
On augmenting matchings
via bounded-length augmentations

Julien Bensmail, Valentin Garnero, Nicolas Nisse

Université Côte d’Azur, France

COATI Seminar
October 24, 2017

1 / 36

Introduction

2 / 36

Cast

Graph, Matching

3 / 36

Cast

Graph

, Matching

3 / 36

Cast

Graph, Matching

3 / 36

Studying matchings

Marriage problem:

♂ ♀

More generally, all assignation problems.

Maximum matching = Biggest matching.
µ(G) = Cardinality of a maximum matching of G .

Hardness of determining µ(G)?

4 / 36

Studying matchings

Marriage problem:

♂ ♀

More generally, all assignation problems.

Maximum matching = Biggest matching.
µ(G) = Cardinality of a maximum matching of G .

Hardness of determining µ(G)?

4 / 36

Studying matchings

Marriage problem:

♂ ♀

More generally, all assignation problems.

Maximum matching = Biggest matching.
µ(G) = Cardinality of a maximum matching of G .

Hardness of determining µ(G)?

4 / 36

Studying matchings

Marriage problem:

♂ ♀

More generally, all assignation problems.

Maximum matching = Biggest matching.
µ(G) = Cardinality of a maximum matching of G .

Hardness of determining µ(G)?

4 / 36

Augmenting a matching

Exposed vertex (), Covered vertex ()

Augmenting path, Augmentation

Augmentation ⇒ Bigger matching.

5 / 36

Augmenting a matching

Exposed vertex (), Covered vertex ()
Augmenting path

, Augmentation

Augmentation ⇒ Bigger matching.

5 / 36

Augmenting a matching

Exposed vertex (), Covered vertex ()
Augmenting path, Augmentation

Augmentation ⇒ Bigger matching.

5 / 36

Augmenting a matching

Exposed vertex (), Covered vertex ()
Augmenting path, Augmentation

Augmentation ⇒ Bigger matching.

5 / 36

Augmenting a matching

Exposed vertex (), Covered vertex ()
Augmenting path, Augmentation

Augmentation ⇒ Bigger matching.

5 / 36

Augmenting a matching

Exposed vertex (), Covered vertex ()
Augmenting path, Augmentation

Augmentation ⇒ Bigger matching.

5 / 36

Augmenting a matching

Exposed vertex (), Covered vertex ()
Augmenting path, Augmentation

Augmentation ⇒ Bigger matching.

5 / 36

Augmenting a matching

Exposed vertex (), Covered vertex ()
Augmenting path, Augmentation

Augmentation ⇒ Bigger matching.
5 / 36

Berge and Edmonds’ results

Theorem [Berge, 1957]

Maximum matching ⇔ No augmenting path.

Finding augmenting paths?

Theorem [Edmonds’ Blossom Algorithm, 1965]

Detection in polynomial time.

Hence, µ(G) can be determined in poly-time.

6 / 36

Berge and Edmonds’ results

Theorem [Berge, 1957]

Maximum matching ⇔ No augmenting path.

Finding augmenting paths?

Theorem [Edmonds’ Blossom Algorithm, 1965]

Detection in polynomial time.

Hence, µ(G) can be determined in poly-time.

6 / 36

Today’s motivation

Plane → Suitable landing times/tracks (edges) + Scheduled option (matching).

S1/T1 S2/T2 S3/T3 S4/T4 S5/T5

7 / 36

Today’s motivation

Issue: 2nd plane is delayed...

S1/T1 S2/T2 S3/T3 S4/T4 S5/T5

How to fix that??

8 / 36

Today’s motivation

Issue: 2nd plane is delayed...

S1/T1 S2/T2 S3/T3 S4/T4 S5/T5

How to fix that??

8 / 36

Motivation

Re-scheduling a lot is not acceptable! ⇒ Cannot start over from scratch.
⇒ Modify the matching “locally”, via an augmentation.

S1/T1 S2/T2 S3/T3 S4/T4 S5/T5

9 / 36

Motivation

Re-scheduling a lot is not acceptable! ⇒ Cannot start over from scratch.
⇒ Modify the matching “locally”, via an augmentation.

S1/T1 S2/T2 S3/T3 S4/T4 S5/T5

9 / 36

Motivation

Re-scheduling a lot is not acceptable! ⇒ Cannot start over from scratch.
⇒ Modify the matching “locally”, via an augmentation.

S1/T1 S2/T2 S3/T3 S4/T4 S5/T5

9 / 36

Motivation

Re-scheduling a lot is not acceptable! ⇒ Cannot start over from scratch.
⇒ Modify the matching “locally”, via an augmentation.

