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Partitioning graphs into connected subgraphs

Let us consider the following definition...

Def. Realizable sequence - Realization
Let G be a graph. A sequence τ = (n1, ..., np) of positive integers summing up to
|V (G)| is realizable in G if there exists a partition (V1, ...,Vp) of V (G) such that
every Vi has size ni and induces a connected subgraph of G . The partition
(V1, ...,Vp) of V (G) is a realization of τ in G .

... and the associated decision problem.

Realizable Sequence - RealSeq
Instance: A graph G and a sequence τ .
Question: Is τ realizable in G?
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On the complexity of RealSeq

It is already known that RealSeq is an NP-complete problem even when:

τ = (k, ..., k), where k ≥ 3 is a divisor of |V (G)| [DF85];

G is a tree with maximum degree 3 [BF06].

These results were proved by reduction from the Planar 3-Dimensional Matching
and Exact Cover By 3-Sets problems, respectively.

However, in any instance of RealSeq resulting from one of these reductions, the size of
τ is polynomial in the size of the original instance. Therefore, these reductions do not
involve the existence of a constant threshold t ≥ 1 such that the following problem

Realizable Sequence With Size k - k-RealSeq
Instance: A graph G and a sequence τ with size k.
Question: Is τ realizable in G?

is in P when k ≤ t − 1 and NP-complete otherwise.
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On the complexity of k-RealSeq

Since partitioning G into one single connected component is possible iff G is connected,
we have t ≥ 2.

We here prove that t = 2 as follows.

1 First, we show that 2-RealSeq is NP-complete.

2 We then explain how to generalize the reduction used to k-RealSeq for any k ≥ 3.

Let us first show that 2-RealSeq is NP-complete by reduction from

1-in-3 SAT
Instance: A 3CNF formula F over variables X = {x1, ..., xn}.
Question: Is F satisfiable in a 1-in-3 way, that is in such a way that each of its
clauses has exactly one true literal?

where a 3CNF formula is a CNF formula whose clauses have exactly three literals.
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2-RealSeq is complete in NP

Thm. B. - 2012
2-RealSeq is NP-complete.

Proof.
First notice that k-RealSeq is in NP for every k ≥ 2. One can provide a satisfying
realization R of τ in G to an algorithm that makes sure that R is a partition of V (G),
and that the parts of R have the correct sizes regarding τ and induce connected
subgraphs of G . This can be done in polynomial time.

We now show that 1-in-3 SAT ≤p 2-RealSeq. From a given 3CNF formula F over
variables {x1, ..., xn} and clauses {C1, ...,Cm} we construct a graph GF and a sequence
τ = (n1, n2) with n1, n2 ≥ 2 such that

F is satisfiable in a 1-in-3 way
⇔

τ is realizable in GF .
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Reduction from 1-in-3 SAT to 2-RealSeq

Thm. B. - 2012
2-RealSeq is NP-complete.

We may suppose that every literal appears in F - if xi does not appear in F , then

F ′ = F ∧ (xi ∨ xi ∨ xn+1) ∧ (xn+1 ∨ xn+1 ∨ xn+1)

is satisfiable in a 1-in-3 way iff F is satisfiable in this way too.

We first construct the clause subgraph of GF :

with each literal li in F is associated a literal vertex vli in GF ;

every pair of literal vertices {vli , vli } is linked to the root of a star S i with n vertices
of degree 1;

a pair of literal vertices {vli , vlj } is linked to the root of a star S i,j with n vertices of
degree 1 if li and lj appear in a same clause of F ;

all the literal vertices of GF are linked to the root of a new star Sc with n vertices of
degree 1.
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Reduction from 1-in-3 SAT to 2-RealSeq

Thm. B. - 2012
2-RealSeq is NP-complete.

Let n2 be the number of vertices of the clause subgraph. Then

n2 ≤ 2n + n(n + 1) + 3m(n + 1) + n + 1
n2 ≤ n(n + 3m(1 + 1/n) + 4) + 1.

GF is finally augmented with a base subgraph as follows:

for each clause Ci in F , we add a new clause vertex vCi to GF ;

each vertex vCi is linked to n2 − n vertices of degree 1;

for each i ∈ {1, ...,m − 1}, we add vCi vCi+1 to E(GF );

if Ci = (li1 ∨ li2 ∨ li3), then we add vCi vli1 , vCi vli2 and vCi vli3 to E(GF ).

We added n1 = m(n2 − n + 1) vertices to GF , and we thus have |V (GF )| = n1 + n2.
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Reduction from 1-in-3 SAT to 2-RealSeq

Thm. B. - 2012
2-RealSeq is NP-complete.

