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Part 1: Arbitrarily partitionable graphs
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Our problem

Let us suppose we want to share the following network between several users in
such a way that the subnetworks are connected and have the following sizes.

User 1: 1 User 2: 2 User 3: 2 User 4: 3
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More formally now

Let G be a connected graph on n vertices.

Definition: realizable sequence, realization
A sequence τ = (τ1, ..., τp) adding up to n is realizable in G if there exists a
partition (V1, ...,Vp) of V (G ) such that each Vi induces a connected subgraph of
G on τi vertices. The partition (V1, ...,Vp) is called a realization of τ in G .

In the introducing example, we found a realization of (1, 2, 2, 3) in the graph
modelling our network.

Definition: AP graph
If every sequence adding up to n is realizable in G , then G is said to be arbitrarily
partitionable.

Networks with an AP graph topology are the most convenient regarding the
previous problem when neither the number of users nor their needs are known
beforehand.
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An example of AP graph

Let us take a look at Cat(2, 3).

We can easily partition Cat(2, 3) if the sequence contains the element...
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An example of AP graph

Let us take a look at Cat(2, 3).

We can easily partition Cat(2, 3) if the sequence contains the element 1, 2, or 3.

Since every non-trivial partition of 5 contains either a 1, a 2, or a 3, then
Cat(2, 3) is AP.
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Not all graphs are AP

The smallest non-AP graph is Cat(2, 2) (the claw) since it does not admit a
realization of (2, 2).
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About AP graphs

AP graphs have some good properties...

Every AP graph has a 1-factor.
The property of being AP is closed under edge-addition.
Every traceable graph is AP.

... but deciding whether a graph is AP is difficult in general.

This problem is NP-hard (Πp
2-complete ?).

Deciding whether a sequence is realizable in a graph is NPC [Rob98].
There are Ω(e

√
n) partitions of n [FS09].
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Stronger versions of this problem

Notice that our definition of AP graphs is not representative of the difficulties we
can encounter while sharing a network.

Our network is shared at once.
The sharing is not performed until all of our resources are needed.
The subnetworks resulting from the sharing are only connected.

To deal with these deficiencies, some augmented versions of AP graphs were
introduced.

In the online version, the parts composing the partition of our graph are
deduced one by one.
In the recursive version, we want the subgraphs induced by a partition of our
graph to be partitionable themselves.
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Part 2: Partitioning graphs under prescriptions
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Another partitioning constraint

Let us now suppose that our resources are not equivalent and that one of our
users is allowed to request one specific resource to belong to his subnetwork.

User 1: (1, e) User 2: 2 User 3: 2 User 4: 3

a

b

c

d e

f

g

h

Well, let us try to satisfy this resource demand anyway...
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Another partitioning constraint

Let us now suppose that our resources are not equivalent and that one of our
users is allowed to request one specific resource to belong to his subnetwork.

User 1: (1, e) User 2: 2 User 3: 2 User 4: 3

a

b

c

d e

f

g

h

Sharing our network under these constraints is not possible here.
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Formalization

Definition: k-prescription, realization under prescription
A k-tuple (v1, ..., vk) of pairwise distinct vertices of G is called a k-prescription of
G . If there exists a realization (V1, ...,Vp) in G of the sequence τ = (τ1, ..., τp)
with p ≥ k elements such that for every i ∈ [1, k] we have vi ∈ Vi , then τ is said
to be realizable in G under P.

A sequence with several realizations in G may not be realizable in G following a
given prescription. For example, there exists more than ten realizations of
(1, 2, 2, 3) in the previous graph but none of them admits {e} as the part with size
1.

Definition: AP+k graph
If every sequence adding up to n consisting of more than k elements is realizable
in G under every k-prescription, then G is said to be arbitrarily partitionable under
k-prescriptions.
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Prescription and connectivity

This definition was inspired by the following well-known result.

Theorem (Lovász, 1977, and Györi, 1978, ind.) [Lov77, Gyo78]
A sequence (τ1, ..., τk) adding up to n is always realizable in a k-connected graph
with order n under every k-prescription.

Caution: This result does not imply that every k-connected graph is AP+k!
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Prescription and connectivity

However, a graph must be connected enough to be AP+k.

Observation
Every AP+k graph is (k + 1)-connected.