S1/T1 S2/T2 S3/T3 S4/T4 S5/T5

9 / 36

More formally

For practical reasons, only

1 1-paths (= pick a free slot), and

2 3-paths (= shift a busy slot)

should actually be augmented. Hence (≤ 3)-paths.

For odd k ≥ 1, attain a largest matching via (≤ k)-augmentations?

µ≤k(G ,M): Its cardinality for G equipped with M.

Note: µ≤1(G , ∅) = µ(G).

10 / 36

More formally

For practical reasons, only

1 1-paths (= pick a free slot), and

2 3-paths (= shift a busy slot)

should actually be augmented. Hence (≤ 3)-paths.

For odd k ≥ 1, attain a largest matching via (≤ k)-augmentations?

µ≤k(G ,M): Its cardinality for G equipped with M.

Note: µ≤1(G , ∅) = µ(G).

10 / 36

Note: order matters

k = 5. First attempt.

11 / 36

Note: order matters

k = 5. First attempt.

11 / 36

Note: order matters

k = 5. First attempt.

11 / 36

Note: order matters

k = 5. First attempt.

11 / 36

Note: order matters

k = 5. Second attempt.

12 / 36

Note: order matters

k = 5. Second attempt.

12 / 36

Note: order matters

k = 5. Second attempt.

12 / 36

Note: order matters

k = 5. Second attempt.

12 / 36

Note: order matters

k = 5. Second attempt.

12 / 36

Note: order matters

k = 5. Second attempt.

12 / 36

Note: order matters

k = 5. Second attempt.

12 / 36

First dichotomy

(≤ k)-Matching Problem – (≤ k)-MP
Input: A graph G , and a matching M of G .
Question: What is the value of µ≤k(G ,M)?

Dichotomy on k:

Theorem [Nisse, Salch, Weber, 2015+]

(≤ k)-MP is

in P for k = 1, 3;

NP-hard for every odd k ≥ 5.

Latter statement true for planar bipartite graphs with ∆ ≤ 3 and arb. large girth.

13 / 36

First dichotomy

(≤ k)-Matching Problem – (≤ k)-MP
Input: A graph G , and a matching M of G .
Question: What is the value of µ≤k(G ,M)?

Dichotomy on k :

Theorem [Nisse, Salch, Weber, 2015+]

(≤ k)-MP is

in P for k = 1, 3;

NP-hard for every odd k ≥ 5.

Latter statement true for planar bipartite graphs with ∆ ≤ 3 and arb. large girth.

13 / 36

Towards a second dichotomy

Summary:

For k = 1, 3, the problem is settled.

For odd k ≥ 5, NP-hard for graphs close to trees.

Complexity of (≤ k)-MP for trees?

Today’s talk:

(≤ k)-MP is in P for caterpillars, subdivided stars, “sparse trees”, etc.

A modified version is NP-complete for trees.

14 / 36

Towards a second dichotomy

Summary:

For k = 1, 3, the problem is settled.

For odd k ≥ 5, NP-hard for graphs close to trees.

Complexity of (≤ k)-MP for trees?

Today’s talk:

(≤ k)-MP is in P for caterpillars, subdivided stars, “sparse trees”, etc.

A modified version is NP-complete for trees.

14 / 36

Towards a second dichotomy

Summary:

For k = 1, 3, the problem is settled.

For odd k ≥ 5, NP-hard for graphs close to trees.

Complexity of (≤ k)-MP for trees?

Today’s talk:

(≤ k)-MP is in P for caterpillars, subdivided stars, “sparse trees”, etc.

A modified version is NP-complete for trees.

14 / 36

Towards a second dichotomy

Summary:

For k = 1, 3, the problem is settled.

For odd k ≥ 5, NP-hard for graphs close to trees.

Complexity of (≤ k)-MP for trees?

Today’s talk:

(≤ k)-MP is in P for caterpillars, subdivided stars, “sparse trees”, etc.

A modified version is NP-complete for trees.

14 / 36

Positive results

15 / 36

Easy case: paths

Theorem [Nisse, Salch, Weber, 2015+]

(≤ k)-MP is in P for paths.

1st key idea: Consider exposed degree-2 nodes joined by an augmenting path.

> k

⇒ Decompose the problem into two sub-problems.
In a path ⇒ Exposed nodes have one on the left/right at distance ≤ k.

16 / 36

Easy case: paths

Theorem [Nisse, Salch, Weber, 2015+]

(≤ k)-MP is in P for paths.

1st key idea: Consider exposed degree-2 nodes joined by an augmenting path.

> k

⇒ Decompose the problem into two sub-problems.
In a path ⇒ Exposed nodes have one on the left/right at distance ≤ k.