Let us consider τ = (n1 + n, n2 − n).

Observe that if a part U of a realization of τ in GF contains the root of an induced star,
then U also has to cover all the vertices of degree 1 of that star. Hence, in a realization
(V1,V2) of τ in GF , the base subgraph has to be covered by the part V1 of size n1 + n.

Once the base subgraph is covered by V1, this part is missing n additional vertices from
the clause subgraph of GF . Because of the structure of the clause subgraph, we may only
pick up some literal vertices. It has to be done in such a way that the clause subgraph
remains connected.

Choosing a literal vertex vli to belong to V1 is like setting li true. In particular:

two covered literal vertices cannot be both linked to a same clause vertex;

two covered literal vertices cannot be related to a variable of F and its negation.

Finally, a realization of τ in GF exists iff F is satisfiable in a 1-in-3 way. Moreover, GF

has a polynomial number of vertices regarding the size of F . Thus, this reduction can be
performed in polynomial time. �
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Reduction from 1-in-3 SAT to 3-RealSeq

We now explain how to modify our reduction from 1-in-3 SAT to 2-RealSeq so that
we get a reduction from 1-in-3 SAT to k-RealSeq for any k ≥ 3.

Thm. B. - 2012
k-RealSeq is NP-complete for every k ≥ 3.

Proof.
k-RealSeq is in NP for every k ≥ 3 as claimed before. As an illustration of our
statement above, we here only show that 3-RealSeq is NP-complete by reduction from
1-in-3 SAT.

Given a 3CNF formula F we construct a graph GF and a sequence τ = (n1, n2, n3) with
n1, n2, n3 ≥ 2 such that

F is satisfiable in a 1-in-3 way
⇔

τ is realizable in GF .
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Reduction from 1-in-3 SAT to 3-RealSeq

Thm. B. - 2012
k-RealSeq is NP-complete for every k ≥ 3.

By performing the reduction from 1-in-3 SAT to 2-RealSeq, we get, from F , a graph
G ′

F and a sequence τ ′ = (n′
1, n

′
2) with n′

1, n
′
2 ≥ 2 such that F is satisfiable in a 1-in-3 way

iff τ ′ is realizable in G ′
F .

The graph GF is then obtained as follows:

consider the disjoint union of G ′
F and a star Sn′1+n′2+1 whose root is denoted by r ;

add an edge between r and an arbitrary vertex v of G ′
F .

Finally, let τ = (n′
1 + n′

2 + 1, n′
1, n

′
2).
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Reduction from 1-in-3 SAT to 3-RealSeq

Thm. B. - 2012
k-RealSeq is NP-complete for every k ≥ 3.

Obviously, if a realization (V1,V2) of τ ′ in G ′
F exists, then (U,V1,V2), where U contains

all the vertices from the star subgraph of GF , is a correct realization of τ in GF .
Conversely, in a realization (U,V1,V2) of τ in GF , all the vertices of the new star
subgraph have to be contained in U since otherwise GF − U would contain too many
small connected components. Therefore, (V1,V2) is a realization of τ ′ in G ′

F .

Hence, we get that τ is realizable in GF iff τ ′ if realizable in G ′
F . By transitivity, we get

that τ is realizable in GF iff F is satisfiable in a 1-in-3 way. �

Clearly, this graph and sequence augmentation can be repeated as many times as wanted
to prove that k-RealSeq is NP-complete for any fixed k ≥ 4.
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Another partition constraint

Let us now consider the following stronger definition...

Def. Prescription - Realization under prescription
A k-prescription of G is a sequence of k pairwise distinct vertices (v1, ..., vk) of G . If
k ≤ ‖τ‖, we say that τ is realizable in G under (v1, ..., vk) if there exists a realization
(V1, ...,Vp) of τ in G such that for every i ∈ {1, ..., k} we have vi ∈ Vi .

... and the associated decision problem.

Prescriptible Sequence - PrescSeq
Instance: A graph G , a sequence τ and a k-prescription P of G with k ≤ ‖τ‖.
Question: Is τ realizable in G under P?
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PrescSeq is complete in NP

Prescriptible Sequence - PrescSeq
Instance: A graph G , a sequence τ and a k-prescription P of G with k ≤ ‖τ‖.
Question: Is τ realizable in G under P?

Surprisingly, this problem has the same complexity as RealSeq without any regard to
what are the size and the elements of P.

Thm. B. - 2012
PrescSeq is NP-complete.

Proof.
One can modify the checking algorithm for RealSeq in such a way that it also makes
sure that the vertices of the prescription belong to the associated parts of the input
realization. This modification does not alter the complexity of the algorithm. Therefore,
PrescSeq is in NP.
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Reduction from RealSeq to PrescSeq

Thm. B. - 2012
PrescSeq is NP-complete.

