Coloration localement irrégulière des arêtes d'un graphe

O. $\mathsf{Baudon^1},\ \underline{\mathsf{J.}\ \mathsf{Bensmail}^1},\ \mathsf{J.}\ \mathsf{Przybyto^2},\ \mathsf{E.}\ \mathsf{Sopena^1},\ \mathsf{M.}\ \mathsf{Woźniak^2}$

1 : LaBRI, Université de Bordeaux (Talence - France) 2 : AGH University of Science and Technology (Cracovie - Pologne)

EJCIM13

8 avril 2013

Partie 2 : Décomposer un graphe en sous-graphes localement irréguliers

Partie 3 : Résultats de complexité

Partie 4 : Perspectives et questions ouvertes

- ► Le type de coloration.
 - \rightarrow des sommets, des arêtes, totale, ...
 - \rightarrow propre, impropre, ...

- ► Le type de coloration.
 - \rightarrow des sommets, des arêtes, totale, ...
 - \rightarrow propre, impropre, ...
- L'étendue de la distinction.
 - \rightarrow globale, locale, ...

- ► Le type de coloration.
 - \rightarrow des sommets, des arêtes, totale, ...
 - \rightarrow propre, impropre, ...
- L'étendue de la distinction.
 - \rightarrow globale, locale, ...
- Les conditions de distinction.
 - → relatives aux paramètres précédents.

Plusieurs paramètres entrent en compte.

- ► Le type de coloration.
 - \rightarrow des sommets, des arêtes, totale, ...
 - \rightarrow propre, impropre, ...
- L'étendue de la distinction.
 - \rightarrow globale, locale, ...
- Les conditions de distinction.
 - → relatives aux paramètres précédents.

lci, nous cherchons à distinguer les sommets *adjacents* d'un graphe au moyen d'une coloration *impropre* de ses *arêtes*.

Soit $\phi: E(G) \rightarrow \{1,...,k\}$ une k-coloration des arêtes de G.

Soit $\phi : E(G) \to \{1, ..., k\}$ une k-coloration des arêtes de G.

Le degré pondéré de v par ϕ est $s_{\phi}(v) = \sum_{u \in N(v)} \phi(uv)$. Si le degré pondéré s_{ϕ} constitue une coloration propre des sommets de G, alors ϕ est somme-distinguante.

Soit $\phi: E(G) \to \{1, ..., k\}$ une k-coloration des arêtes de G.

Le degré pondéré de v par ϕ est $s_{\phi}(v) = \sum_{u \in N(v)} \phi(uv)$. Si le degré pondéré s_{ϕ} constitue une coloration propre des sommets de G, alors ϕ est somme-distinguante.

Le code couleur de v par ϕ est le k-tuple $code_{\phi}(v)=(a_1,...,a_k)$, où a_i est le nombre d'arêtes incidentes à v colorées k. Si le code couleur $code_{\phi}$ constitue une coloration propre des sommets de G, alors ϕ est $d\acute{e}tectable$.

Soit $\phi: E(G) \to \{1, ..., k\}$ une k-coloration des arêtes de G.

Le degré pondéré de v par ϕ est $s_{\phi}(v) = \sum_{u \in N(v)} \phi(uv)$. Si le degré pondéré s_{ϕ} constitue une coloration propre des sommets de G, alors ϕ est somme-distinguante.

Le code couleur de v par ϕ est le k-tuple $code_{\phi}(v)=(a_1,...,a_k)$, où a_i est le nombre d'arêtes incidentes à v colorées k. Si le code couleur $code_{\phi}$ constitue une coloration propre des sommets de G, alors ϕ est $d\acute{e}tectable$.

On cherche à colorer G de manière somme-distinguante ou détectable en utilisant le moins de couleurs possible.

Coloration d'arêtes somme-distinguante

On ne s'intéresse qu'aux graphes sans arêtes isolées dans ce qui suit.

Coloration d'arêtes somme-distinguante

On ne s'intéresse qu'aux graphes sans arêtes isolées dans ce qui suit.

Conjecture 1-2-3 (Karoński, Łuczak, Thomason - 2004) Tout graphe admet une 3-coloration somme-distinguante de ses arêtes.

5/17

Coloration d'arêtes somme-distinguante

On ne s'intéresse qu'aux graphes sans arêtes isolées dans ce qui suit.

Conjecture 1-2-3 (Karoński, Łuczak, Thomason - 2004)

Tout graphe admet une 3-coloration somme-distinguante de ses arêtes.

Théorème (Kalkowski, Karoński, Pfender - 2010)

Tout graphe admet une 5-coloration somme-distinguante de ses arêtes.