Prescribing a vertex to a subgraph with size 1 is like removing it from the graph.

v1 vl

Cq

C1

We consider that l ≤ k.
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Prescription and connectivity

However, a graph must be connected enough to be AP+k.

Observation
Every AP+k graph is (k + 1)-connected.

Prescribing a vertex to a subgraph with size 1 is like removing it from the graph.

Cq

C1

There does not exist a realization of (|C1|+ 1, (
∑q

i=2 |Ci |)− 1) in this subgraph
when |C1| ≥ ... ≥ |Cq|.

Hence, we cannot realize (1, ..., 1, |C1|+ 1, (
∑q

i=2 |Ci |)− 1) in this graph under
(v1, ..., vl). Finally, if l < k , then one has to prescribe some extra vertices to parts
with size 1 until the prescription has size k .

27 / 86



Prescription and connectivity

However, a graph must be connected enough to be AP+k.

Observation
Every AP+k graph is (k + 1)-connected.

Prescribing a vertex to a subgraph with size 1 is like removing it from the graph.

Cq

C1

There does not exist a realization of (|C1|+ 1, (
∑q

i=2 |Ci |)− 1) in this subgraph
when |C1| ≥ ... ≥ |Cq|.

Hence, we cannot realize (1, ..., 1, |C1|+ 1, (
∑q

i=2 |Ci |)− 1) in this graph under
(v1, ..., vl). Finally, if l < k , then one has to prescribe some extra vertices to parts
with size 1 until the prescription has size k .

28 / 86



Part 3: On the existence of AP+k graphs for arbitrary k

29 / 86



Partitioning powers of graphs

We prove the following two results.

Theorem 1 (Baudon, B., Przybyło, Woźniak, 2012)
The graph Pk

n is AP+(k − 1) for every k ≥ 1 and n ≥ k .

Theorem 2 (Baudon, B., Przybyło, Woźniak, 2012)
The graph C k

n is AP+(2k − 1) for every k ≥ 1 and n ≥ 2k.

These results are sharp regarding the connectivity of the corresponding graphs.
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Partitioning powers of paths

Lemma 1 (Baudon, B., Przybyło, Woźniak, 2012)
Let P = (vi1 , ..., vik ) be a k-prescription of Pk

n with k ≥ 1, n ≥ k and i1 < ... < ik .
If ik is the last vertex of Pk

n , then every partition τ = (τ1, ..., τp) of n with p ≥ k
elements is realizable in Pk

n under P.

The proof is by induction on k . For k = 1, the result is obvious.

For arbitrary k, we use the following procedure to determine V1 in such a way that
the induction hypothesis can be used in Pk

n − V1.

vi1 vik
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Partitioning powers of paths

Lemma 1 (Baudon, B., Przybyło, Woźniak, 2012)
Let P = (vi1 , ..., vik ) be a k-prescription of Pk

n with k ≥ 1, n ≥ k and i1 < ... < ik .
If ik is the last vertex of Pk

n , then every partition τ = (τ1, ..., τp) of n with p ≥ k
elements is realizable in Pk

n under P.

First, let V1 = {vi1}. We then repeatedly "jump back at distance k" on the left of
the last vertex added to V1 as long as |V1| < τ1 and the first vertex of Pk

n is not
reached.

vikvi1vi1−k
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reached.
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If, at one moment, we have |V1| = τ1, then observe that we can use our induction
hypothesis to deduce a realization of (τ2, ..., τp) in Pk

n − V1 under (vi2 , ..., vik ). It
follows that (V1, ...,Vp) is a whole realization of τ in Pk

n under P.
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Partitioning powers of paths
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hypothesis to deduce a whole realization of τ in Pk

n under P.
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Partitioning powers of paths

Lemma 1 (Baudon, B., Przybyło, Woźniak, 2012)
Let P = (vi1 , ..., vik ) be a k-prescription of Pk

n with k ≥ 1, n ≥ k and i1 < ... < ik .
If ik is the last vertex of Pk

n , then every partition τ = (τ1, ..., τp) of n with p ≥ k
elements is realizable in Pk

n under P.