16 / 36

Easy case: paths

Theorem [Nisse, Salch, Weber, 2015+]

(≤ k)-MP is in P for paths.

1st key idea: Consider exposed degree-2 nodes joined by an augmenting path.

> k
E

⇒ Decompose the problem into two sub-problems.
In a path ⇒ Exposed nodes have one on the left/right at distance ≤ k.

16 / 36

Easy case: paths

Theorem [Nisse, Salch, Weber, 2015+]

(≤ k)-MP is in P for paths.

1st key idea: Consider exposed degree-2 nodes joined by an augmenting path.

> k
E

⇒ Decompose the problem into two sub-problems.
In a path ⇒ Exposed nodes have one on the left/right at distance ≤ k.

16 / 36

Easy case: paths

Theorem [Nisse, Salch, Weber, 2015+]

(≤ k)-MP is in P for paths.

2nd key idea: We can augment paths joining “consecutive” exposed nodes only.

v1 v2 v3 v4 v5 v6

1 2
3

3 ⇒ The paths v1...v2, v3...v4 and v5...v6 have length ≤ k and alternate. So

v1 v2 v3 v4 v5 v6

1 2 3

yield the same matching.

⇒ In a path, just go from left to right, and augment paths when possible. �

17 / 36

Easy case: paths

Theorem [Nisse, Salch, Weber, 2015+]

(≤ k)-MP is in P for paths.

2nd key idea: We can augment paths joining “consecutive” exposed nodes only.

v1 v2 v3 v4 v5 v6

1 2
3

3 ⇒ The paths v1...v2, v3...v4 and v5...v6 have length ≤ k and alternate. So

v1 v2 v3 v4 v5 v6

1 2 3

yield the same matching.

⇒ In a path, just go from left to right, and augment paths when possible. �

17 / 36

Easy case: paths

Theorem [Nisse, Salch, Weber, 2015+]

(≤ k)-MP is in P for paths.

2nd key idea: We can augment paths joining “consecutive” exposed nodes only.

v1 v2 v3 v4 v5 v6

1 2
3

3 ⇒ The paths v1...v2, v3...v4 and v5...v6 have length ≤ k and alternate. So

v1 v2 v3 v4 v5 v6

1 2 3

yield the same matching.

⇒ In a path, just go from left to right, and augment paths when possible. �
17 / 36

Caterpillars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for caterpillars.

Remark: Matched leaf edge ⇒ Simplification.

⇒ Being adjacent to two leaves is useless.

Focus on caterpillars with ∆ = 3 (∼ paths).

A few cases apart, just like the path case.

1

2

1

2

�

18 / 36

Caterpillars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for caterpillars.

Remark: Matched leaf edge ⇒ Simplification.

⇒ Being adjacent to two leaves is useless.

Focus on caterpillars with ∆ = 3 (∼ paths).

A few cases apart, just like the path case.

1

2

1

2

�

18 / 36

Caterpillars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for caterpillars.

Remark: Matched leaf edge ⇒ Simplification.

⇒ Being adjacent to two leaves is useless.

Focus on caterpillars with ∆ = 3 (∼ paths).

A few cases apart, just like the path case.

1

2

1

2

�

18 / 36

Caterpillars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for caterpillars.

Remark: Matched leaf edge ⇒ Simplification.

⇒ Being adjacent to two leaves is useless.

Focus on caterpillars with ∆ = 3 (∼ paths).

A few cases apart, just like the path case.

1

2

1

2

�

18 / 36

Caterpillars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for caterpillars.

Remark: Matched leaf edge ⇒ Simplification.

⇒ Being adjacent to two leaves is useless.

Focus on caterpillars with ∆ = 3 (∼ paths).

A few cases apart, just like the path case.

1

2

1

2

�
18 / 36

Thoughts about branching nodes

T looks like a path ⇒ Augment (≤ k)-paths as going along.

What about branching nodes?

⇒ How should we “play” around the branching nodes?

19 / 36

Thoughts about branching nodes

T looks like a path ⇒ Augment (≤ k)-paths as going along.

What about branching nodes?

⇒ How should we “play” around the branching nodes?

19 / 36

Thoughts about branching nodes

T looks like a path ⇒ Augment (≤ k)-paths as going along.

What about branching nodes?

⇒ How should we “play” around the branching nodes?

19 / 36

Thoughts about branching nodes

T looks like a path ⇒ Augment (≤ k)-paths as going along.

What about branching nodes?

⇒ How should we “play” around the branching nodes?

19 / 36

Thoughts about branching nodes

T looks like a path ⇒ Augment (≤ k)-paths as going along.

