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Studying matchings

Marriage problem:

♂ ♀

More generally, all assignation problems.

Maximum matching = Biggest matching.
µ(G ) = Cardinality of a maximum matching of G .

Hardness of determining µ(G )?
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Augmenting a matching

Exposed vertex ( ), Covered vertex ( )

Augmenting path, Augmentation

Augmentation ⇒ Bigger matching.
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Berge and Edmonds’ results

Theorem [Berge, 1957]

Maximum matching ⇔ No augmenting path.

Finding augmenting paths?

Theorem [Edmonds’ Blossom Algorithm, 1965]

Detection in polynomial time.

Hence, µ(G ) can be determined in poly-time.
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Today’s motivation

Plane → Suitable landing times/tracks (edges) + Scheduled option (matching).

S1/T1 S2/T2 S3/T3 S4/T4 S5/T5
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Motivation

Re-scheduling a lot is not acceptable! ⇒ Cannot start over from scratch.
⇒ Modify the matching “locally”, via an augmentation.

S1/T1 S2/T2 S3/T3 S4/T4 S5/T5
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More formally

For practical reasons, only

1 1-paths (= pick a free slot), and

2 3-paths (= shift a busy slot)

should actually be augmented. Hence (≤ 3)-paths.

For odd k ≥ 1, attain a largest matching via (≤ k)-augmentations?

µ≤k(G ,M): Its cardinality for G equipped with M.

Note: µ≤1(G , ∅) = µ(G ).
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Note: order matters

k = 5. First attempt.
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First dichotomy

(≤ k)-Matching Problem – (≤ k)-MP
Input: A graph G , and a matching M of G .
Question: What is the value of µ≤k(G ,M)?

Dichotomy on k:

Theorem [Nisse, Salch, Weber, 2015+]

(≤ k)-MP is

in P for k = 1, 3;

NP-hard for every odd k ≥ 5.

Latter statement true for planar bipartite graphs with ∆ ≤ 3 and arb. large girth.
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Towards a second dichotomy

Summary:

For k = 1, 3, the problem is settled.

For odd k ≥ 5, NP-hard for graphs close to trees.

Complexity of (≤ k)-MP for trees?

Today’s talk:

(≤ k)-MP is in P for caterpillars, subdivided stars, “sparse trees”, etc.

A modified version is NP-complete for trees.
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Easy case: paths

Theorem [Nisse, Salch, Weber, 2015+]

(≤ k)-MP is in P for paths.

1st key idea: Consider exposed degree-2 nodes joined by an augmenting path.

> k

⇒ Decompose the problem into two sub-problems.
In a path ⇒ Exposed nodes have one on the left/right at distance ≤ k.
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Easy case: paths

Theorem [Nisse, Salch, Weber, 2015+]

(≤ k)-MP is in P for paths.

2nd key idea: We can augment paths joining “consecutive” exposed nodes only.

v1 v2 v3 v4 v5 v6

1 2
3

3 ⇒ The paths v1...v2, v3...v4 and v5...v6 have length ≤ k and alternate. So

v1 v2 v3 v4 v5 v6

1 2 3

yield the same matching.

⇒ In a path, just go from left to right, and augment paths when possible. �
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Caterpillars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for caterpillars.

Remark: Matched leaf edge ⇒ Simplification.

⇒ Being adjacent to two leaves is useless.

Focus on caterpillars with ∆ = 3 (∼ paths).

A few cases apart, just like the path case.

1

2

1

2

�
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Thoughts about branching nodes

T looks like a path ⇒ Augment (≤ k)-paths as going along.

What about branching nodes?

⇒ How should we “play” around the branching nodes?
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Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

Claim: Augmentations through the root should behave in a path way:

1

2

3

4

equivalent to

1′ 2′

3′4′

(because 1, 2, 3 and 4 are augmenting (≤ k)-paths.)
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Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

This being said, when are augmentations through the root necessary?

Main points:

Branches ∼ Paths ⇒ If α exp. nodes, bα/2c augmentations right away:

α even ⇒ All matched.
otherwise ⇒ All but one.

Sequence of augmentations through the root...
⇒ ... changes parity of # exp. nodes of the two end-branches only:

1 2
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Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

“Root-augmentations” matter only when the two end-branches are “odd”.

How to check that such a sequence of root-augmentations exists?

The 1st end-branch is the one having the “root” matching (if any).

Accessibility of a 2nd branch checked via a BFS in an auxiliary digraph:

≤ k

≤ k

≤ k

u

v1 v2

w1 w2

→ u

{v1, v2}

{w1,w2}

22 / 36



Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

“Root-augmentations” matter only when the two end-branches are “odd”.

How to check that such a sequence of root-augmentations exists?

The 1st end-branch is the one having the “root” matching (if any).