Coloration d'arêtes détectable

On ne s'intéresse qu'aux graphes sans arêtes isolées dans ce qui suit.

Coloration d'arêtes détectable

On ne s'intéresse qu'aux graphes sans arêtes isolées dans ce qui suit.

Conjecture (Addario-Berry, Aldred, Dalal, Reed - 2005)

Tout graphe admet une 3-coloration détectable de ses arêtes.

Notons que le résultat de Kalkowski, Karoński et Pfender implique que tout graphe admet une 5-coloration détectable de ses arêtes.

Coloration d'arêtes détectable

On ne s'intéresse qu'aux graphes sans arêtes isolées dans ce qui suit.

Conjecture (Addario-Berry, Aldred, Dalal, Reed - 2005)

Tout graphe admet une 3-coloration détectable de ses arêtes.

Notons que le résultat de Kalkowski, Karoński et Pfender implique que tout graphe admet une 5-coloration détectable de ses arêtes.

Théorème (Addario-Berry, Aldred, Dalal, Reed - 2005)

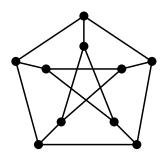
Tout graphe admet une 4-coloration détectable de ses arêtes.

Partie 2 : Décomposer un graphe en sous-graphes localement irréguliers

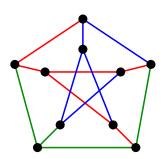
Partie 3 : Résultats de complexité

Partie 4 : Perspectives et questions ouvertes

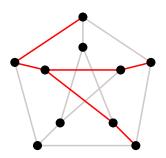
Le graphe G est localement irrégulier si pour toute paire $\{u,v\}$ de sommets adjacents dans G on a $d(u) \neq d(v)$.



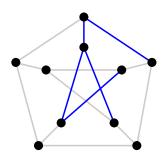
Le graphe G est *localement irrégulier* si pour toute paire $\{u,v\}$ de sommets adjacents dans G on a $d(u) \neq d(v)$.



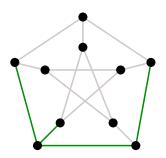
Le graphe G est localement irrégulier si pour toute paire $\{u,v\}$ de sommets adjacents dans G on a $d(u) \neq d(v)$.



Le graphe G est localement irrégulier si pour toute paire $\{u,v\}$ de sommets adjacents dans G on a $d(u) \neq d(v)$.



Le graphe G est *localement irrégulier* si pour toute paire $\{u,v\}$ de sommets adjacents dans G on a $d(u) \neq d(v)$.



Index chromatique irrégulier

Le plus petit nombre de couleurs $\chi'_{irr}(G)$ utilisées par une coloration localement irrégulière des arêtes de G est l'index chromatique irrégulier de G.

Index chromatique irrégulier

Le plus petit nombre de couleurs $\chi'_{irr}(G)$ utilisées par une coloration localement irrégulière des arêtes de G est l'index chromatique irrégulier de G.

Conjecture (Baudon, B., Przybyło, Woźniak - 2013+) Pour tout graphe *colorable G*, on a $\chi'_{irr}(G) \leq 3$.

Une coloration d'arêtes localement irrégulière est aussi détectable. Cette conjecture implique donc *pratiquement* la conjecture "de détection".

Soient P_n (resp. C_n) la chaîne (resp. le cycle) à $n \ge 3$ sommets.

$$\chi'_{irr}(P_n) = \begin{cases} 1 & \text{si } n = 3\\ 2 & \text{si } n \ge 5 \text{ est impair} \\ \infty & \text{sinon} \end{cases}$$

$$\chi'_{irr}(C_n) = \begin{cases} 2 & \text{si } n \equiv 0 \mod 4 \\ 3 & \text{si } n \equiv 2 \mod 4 \\ \infty & \text{sinon} \end{cases}$$

Soient P_n (resp. C_n) la chaîne (resp. le cycle) à $n \ge 3$ sommets.

$$\chi'_{irr}(P_n) = \begin{cases} 1 & \text{si } n = 3\\ 2 & \text{si } n \ge 5 \text{ est impair} \\ \infty & \text{sinon} \end{cases}$$

$$\chi'_{irr}(C_n) = \begin{cases} 2 & \text{si } n \equiv 0 \mod 4 \\ 3 & \text{si } n \equiv 2 \mod 4 \\ \infty & \text{sinon} \end{cases}$$

Soient P_n (resp. C_n) la chaîne (resp. le cycle) à $n \ge 3$ sommets.