We now show that PrescSeq is complete in NP by reduction from RealSeq. Given a
graph G and a sequence τ , we construct a graph G ′, a sequence τ ′ and a prescription P
of G ′ such that

τ is realizable in G
⇔

τ ′ is realizable in G ′ under P.

Consider a vertex v of G , and link v to one extremity of a path on a vertices for some
arbitrary integer a ≥ 1. Let us denote by u the other endvertex of this path, and by G ′

the resulting graph.

Then observe that if τ = (n1, ..., np), then τ ′ = (a, n1, ..., np) is realizable in G ′ under
P = (u) iff τ is realizable in G since there is only one connected subgraph of G ′ with
order a that contains u. �
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About our reduction from RealSeq to PrescSeq

Some remarks about the latter reduction.

Our graph, sequence and prescription augmentation can be performed as many
times as wanted.

The integer values added to the prescription can be chosen arbitrarily.

One can perform this reduction from one of the k-RealSeq problems instead of
RealSeq.

Thanks to these, we get that PrescSeq is NP-complete as soon as τ has at least two
part sizes that are not associated with the prescription. Besides, this statement does not
depend on the size of P or on the integer values in P.
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What about some generalized problems?

Once again, we consider a definition...

Def. AP graph
A graph G is arbitrarily partitionable if every sequence that sums up to |V (G)| is
realizable in G .

... and the decision problem related to it.

AP Graph
Instance: A graph G .
Question: Is G an AP graph?
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About AP Graph

AP Graph is known to be in P when restricted to some families of graphs like

trees with exactly one node whose degree is at least 3 [BBP02, BF06],

split graphs [BKW09],

etc.

The general problem is not known to belong to either NP or co-NP. Moreover, it is still
unknown whether it is NP-hard. Hence, the hardness of AP Graph does not seem to
be catchable thanks to the usual complexity classes at first glance.

Qst. Is AP Graph NP-hard?

AP Graph can be located in the second level of the polynomial hierarchy : using an
oracle dealing with RealSeq, we can easily check that a graph G is not AP. Since we
can check whether an instance of AP Graph is a no-instance in polynomial time thanks
to an algorithm dealing with a problem in NP ∪ co-NP, AP Graph is in Πp

2 .

20 / 29



About AP Graph

AP Graph is known to be in P when restricted to some families of graphs like

trees with exactly one node whose degree is at least 3 [BBP02, BF06],

split graphs [BKW09],

etc.

The general problem is not known to belong to either NP or co-NP. Moreover, it is still
unknown whether it is NP-hard. Hence, the hardness of AP Graph does not seem to
be catchable thanks to the usual complexity classes at first glance.

Qst. Is AP Graph NP-hard?

AP Graph can be located in the second level of the polynomial hierarchy : using an
oracle dealing with RealSeq, we can easily check that a graph G is not AP. Since we
can check whether an instance of AP Graph is a no-instance in polynomial time thanks
to an algorithm dealing with a problem in NP ∪ co-NP, AP Graph is in Πp

2 .

20 / 29



Is AP Graph a Πp
2-complete problem?

We proved that RealSeq is NP-complete thanks to the following reduction scheme.

SAT ≤p 3SAT ≤p 1-in-3 SAT ≤p RealSeq

One possible way to show that AP Graph is Πp
2-complete would be to show that

∀∃SAT ≤p ∀∃3SAT ≤p ∀∃1-in-3 SAT ≤p AP Graph

holds. This reduction chain holds until ∀∃1-in-3 SAT by modifying the ∀∃SAT ≤p

∀∃3SAT and ∀∃3SAT ≤p ∀∃1-in-3 SAT reductions.

However, our reduction from 1-in-3 SAT to RealSeq does not seem to be generalizable
to some reduction from ∀∃1-in-3 SAT to AP Graph. Recall that we ”translated” all
the constraints attached to a formula F by adding some strong substructures to the
resulting graph G . Because of these substructures, G is far from being AP.

Qst. Is AP Graph complete in Πp
2?
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An example of Πp
2-complete graph partition problem

We can however imagine some Πp
2-complete problems based on our definitions. Recall

that G and τ = (n1, ..., np) are a graph and a sequence that sums up to |V (G)|.