What about branching nodes?

⇒ How should we “play” around the branching nodes?

19 / 36

Thoughts about branching nodes

T looks like a path ⇒ Augment (≤ k)-paths as going along.

What about branching nodes?

⇒ How should we “play” around the branching nodes?

19 / 36

Thoughts about branching nodes

T looks like a path ⇒ Augment (≤ k)-paths as going along.

What about branching nodes?

⇒ How should we “play” around the branching nodes?

19 / 36

Thoughts about branching nodes

T looks like a path ⇒ Augment (≤ k)-paths as going along.

What about branching nodes?

⇒ How should we “play” around the branching nodes?

19 / 36

Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

Claim: Augmentations through the root should behave in a path way:

1

2

3

4

equivalent to

1′ 2′

3′4′

(because 1, 2, 3 and 4 are augmenting (≤ k)-paths.)

20 / 36

Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

Claim: Augmentations through the root should behave in a path way:

1

2

3

4 equivalent to

1′ 2′

3′4′

(because 1, 2, 3 and 4 are augmenting (≤ k)-paths.)

20 / 36

Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

Claim: Augmentations through the root should behave in a path way:

1

2

3

4 equivalent to

1′ 2′

3′4′

(because 1, 2, 3 and 4 are augmenting (≤ k)-paths.)
20 / 36

Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

This being said, when are augmentations through the root necessary?

Main points:

Branches ∼ Paths ⇒ If α exp. nodes, bα/2c augmentations right away:

α even ⇒ All matched.
otherwise ⇒ All but one.

Sequence of augmentations through the root...
⇒ ... changes parity of # exp. nodes of the two end-branches only:

1 2

21 / 36

Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

This being said, when are augmentations through the root necessary?

Main points:

Branches ∼ Paths ⇒ If α exp. nodes, bα/2c augmentations right away:

α even ⇒ All matched.
otherwise ⇒ All but one.

Sequence of augmentations through the root...
⇒ ... changes parity of # exp. nodes of the two end-branches only:

1 2

21 / 36

Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

“Root-augmentations” matter only when the two end-branches are “odd”.

How to check that such a sequence of root-augmentations exists?

The 1st end-branch is the one having the “root” matching (if any).

Accessibility of a 2nd branch checked via a BFS in an auxiliary digraph:

≤ k

≤ k

≤ k

u

v1 v2

w1 w2

→ u

{v1, v2}

{w1,w2}

22 / 36

Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

“Root-augmentations” matter only when the two end-branches are “odd”.

How to check that such a sequence of root-augmentations exists?

The 1st end-branch is the one having the “root” matching (if any).

Accessibility of a 2nd branch checked via a BFS in an auxiliary digraph:

≤ k

≤ k

≤ k

u

v1 v2

w1 w2

→ u

{v1, v2}

{w1,w2}

22 / 36

Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

“Root-augmentations” matter only when the two end-branches are “odd”.

How to check that such a sequence of root-augmentations exists?

The 1st end-branch is the one having the “root” matching (if any).

Accessibility of a 2nd branch checked via a BFS in an auxiliary digraph:

≤ k

≤ k

≤ k

u

v1 v2

w1 w2

→ u

{v1, v2}

{w1,w2}

22 / 36

Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

“Root-augmentations” matter only when the two end-branches are “odd”.

How to check that such a sequence of root-augmentations exists?

The 1st end-branch is the one having the “root” matching (if any).

Accessibility of a 2nd branch checked via a BFS in an auxiliary digraph:

≤ k

≤ k

≤ k

u

v1 v2

w1 w2

→

u

{v1, v2}

{w1,w2}

22 / 36

Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

“Root-augmentations” matter only when the two end-branches are “odd”.

How to check that such a sequence of root-augmentations exists?

The 1st end-branch is the one having the “root” matching (if any).

Accessibility of a 2nd branch checked via a BFS in an auxiliary digraph:

≤ k

≤ k

≤ k

u

v1 v2

w1 w2

→ u

{v1, v2}

{w1,w2}

22 / 36

Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

To summarize:

1 If necessary, do an augmentation involving the root.

2 If possible, join two odd branches via root-augmentations.

3 Finally, match the remaining exposed nodes on the branches.

⇒ Polynomial-time algorithm. �

⇒ Generalizes to k-sparse tree, i.e., when branching nodes are at distance ≥ k.

23 / 36

Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

To summarize:

1 If necessary, do an augmentation involving the root.

2 If possible, join two odd branches via root-augmentations.

3 Finally, match the remaining exposed nodes on the branches.

⇒ Polynomial-time algorithm. �

⇒ Generalizes to k-sparse tree, i.e., when branching nodes are at distance ≥ k.