$$\chi'_{irr}(P_n) = \begin{cases} 1 & \text{si } n = 3\\ 2 & \text{si } n \ge 5 \text{ est impair} \\ \infty & \text{sinon} \end{cases}$$

$$\chi'_{irr}(C_n) = \begin{cases} 2 & \text{si } n \equiv 0 \mod 4 \\ 3 & \text{si } n \equiv 2 \mod 4 \\ \infty & \text{sinon} \end{cases}$$

Soient P_n (resp. C_n) la chaîne (resp. le cycle) à $n \ge 3$ sommets.

$$\chi'_{irr}(P_n) = \begin{cases} 1 & \text{si } n = 3\\ 2 & \text{si } n \ge 5 \text{ est impair} \\ \infty & \text{sinon} \end{cases}$$

$$\chi'_{irr}(C_n) = \begin{cases} 2 & \text{si } n \equiv 0 \mod 4 \\ 3 & \text{si } n \equiv 2 \mod 4 \\ \infty & \text{sinon} \end{cases}$$

Soient P_n (resp. C_n) la chaîne (resp. le cycle) à $n \ge 3$ sommets.

$$\chi'_{irr}(P_n) = \begin{cases} 1 & \text{si } n = 3\\ 2 & \text{si } n \ge 5 \text{ est impair} \\ \infty & \text{sinon} \end{cases}$$

$$\chi'_{irr}(C_n) = \begin{cases} 2 & \text{si } n \equiv 0 \mod 4 \\ 3 & \text{si } n \equiv 2 \mod 4 \\ \infty & \text{sinon} \end{cases}$$

Soit $\mathcal T$ la famille suivante. Initialement, K_3 appartient à $\mathcal T$. Puis, prenons :

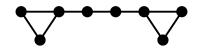
- lacktriangle un graphe de ${\mathcal T}$ ayant un triangle dont l'un des sommets v est de degré 2;
- un graphe auxiliaire H étant soit une chaîne de longueur paire ou une chaîne de longueur impaire dont l'une des extrémités est collée à un triangle.

Soit $\mathcal T$ la famille suivante. Initialement, $\mathcal K_3$ appartient à $\mathcal T$. Puis, prenons :

- lacktriangle un graphe de ${\mathcal T}$ ayant un triangle dont l'un des sommets v est de degré 2 ;
- ▶ un graphe auxiliaire H étant soit une chaîne de longueur paire ou une chaîne de longueur impaire dont l'une des extrémités est collée à un triangle.

Soit $\mathcal T$ la famille suivante. Initialement, $\mathcal K_3$ appartient à $\mathcal T$. Puis, prenons :

- un graphe de $\mathcal T$ ayant un triangle dont l'un des sommets v est de degré 2;
- un graphe auxiliaire H étant soit une chaîne de longueur paire ou une chaîne de longueur impaire dont l'une des extrémités est collée à un triangle.

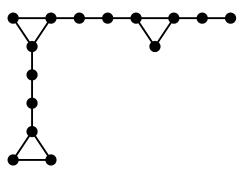


Soit $\mathcal T$ la famille suivante. Initialement, $\mathcal K_3$ appartient à $\mathcal T$. Puis, prenons :

- lacktriangle un graphe de ${\mathcal T}$ ayant un triangle dont l'un des sommets v est de degré 2;
- un graphe auxiliaire H étant soit une chaîne de longueur paire ou une chaîne de longueur impaire dont l'une des extrémités est collée à un triangle.

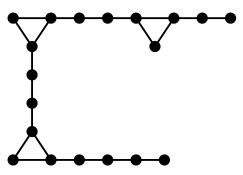
Soit $\mathcal T$ la famille suivante. Initialement, $\mathcal K_3$ appartient à $\mathcal T$. Puis, prenons :

- un graphe de $\mathcal T$ ayant un triangle dont l'un des sommets v est de degré 2;
- un graphe auxiliaire H étant soit une chaîne de longueur paire ou une chaîne de longueur impaire dont l'une des extrémités est collée à un triangle.



Soit \mathcal{T} la famille suivante. Initialement, K_3 appartient à \mathcal{T} . Puis, prenons :

- lacktriangle un graphe de ${\mathcal T}$ ayant un triangle dont l'un des sommets v est de degré 2;
- un graphe auxiliaire H étant soit une chaîne de longueur paire ou une chaîne de longueur impaire dont l'une des extrémités est collée à un triangle.



Sur la conjecture "d'irrégularité locale"

Théorème (Baudon, B., Przybyło, Woźniak - 2013+) Les graphes non-colorables sont ceux de \mathcal{T} , et les chaînes et cycles impairs.

Sur la conjecture "d'irrégularité locale"

Théorème (Baudon, B., Przybyło, Woźniak - 2013+)

Les graphes non-colorables sont ceux de \mathcal{T} , et les chaînes et cycles impairs.