If V1 still does not have size τ1, then let r ∈ {0, ..., k − 1} − (
⋃k−1

j=2 ij mod k).
We then add vx to V1, where vx is a neighbour of vi1 such that x > i1 and x ≡ r
mod k.

vikvi1 vx
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Partitioning powers of paths

Lemma 1 (Baudon, B., Przybyło, Woźniak, 2012)
Let P = (vi1 , ..., vik ) be a k-prescription of Pk

n with k ≥ 1, n ≥ k and i1 < ... < ik .
If ik is the last vertex of Pk

n , then every partition τ = (τ1, ..., τp) of n with p ≥ k
elements is realizable in Pk

n under P.

Next, we repeatedly add to V1 the vertex at distance k on the right of the last
vertex added to V1 as long as |V1| < τ1 and the last vertex of Pk

n is not reached.

vikvi1 vx vx+k
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Partitioning powers of paths

Lemma 1 (Baudon, B., Przybyło, Woźniak, 2012)
Let P = (vi1 , ..., vik ) be a k-prescription of Pk

n with k ≥ 1, n ≥ k and i1 < ... < ik .
If ik is the last vertex of Pk

n , then every partition τ = (τ1, ..., τp) of n with p ≥ k
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n under P.

Next, we repeatedly add to V1 the vertex at distance k on the right of the last
vertex added to V1 as long as |V1| < τ1 and the last vertex of Pk

n is not reached.

vikvi1 vx vx+βk

If V1 has size τ1 at one moment, then the previous statements can be used once
again to deduce the realization.
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Partitioning powers of paths

Lemma 1 (Baudon, B., Przybyło, Woźniak, 2012)
Let P = (vi1 , ..., vik ) be a k-prescription of Pk

n with k ≥ 1, n ≥ k and i1 < ... < ik .
If ik is the last vertex of Pk

n , then every partition τ = (τ1, ..., τp) of n with p ≥ k
elements is realizable in Pk

n under P.

vikvi1 vx vx+βk

After this procedure, every vertex of V −V1 has a neighbour in V1 and Pk
n −V1 is

the (k − 1)th power of a path. Thus, according to our induction hypothesis, there
exists a realization (V2, ...,Vp,V ′1) of (τ2, ..., τp, τ1 − |V1|) in Pk

n − V1 under
(vi2 , ..., vik ). Finally, (V1 ∪ V ′1,V2, ...,Vp) is a realization of τ in Pk

n under P. �
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Partitioning powers of paths

Lemma 1 (Baudon, B., Przybyło, Woźniak, 2012)
Let P = (vi1 , ..., vik ) be a k-prescription of Pk

n with k ≥ 1, n ≥ k and i1 < ... < ik .
If ik is the last vertex of Pk

n , then every partition τ = (τ1, ..., τp) of n with p ≥ k
elements is realizable in Pk

n under P.

This lemma implies the following.

Theorem 1 (Baudon, B., Przybyło, Woźniak, 2012)
The graph Pk

n is AP+(k − 1) for every k ≥ 1 and n ≥ k .

If the sequence has k − 1 elements, then use Györi-Lovász Theorem.
Otherwise, prescribe one extra vertex so that Lemma 1 is applicable.

�
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Partitioning powers of cycles

Theorem 2 (Baudon, B., Przybyło, Woźniak, 2012)
The graph C k

n is AP+(2k − 1) for every k ≥ 1 and n ≥ 2k.

Given α consecutive prescribed vertices vij , ..., vij+α−1 , the garden of vij , ..., vij+α−1

in C k
n is the subset Gj,j+α−1 = {vij , ..., vij+α−1} of consecutive vertices of C k

n .

vij

vij−1

vij+α−1

vij+α

Gj,j+α−1

In particular, observe that C k
n [Gx,y ] is the kth power of a path.
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Partitioning powers of cycles

Theorem 2 (Baudon, B., Przybyło, Woźniak, 2012)
The graph C k

n is AP+(2k − 1) for every k ≥ 1 and n ≥ 2k.

Clearly, there exist k − 1 consecutive prescribed vertices vij , ..., vij+k−2 such that
∑j+k−2

x=j τx ≤ |Gj,j+k−2|.