Accessibility of a 2nd branch checked via a BFS in an auxiliary digraph:

≤ k

≤ k

≤ k

u

v1 v2

w1 w2

→ u

{v1, v2}

{w1,w2}

22 / 36



Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

“Root-augmentations” matter only when the two end-branches are “odd”.

How to check that such a sequence of root-augmentations exists?

The 1st end-branch is the one having the “root” matching (if any).

Accessibility of a 2nd branch checked via a BFS in an auxiliary digraph:

≤ k

≤ k

≤ k

u

v1 v2

w1 w2

→ u

{v1, v2}

{w1,w2}

22 / 36



Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

“Root-augmentations” matter only when the two end-branches are “odd”.

How to check that such a sequence of root-augmentations exists?

The 1st end-branch is the one having the “root” matching (if any).

Accessibility of a 2nd branch checked via a BFS in an auxiliary digraph:

≤ k

≤ k

≤ k

u

v1 v2

w1 w2

→

u

{v1, v2}

{w1,w2}

22 / 36



Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

“Root-augmentations” matter only when the two end-branches are “odd”.

How to check that such a sequence of root-augmentations exists?

The 1st end-branch is the one having the “root” matching (if any).

Accessibility of a 2nd branch checked via a BFS in an auxiliary digraph:

≤ k

≤ k

≤ k

u

v1 v2

w1 w2

→ u

{v1, v2}

{w1,w2}

22 / 36



Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

To summarize:

1 If necessary, do an augmentation involving the root.

2 If possible, join two odd branches via root-augmentations.

3 Finally, match the remaining exposed nodes on the branches.

⇒ Polynomial-time algorithm. �

⇒ Generalizes to k-sparse tree, i.e., when branching nodes are at distance ≥ k.
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Negative results
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Original intention

NP-hardness proof: Need some forcing mechanisms.

For (≤ k)-MP in trees, sounds hard because of the “≤ k” requirement.

⇒ What if we augment k-paths only?

(= k)-Matching Problem – (= k)-MP
Input: A graph G , and a matching M of G .
Question: What is the value of µ=k(G ,M)?

Good news: Some properties of (≤ k)-MP derive to (= k)-MP:

NP-hardness for odd k ≥ 5;

all polynomial-time algorithms for classes of trees.
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On (≤ 3)-MP and (= 3)-MP

Recall that (≤ 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Proof: Reduction from 3-SAT. Just need variable gadgets:

Longest sequence: Matched edges on all spikes of a single side.
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On (≤ 3)-MP and (= 3)-MP

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Attach a leaf to the base of every spike. Previous remark still applies.
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On (≤ 3)-MP and (= 3)-MP

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Add a variable gadget Gi for each xi . Pushing left=True. Pushing right=False.

Next add a clause vertex ci for every clause Ci , and, for every distinct literal `j it
contains, join ci and one non-used spike of Gi (left if positive, right otherwise).

ci

Gj1 Gj2 Gj3

⇒ One additional augmentation covering ci can be done.
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On (≤ 3)-MP and (= 3)-MP

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Maximum # of 3-augmentations:

1 For every Gi , push the matching to the left (xi true) or to the right (xi false).

2 For every ci , do an additional augmentation (if made true by a literal).

⇒ Maximum µ=3 achievable is

(#variables ·#spikes) + #clauses,

which is attainable iff F is satisfiable. �
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About the reduction

We have ∆ ≤ 4 in the reduction.

Furthermore:

If F planar, then the reduced graph is planar.

All cycles go through ci ’s and variables gadgets:

Conveniently choose the joined spikes ⇒ Bipartite.
Same ⇒ Arbitrarily large girth.

+ by slight modifications, we can also guarantee ∆ ≤ 3.

But we still do not get trees!
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(= k)-MP in trees for non-fixed k

Modified version:

(=)-Matching Problem – (=)-MP
Input: A graph G , a matching M of G , and an odd k ≥ 1.
Question: What is the value of µ=k(G ,M)?

At last (!), negative result for trees:

Theorem [B., Garnero, Nisse, 2017+]

(=)-MP is NP-hard for trees.

Proof (sketch): Reduction from 3-SAT.
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(=)-MP in trees

x1

forth back

x2

forth back

C1

forth back

C2

forth back

x1
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out
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out

C1
inout C1

C2

in out

in out

x2
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out

in

out

C2
inout C1

in out
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(=)-MP in trees

Theorem [B., Garnero, Nisse, 2017+]

(=)-MP is NP-hard for trees.

Lengths of the dashed paths chosen so that:

for each xi , open either the true or false gate;

for each Ci , reach only the arrival points.

⇒ Needed k depends on #clauses and #variables. �
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After a few months suffering ,/ ...
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Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?
subdivided combs?
etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!
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