Notre conjecture est vérifiée pour diverses familles de graphes colorables.

Théorème (Baudon, B., Przybyło, Woźniak - 2013+) La conjecture "d'irrégularité locale" est vérifiée pour :

- ▶ les chaînes,
- les cycles,
- les graphes complets,
- les arbres,
- les produits Cartésiens de graphes,
- ▶ les graphes d-réguliers avec $d \ge 10^7$.

Partie 1 : Distinguer les sommets d'un graphe par une coloration

Partie 2 : Décomposer un graphe en sous-graphes localement irréguliers

Partie 3 : Résultats de complexité

Partie 4 : Perspectives et questions ouvertes

Décider de l'index chromatique irrégulier d'un arbre

Théorème (Baudon, B., Sopena - 2013+)

Il existe un algorithme qui détermine l'index chromatique irrégulier d'un arbre T d'ordre n en temps O(n).

On commence par enraciner T en un nœud r. On effeuille ensuite T en r pour colorer indépendamment chacun des d(r) pétales avec 2 couleurs de sorte que les d(r) forment une coloration de T.

Décider de l'index chromatique irrégulier d'un arbre

Théorème (Baudon, B., Sopena - 2013+)

Il existe un algorithme qui détermine l'index chromatique irrégulier d'un arbre T d'ordre n en temps O(n).

On commence par enraciner T en un nœud r. On effeuille ensuite T en r pour colorer indépendamment chacun des d(r) pétales avec 2 couleurs de sorte que les d(r) forment une coloration de T.

On a également une bonne caractérisation des arbres d'index chromatique 3.

Décider de l'index chromatique irrégulier d'un graphe

k-Coloration d'Arêtes Localement Irrégulière - k-LIEC

Instance : Un graphe G.

Question : A-t-on $\chi'_{irr}(G) \leq k$?

Décider de l'index chromatique irrégulier d'un graphe

k-Coloration d'Arêtes Localement Irrégulière - k-LIEC

Instance : Un graphe G. Question : A-t-on $\chi'_{irr}(G) \leq k$?

Théorème (B. - 2013+)

2-LIEC est NP-complet.

Décider de l'index chromatique irrégulier d'un graphe

 $k\text{-}\mathrm{Coloration}$ d'Arêtes Localement Irrégulière - $k\text{-}\mathrm{LIEC}$

Instance : Un graphe G.

Question : A-t-on $\chi'_{irr}(G) \leq k$?

Théorème (B. - 2013+)

2-LIEC est NP-complet.

Étudier la complexité de k-LIEC pour $k \geq 3$ n'a d'intérêt que si la conjecture "d'irrégularité locale" est fausse. En effet, si celle-ci était vérifiée, alors ces problèmes seraient équivalents à celui de déterminer si G est colorable. Or, ce problème est dans P puisque la structure des graphes non-colorables bénéficie d'une caractérisation simple.

Partie 1 : Distinguer les sommets d'un graphe par une coloration

Partie 2 : Décomposer un graphe en sous-graphes localement irréguliers

Partie 3 : Résultats de complexité

Partie 4 : Perspectives et questions ouvertes

Peut-on trouver une constante $c \ge 3$ telle que tout graphe admet une c-coloration localement irrégulière de ses arêtes?

Peut-on trouver une constante $c \ge 3$ telle que tout graphe admet une c-coloration localement irrégulière de ses arêtes?

Les graphes bipartis vérifient-ils la conjecture?

Peut-on trouver une constante $c \ge 3$ telle que tout graphe admet une c-coloration localement irrégulière de ses arêtes?

Les graphes bipartis vérifient-ils la conjecture?

Dans quelle mesure nos résultats sur les arbres peuvent-ils être étendus aux graphes d'arboricité donnée ?

Peut-on trouver une constante $c \ge 3$ telle que tout graphe admet une c-coloration localement irrégulière de ses arêtes?

Les graphes bipartis vérifient-ils la conjecture?

Dans quelle mesure nos résultats sur les arbres peuvent-ils être étendus aux graphes d'arboricité donnée ?

Le problème $2\text{-}\mathrm{LIEC}$ est-il NP-complet lorsque restreint aux graphes bipartis?

Peut-on trouver une constante $c \ge 3$ telle que tout graphe admet une c-coloration localement irrégulière de ses arêtes ?

Les graphes bipartis vérifient-ils la conjecture?

Dans quelle mesure nos résultats sur les arbres peuvent-ils être étendus aux graphes d'arboricité donnée ?

Le problème 2-LIEC est-il NP-complet lorsque restreint aux graphes bipartis?

Merci pour votre attention!