Case 1: This is true for j = 1 and there is a subset U of consecutive vertices of
C k

n such that
∑k−1

j=1 τj < |U| ≤
∑k

j=1 τj and U ∩ P = {vi1 , ..., vik}.

vi1
U

vik

Use Györi-Lovász Theorem and Theorem 1.
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Partitioning powers of cycles

Theorem 2 (Baudon, B., Przybyło, Woźniak, 2012)
The graph C k
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vi1
U

vik

Use Györi-Lovász Theorem and Lemma 1.
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Partitioning powers of cycles

Theorem 2 (Baudon, B., Przybyło, Woźniak, 2012)
The graph C k

n is AP+(2k − 1) for every k ≥ 1 and n ≥ 2k.

Clearly, there exist k − 1 consecutive prescribed vertices vij , ..., vij+k−2 such that
∑j+k−2

x=j τx ≤ |Gj,j+k−2|.
Case 1: This is true for j = 1 and there is a subset U of consecutive vertices of
C k

n such that
∑k−1

j=1 τj < |U| ≤
∑k

j=1 τj and U ∩ P = {vi1 , ..., vik}.

vi1
U

vik

vik+1

Use Györi-Lovász Theorem and Lemma 1.
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Partitioning powers of cycles

Theorem 2 (Baudon, B., Przybyło, Woźniak, 2012)
The graph C k

n is AP+(2k − 1) for every k ≥ 1 and n ≥ 2k.

Clearly, there exist k − 1 consecutive prescribed vertices vij , ..., vij+k−2 such that
∑j+k−2

x=j τx ≤ |Gj,j+k−2|.

Case 2: We have
∑j+k−2

x=j τj < Gj,j+k−2 for all j . Clearly, there are no k
consecutive prescribed vertices along C k

n , and there is a j such that τj ≤ |Gj,j |.
Let us suppose that j = 1. Choose V1 and then divide the graph into two powers
of paths to deduce the realization.

vi1 vi2vi2k−1

V1

vikvik+1
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of paths to deduce the realization.

vi1 vi2vi2k−1

V1

vikvik+1
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Adding edges to AP+k graphs

Observe that the property of being AP+k is closed under edge-addition too.
Starting from the kth power of paths and cycles, we get the following.

Corollary of Theorems 1 and 2
The kth power of a traceable or Hamiltonian graph is AP+(k − 1) or
AP + (2k − 1), respectively.

It follows that complete graphs on at least k vertices are AP+k . Although these
graphs have a lot of nice properties in a network context, they are not so
convenient because of their extreme size.

Hence, we now focus on AP+k graphs having the least number of edges.
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Part 4: On optimal AP+k graphs
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A lower bound on the size of an AP+k graph

Recall that an AP+k graph must be (k + 1)-connected.
Hence, we deduce the following.

Observation
If G is an AP+k graph on n vertices, then ‖G‖ ≥ d n(k+1)

2 e.

An AP+k whose size meets this lower bound is called an optimal AP+k graph.

We here only focus on the existence of optimal AP+k graphs on n vertices for
every k ≥ 1 and n ≥ k .
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Harary graphs

Harary provided a construction which yields a k-connected graph with order n
whose size is d kn2 e for arbitrary k and n.

Definition: Harary graph
Let k ≥ 1 and n ≥ k be any two integers. The k-connected Harary graph on n
vertices, denoted by Hk,n, has vertex set {v0, ..., vn−1} and the following edges:

if k = 2r is even, then two vertices vi and vj are linked if i − r ≤ j ≤ i + r ;
if k = 2r + 1 is odd and n is even, then Hk,n is obtained by joining vi and
vi+ n

2
in H2r ,n for every i ∈ [0, n

2 − 1];
if k = 2r + 1 and n are odd, then Hk,n is obtained from H2r ,n by first linking
v0 to both vb n

2 c and vd n
2 e, and then each vertex vi to vi+d n

2 e for every
i ∈ [1, b n2c − 1];

where the subscripts are taken modulo n.
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Some examples of Harary graphs

The Harary graphs H6,8, H5,10, and H3,7
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Partitioning Harary graphs with even connectivity

Harary graphs are Hamiltonian, and thus are AP. Then, how many prescriptions
can be made before partitioning Hk,n?

Observe that, for even k , the graph Hk,n is isomorphic to C k/2
n .

Corollary of Theorem 2
The Harary graph Hk,n is AP+(k − 1) for every even k .
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Harary graphs are Hamiltonian, and thus are AP. Then, how many prescriptions
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Partitioning Harary graphs with odd connectivity

Observe that H2k+1,n with 2k + 1 odd is spanned by C k
n and thus is AP+(2k − 1)

according to Theorem 2. Although this number of prescriptions is good regarding
the connectivity of H2k+1,n we would like to allow one more prescription while
partitioning it.

