum degree is large enough.

Our results

Contribution: New proof of the path case under weaker assumptions.

Mild edge-connectivity is sufficient provided minimum degree is large enough.

Theorem [B., Harutyunyan, Le, Thomassé – 2015+]

For every $\ell \geq 1$, every 24-edge-connected graph admits a P_{ℓ} -decomposition (+1 smaller path) provided its minimum degree is large enough.

Even less edge-connectivity needed for eulerian graphs.

Theorem [B., Harutyunyan, Le, Thomassé – 2015+]

For every $\ell \geq 1$, every 4-edge-connected eulerian graph admits a P_{ℓ} -decomposition (+1 smaller path) provided its minimum degree is large enough.

Note: size condition is dropped.

About tightness

The following is optimal:

- 3-edge-connectivity for non-eulerian graphs,
- 2-edge-connectivity for eulerian graphs.

About tightness

The following is optimal:

- 3-edge-connectivity for non-eulerian graphs,
- 2-edge-connectivity for eulerian graphs.

Note: 2-edge-connectivity does not suffice for the first item; e.g. for

... and make δ increase with preserving non P_9 -decomposability.

Theorem [B., Harutyunyan, Le, Thomassé]

For every $\ell \geq 1$, every 24-edge-connected graph admits a P_{ℓ} -decomposition provided its minimum degree is large enough.

Proof ideas. Assume G has an euler tour Γ , and pick consecutive P_{ℓ} 's.

For every $\ell \geq 1$, every 24-edge-connected graph admits a P_{ℓ} -decomposition provided its minimum degree is large enough.

Proof ideas. Assume G has an euler tour Γ , and pick consecutive P_{ℓ} 's.

For every $\ell \geq 1$, every 24-edge-connected graph admits a P_{ℓ} -decomposition provided its minimum degree is large enough.

Proof ideas. Assume G has an euler tour Γ , and pick consecutive P_{ℓ} 's.

For every $\ell \geq 1$, every 24-edge-connected graph admits a P_{ℓ} -decomposition provided its minimum degree is large enough.

Proof ideas. Assume G has an euler tour Γ , and pick consecutive P_{ℓ} 's.

Problem: Γ may be of small girth.

Solution: Decompose G into paths of length at least ℓ (*i.e.* express G as an $(\geq \ell)$ -path-graph H), and decompose an euler tour Γ going through the paths.

Remarks:

- ℓ -path included into a path of $\Gamma \Rightarrow \ell$ -path,
- an obtained ℓ -path belongs to at most two consecutive paths of Γ .

Solution: Decompose G into paths of length at least ℓ (*i.e.* express G as an $(\geq \ell)$ -path-graph H), and decompose an euler tour Γ going through the paths.

Remarks:

- ℓ -path included into a path of $\Gamma \Rightarrow \ell$ -path,
- an obtained ℓ -path belongs to at most two consecutive paths of Γ .

Problem: Two consecutive paths of Γ may intersect on more than one endvertex.

Paths and conflicts

Solution: Have **low conflicts** around the vertices so that Γ is **conflictless**.

Paths and conflicts

Solution: Have **low conflicts** around the vertices so that Γ is **conflictless**.

"low conflicts"?

Paths and conflicts

Solution: Have **low conflicts** around the vertices so that Γ is **conflictless**.

"low conflicts"?

Theorem [Jackson – 1993]

Every eulerian path-graph H with $\operatorname{conf}(H) \leq 1/2$ has a conflictless euler tour.

Graph with large $\delta \Rightarrow (\geq \ell)$ -path-graph with arbitrarily low conflicts.

Theorem [B., Harutyunyan, Le, Thomassé – 2015+] For every $\ell \ge 1$, every graph with large enough minimum degree can be

expressed as an ($\geq \ell$)-path-graph H with arbitrarily low conf(H).

Proved via probabilistic arguments.

Graph with large $\delta \Rightarrow (\geq \ell)$ -path-graph with arbitrarily low conflicts.

Theorem [B., Harutyunyan, Le, Thomassé – 2015+] For every $\ell \ge 1$, every graph with large enough minimum degree can be

expressed as an $(\geq \ell)$ -path-graph H with arbitrarily low conf(H).

Proved via probabilistic arguments.

Problem remaining: Ensuring Eulerianity of H??