Def. Partition level - Partition hierarchy - Realization under a partition hierarchy
Let l ∈ {1, ..., p}. A nl -partition-level Ll for τ and G is a set of subsets of V (G)
inducing connected subgraphs of G with order nl . A (n1, ..., nl)-partition-hierarchy L
for τ and G is a collection L = (L1, ..., Ll) of n1-, ..., nl -partition-levels for τ and G
such that no subset of Li intersects a subset of Lj for every i 6= j . We say that τ is
realizable in G under L if for every combination of subsets (V1, ...,Vl) from L where
Vi is a vertex subset of Li , there exists a realization (V1, ...,Vp) of τ in G .

In clear, the partition hierarchy forces us to consider some given parts as the first parts of
a realization of τ in G . The following decision problem

Dynamic Realizable Sequence - DynRealSeq
Instance: A graph G , a sequence τ = (n1, ..., np′ , np′+1, ..., np) admissible for G with
p ≥ p′ elements, and a (n1, ..., np′)-partition-hierarchy L for τ and G .
Question: Is τ realizable in G under L?

asks whether every partial realization of τ in G deduced from the partition-levels of L can
be extended to a realization of τ in G .
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An example of Πp
2-complete graph partition problem

Thm. B. - 2012
DynRealSeq is Πp

2-complete.

Proof.
One can point out a combination of subsets (V1, ...,Vp′) of L that is not extendable to a
realization of τ in G . A polynomial-time algorithm can then check that the sequence

(np′+1, ..., np) is not realizable in G −
⋃p′

i=1 Vi thanks to an oracle for RealSeq.
Therefore, DynRealSeq is in Πp

2 .

We now show that DynRealSeq is complete in Πp
2 by reduction from ∀∃1-in-3 SAT.

∀∃1-in-3 SAT
Instance: A 3CNF formula F over variables X ∪ Y , where X = {x1, ..., xn′},
Y = {xn′+1, ..., xn} and n′ ≤ n, and clauses {C1, ...,Cm}.
Question: For every truth assignment of the variables of X , does there exist a truth
assignment of the variables of Y such that F is satisfied in a 1-in-3 way?
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Reduction from ∀∃1-in-3 SAT to DynRealSeq

Thm. B. - 2012
DynRealSeq is Πp

2-complete.

Our reduction is based on the reduction we gave from 1-in-3 SAT to RealSeq. Recall
that in the latter reduction, setting a literal of F true is simulated by putting a literal
vertex of GF into the first part V1 of a realization of τ in GF .

We want to keep that relationship somehow. Hence, for every truth assignment φ1 to the
literals deduced from X , we have to check whether there is a realization of τ in GF such
that the literal vertices associated with the true literals via φ1 belong to V1.

All these possible truth assignments are simulated ”dynamically” thanks to a
partition-hierarchy for τ and GF . We create the instance of DynRealSeq as follows.

GF is obtained similarly as in the reduction from 1-in-3 SAT to RealSeq.

τ = (1, ..., 1, n1 + n − n′, n2 − n).

For every i ∈ {1, ..., n′}, let Li = {{vxi }, {vxi }} be a 1-partition-level for τ and GF .

L = (L1, ..., Ln′).
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Reduction from ∀∃1-in-3 SAT to DynRealSeq

Thm. B. - 2012
DynRealSeq is Πp

2-complete.

Observe that in the realizations of τ in GF under L, the union of the n′ + 1 first parts
performs a connected part with size n1 + n containing n′ literal vertices associated with
literals over X . Thus, the arguments we pointed out to prove the correctness of the
reduction from 1-in-3 SAT to RealSeq are still applicable here.

With every truth assignment φ1 to the variables in X is associated a combination of parts
from the 1-partition-levels of L. In other words, from every such φ1 can be deduced a
partial realization of τ in GF whose extendibility has to be checked: if it can be extended,
then we can deduce a truth assignment φ2 of the variables in Y such that F is satisfied
in a 1-in-3 way under φ1 and φ2. The converse is also true. Therefore, the reduction is
correct. �
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Conclusions and open questions

1. Partitioning a graph into connected subgraphs is NP-complete even if

a constant number of parts greater than 2 is requested,

the part sizes are similar or mutually different,

some vertex prescriptions must be respected.

2. Partitioning a graph into small connected subgraphs with order 1 or 2 is an easy
problem - this is related to the maximum matching problem. Moreover, our reduction
from 1-in-3 SAT to RealSeq can be modified so that the resulting sequence only has
2’s and 3’s, but the number of 3 is linear in the size of the original instance.

Qst. Is there a constant threshold t ≥ 1 such that finding a realization of (3α, 2β) in
a graph is generally easy when α ≤ t − 1 and hard otherwise?

3. Except when restricted to some families of graphs, we still do not know much about
the complexity of partitioning a graph into arbitrarily many connected subgraphs.

Qst. What is the exact complexity of AP Graph?
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Thank you for your attention!
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