We now sketch the proof of the following result.

Theorem 3 (Baudon, B., Sopena, 2012)
The Harary graph H2k+1,n is AP+2k for every k 6= 1.
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Partitioning Harary graphs with odd connectivity

Theorem 3 (Baudon, B., Sopena, 2012)
The Harary graph H2k+1,n is AP+2k for every k 6= 1.

A prescribed block of the prescription in H2k+1,n is a maximal subset of prescribed
consecutive vertices of H2k+1,n following its "natural order".

vi1 vi2 vil−1
vil

In H2k+1,n, the prescribed blocks with size at least k alter the original structure of
the graph.

vi1 vi2 vi3
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Partitioning Harary graphs with odd connectivity

Theorem 3 (Baudon, B., Sopena, 2012)
The Harary graph H2k+1,n is AP+2k for every k 6= 1.

We distinguish three main cases depending on the number and the sizes of the
prescribed blocks.

1 There is no prescribed block with size at least k.
2 There is exactly one prescribed block with size at least k .
3 There are two prescribed blocks with size k.

In the first two cases, a realization can be deduced in the underlying C k
n of

H2k+1,n, while we need to use the diagonal edges of H2k+1,n to handle the third
case.
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Partitioning Harary graphs with odd connectivity

Theorem 3 (Baudon, B., Sopena, 2012)
The Harary graph H2k+1,n is AP+2k for every k 6= 1.

If P is a 2k-prescription of C k
n with at most one prescribed block in C k

n with size
at least k , then every sequence can be realized in C k

n under P. This statement
can be proved using the following two lemmas.

Lemma 2 (Baudon, B., Sopena, 2012)
Let P = (vi1 , ..., vik+1) be a (k + 1)-prescription of Pk

n with k ≥ 1, n ≥ k and
i1 < ... < ik+1. If i1 and ik+1 are the first and last vertices of Pk

n , respectively,
then every partition τ = (τ1, ..., τp) of n with p ≥ (k + 1) elements is realizable in
Pk

n under P.

Lemma 3 (Baudon, B., Sopena, 2012)
Let P = (vi1 , ..., vik ) be a k-prescription of Pk

n with k ≥ 1, n ≥ k and i1 < ... < ik .
If ik 6= i1 + k − 1, then every partition τ = (τ1, ..., τp) of n with p ≥ k elements is
realizable in Pk

n under P.
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Partitioning Harary graphs with odd connectivity

Theorem 3 (Baudon, B., Sopena, 2012)
The Harary graph H2k+1,n is AP+2k for every k 6= 1.

Now suppose that there are two prescribed blocks with size k. There necessarily
exists a diagonal edge incident with two non-prescribed vertices.

viα

kk

viβ

a1 a2

a3 a4
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Partitioning Harary graphs with odd connectivity

Theorem 3 (Baudon, B., Sopena, 2012)
The Harary graph H2k+1,n is AP+2k for every k 6= 1.

We distinguish three cases to deduce the realization.

If
∑k

i=1 τi < n/2 and
∑2k

i=k+1 τi < n/2, then we use Györi-Lovász Theorem
and the fact that a graph spanned by two linked square of paths is traceable.

∑k
i=1 τi

∑2k
i=k+1 τi
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Partitioning Harary graphs with odd connectivity

Theorem 3 (Baudon, B., Sopena, 2012)
The Harary graph H2k+1,n is AP+2k for every k 6= 1.

We distinguish three cases to deduce the realization.

If
∑k

i=1 τi < n/2 and
∑2k

i=k+1 τi < n/2, then we use Györi-Lovász Theorem
and the fact that a graph spanned by two linked square of paths is traceable.
If
∑2k

i=1 τi ≥ a1 + a2 + 2k + 1, then we use Györi-Lovász Theorem again.

∑k
i=1 τi

∑2k
i=k+1 τi
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Partitioning Harary graphs with odd connectivity

Theorem 3 (Baudon, B., Sopena, 2012)
The Harary graph H2k+1,n is AP+2k for every k 6= 1.

We distinguish three cases to deduce the realization.