Solution: Extract subgraphs of G that will be used to "repair" the *connectivity* and the *degrees* of H (if necessary).

Ensuring Eulerianity of a path-graph

Cautious: Adding paths to *H* may increase conf(H) too much. **Solution:** Add very very few (= constant) number of paths.

Solution: Add very very few (= constant) number of paths.

Solution: Add very very few (= constant) number of paths.

Solution: Add very very few (= constant) number of paths.

Solution: Add very very few (= constant) number of paths.

Even degrees? \Rightarrow Add **paths** to *H* **joining vertices of odd degree**. Just need an ($\geq \ell$)-path-graph tree with bounded maximum degree.

Problem: What to do with the leftover paths?

Even degrees? \Rightarrow Add **paths** to *H* **joining vertices of odd degree**. Just need an ($\geq \ell$)-path-graph tree with bounded maximum degree.

Problem: What to do with the leftover paths?

Solution: Make sure these paths have length multiple of ℓ .

Finding $(\ell, 2\ell)$ -trees with bounded maximum degree

 $(\ell, 2\ell)$ -tree: path-graph tree whose paths have length ℓ or 2ℓ .

Repairing connectivity and degrees \Rightarrow Two (ℓ , 2 ℓ)-trees with bounded Δ .

Finding $(\ell, 2\ell)$ -trees with bounded maximum degree

 $(\ell, 2\ell)$ -tree: path-graph tree whose paths have length ℓ or 2ℓ .

Repairing connectivity and degrees \Rightarrow Two (ℓ , 2 ℓ)-trees with bounded Δ .

Existence under mild requirements.

Theorem [B., Harutyunyan, Le, Thomassé] For every $\ell \geq 1$, given a 2-edge-connected graph and a large enough disjoint source of degree, one can obtain an $(\ell, 2\ell)$ -tree with maximum degree bounded by a function of ℓ only.

Finding $(\ell, 2\ell)$ -trees with bounded maximum degree

 $(\ell, 2\ell)$ -tree: path-graph tree whose paths have length ℓ or 2ℓ .

Repairing connectivity and degrees \Rightarrow Two (ℓ , 2 ℓ)-trees with bounded Δ .

Existence under mild requirements.

Theorem [B., Harutyunyan, Le, Thomassé] For every $\ell \ge 1$, given a 2-edge-connected graph and a large enough disjoint source of degree, one can obtain an $(\ell, 2\ell)$ -tree with maximum degree bounded by a function of ℓ only.

Proof idea:

- 2-edge-connected \Rightarrow subcubic (1,2)-tree.
- (1, k)-tree with bounded Δ + degree \Rightarrow (1, k + 1)-tree with bounded Δ .
- (1, k + 1)-tree with bounded Δ + degree \Rightarrow (k, 2k)-tree with bounded Δ .

24-edge-connected large δ

• If G is eulerian, no degree repairing \Rightarrow 4-edge-connectivity suffices.

Concluding remarks and questions

- If G is eulerian, no degree repairing \Rightarrow 4-edge-connectivity suffices.
- Proof for 3-edge-connectivity uses the result on 24-edge-connected graphs.

Concluding remarks and questions

- If G is eulerian, no degree repairing \Rightarrow 4-edge-connectivity suffices.
- Proof for 3-edge-connectivity uses the result on 24-edge-connected graphs.
- Generalization:

Conjecture [B., Harutyunyan, Le, Thomassé – 2015+]

For every $d \ge 2$, there exists a positive constant c_d such that, for every T with $\Delta(T) \le d$, every c_d -edge-connected graph with size divisible by $|\mathcal{E}(T)|$ and large enough degree admits a T-decomposition.

(we have $c_2 = 3$)

Concluding remarks and questions

- If G is eulerian, no degree repairing \Rightarrow 4-edge-connectivity suffices.
- Proof for 3-edge-connectivity uses the result on 24-edge-connected graphs.
- Generalization:

Conjecture [B., Harutyunyan, Le, Thomassé – 2015+]

For every $d \ge 2$, there exists a positive constant c_d such that, for every T with $\Delta(T) \le d$, every c_d -edge-connected graph with size divisible by $|\mathcal{E}(T)|$ and large enough degree admits a T-decomposition.

(we have $c_2 = 3$)

Thank you for your attention.