If
∑k

i=1 τi < n/2 and
∑2k

i=k+1 τi < n/2, then we use Györi-Lovász Theorem
and the fact that a graph spanned by two linked square of paths is traceable.
If
∑2k

i=1 τi ≥ a1 + a2 + 2k + 1, then we use Györi-Lovász Theorem again.

Otherwise, we have
∑2k

i=1 τi ≥ a3 + a4 + 2k + 1 and the same strategy is
applicable.

�
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What about optimal AP+2 graphs?

The proof of Theorem 3 uses the fact that some subgraphs of H2k+1,n are
traceable whenever k > 1. Clearly, this argument does not hold when k = 1.
Therefore, our proof does not hold to prove that H3,n is AP+2 for arbitrary n.

Besides, these graphs are not all AP+2 anyway.

Observation
The Harary graph H3,n is not AP+2 when n ≡ 2 mod 4.

vu
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What about optimal AP+2 graphs?

The proof of Theorem 3 uses the fact that some subgraphs of H2k+1,n are
traceable whenever k > 1. Clearly, this argument does not hold when k = 1.
Therefore, our proof does not hold to prove that H3,n is AP+2 for arbitrary n.

Besides, these graphs are not all AP+2 anyway.

Observation
The Harary graph H3,n is not AP+2 when n ≡ 2 mod 4.

This subgraph has no perfect matching. Thus, H3,10 does not admit a realization
of (1, 1, 2, 2, 2, 2) under (u, v).
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On the existence of optimal AP+2 graphs

Recall that Pn can be arbitrarily partitioned under (v1, vn) as long as v1 and vn are
the endvertices of Pn. Thanks to a spanning graph argument, we get the following.

Corollary of Lemma 2
A Hamiltonian-connected graph is AP+2.

Using this sufficient condition, one can prove that the following graphs are AP+2
for every n.

Definition: Prn graphs
Let n ≥ 4. The graph Prn is constructed as follows:

If n is even, Prn is obtained from the cycle Cn, whose vertices are successively
denoted by u,w1

1 , ...,w
1
n−2

2
, v ,w2

n−2
2
, ...,w2

1 , by adding it the edge uv and all

edges w1
i w2

i , for every i ∈ [1, n−2
2 ].

If n is odd, Prn is obtained by first removing the edges w1
1 w2

1 and w1
n−3

2
w2

n−3
2

from Prn−1, and then adding it a new vertex o linked to w1
1 , w2

1 , w1
n−3

2
, and

w2
n−3

2
.
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.
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Examples of Prn graphs

w1
2 w1

3 w1
4

w2
1 w2

2 w2
3 w2

4

vu

w1
1

w1
3

w2
3

u v

w2
1 w2

2

w1
1 w1

2

o

The graphs Pr10 and Pr9
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Prn graphs are AP+2

Proposition (Baudon, B., Sopena, 2012)
The graph Prn is Hamiltonian-connected for every n ≥ 6.

s t P

u v uP↗1,q(Prn)v

u w1
i

uP↗1,i−1(Prn)w2
i P2,→

i+1,q(Prn)vP1,←
q,i (Prn) if i − 1 is even

uP↘1,i−1(Prn)w2
i P2,→

i+1,q(Prn)vP1,←
q,i (Prn) otherwise

w1
i w1

j
P1,→

i,j−1(Prn)P2,←
j−1,i (Prn)P↖i−1,1(Prn)uvP↖q,j (Prn) if q − j is even

P1,→
i,j−1(Prn)P2,←

j−1,i (Prn)P↖i−1,1(Prn)uvP↙q,j (Prn) otherwise

w1
i w2

j
P1,→

i,j−1(Prn)P2,←
j−1,i (Prn)P↖i−1,1(Prn)uvP↙q,j (Prn) if q − j is even

P1,→
i,j−1(Prn)P2,←

j−1,i (Prn)P↖i−1,1(Prn)uvP↖q,j (Prn) otherwise

Existence of a Hamiltonian path in Prn whose endvertices are s and t,
for n even and where q = n−2

2

Such Hamiltonian paths also exist when n is odd...
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Concluding result

Corollary (Baudon, B., Sopena, 2012)
There exist optimal AP+k graphs on n vertices for every k ≥ 1 and n ≥ k .
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