23 / 36

Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

To summarize:

1 If necessary, do an augmentation involving the root.

2 If possible, join two odd branches via root-augmentations.

3 Finally, match the remaining exposed nodes on the branches.

⇒ Polynomial-time algorithm. �

⇒ Generalizes to k-sparse tree, i.e., when branching nodes are at distance ≥ k.

23 / 36

Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

To summarize:

1 If necessary, do an augmentation involving the root.

2 If possible, join two odd branches via root-augmentations.

3 Finally, match the remaining exposed nodes on the branches.

⇒ Polynomial-time algorithm. �

⇒ Generalizes to k-sparse tree, i.e., when branching nodes are at distance ≥ k.

23 / 36

Subdivided stars

Theorem [B., Garnero, Nisse, 2017+]

(≤ k)-MP is in P for subdivided stars.

To summarize:

1 If necessary, do an augmentation involving the root.

2 If possible, join two odd branches via root-augmentations.

3 Finally, match the remaining exposed nodes on the branches.

⇒ Polynomial-time algorithm. �

⇒ Generalizes to k-sparse tree, i.e., when branching nodes are at distance ≥ k.

23 / 36

Negative results

24 / 36

Original intention

NP-hardness proof: Need some forcing mechanisms.

For (≤ k)-MP in trees, sounds hard because of the “≤ k” requirement.

⇒ What if we augment k-paths only?

(= k)-Matching Problem – (= k)-MP
Input: A graph G , and a matching M of G .
Question: What is the value of µ=k(G ,M)?

Good news: Some properties of (≤ k)-MP derive to (= k)-MP:

NP-hardness for odd k ≥ 5;

all polynomial-time algorithms for classes of trees.

25 / 36

Original intention

NP-hardness proof: Need some forcing mechanisms.

For (≤ k)-MP in trees, sounds hard because of the “≤ k” requirement.

⇒ What if we augment k-paths only?

(= k)-Matching Problem – (= k)-MP
Input: A graph G , and a matching M of G .
Question: What is the value of µ=k(G ,M)?

Good news: Some properties of (≤ k)-MP derive to (= k)-MP:

NP-hardness for odd k ≥ 5;

all polynomial-time algorithms for classes of trees.

25 / 36

Original intention

NP-hardness proof: Need some forcing mechanisms.

For (≤ k)-MP in trees, sounds hard because of the “≤ k” requirement.

⇒ What if we augment k-paths only?

(= k)-Matching Problem – (= k)-MP
Input: A graph G , and a matching M of G .
Question: What is the value of µ=k(G ,M)?

Good news: Some properties of (≤ k)-MP derive to (= k)-MP:

NP-hardness for odd k ≥ 5;

all polynomial-time algorithms for classes of trees.

25 / 36

Original intention

NP-hardness proof: Need some forcing mechanisms.

For (≤ k)-MP in trees, sounds hard because of the “≤ k” requirement.

⇒ What if we augment k-paths only?

(= k)-Matching Problem – (= k)-MP
Input: A graph G , and a matching M of G .
Question: What is the value of µ=k(G ,M)?

Good news: Some properties of (≤ k)-MP derive to (= k)-MP:

NP-hardness for odd k ≥ 5;

all polynomial-time algorithms for classes of trees.

25 / 36

On (≤ 3)-MP and (= 3)-MP

Recall that (≤ 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Proof: Reduction from 3-SAT. Just need variable gadgets:

Longest sequence: Matched edges on all spikes of a single side.

26 / 36

On (≤ 3)-MP and (= 3)-MP

Recall that (≤ 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Proof: Reduction from 3-SAT. Just need variable gadgets:

Longest sequence: Matched edges on all spikes of a single side.

26 / 36

On (≤ 3)-MP and (= 3)-MP

Recall that (≤ 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Proof: Reduction from 3-SAT. Just need variable gadgets:

Longest sequence: Matched edges on all spikes of a single side.

26 / 36

On (≤ 3)-MP and (= 3)-MP

Recall that (≤ 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Proof: Reduction from 3-SAT. Just need variable gadgets:

Longest sequence: Matched edges on all spikes of a single side.

26 / 36

On (≤ 3)-MP and (= 3)-MP

Recall that (≤ 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Proof: Reduction from 3-SAT. Just need variable gadgets:

Longest sequence: Matched edges on all spikes of a single side.

26 / 36

On (≤ 3)-MP and (= 3)-MP

Recall that (≤ 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Proof: Reduction from 3-SAT. Just need variable gadgets:

Longest sequence: Matched edges on all spikes of a single side.

26 / 36

On (≤ 3)-MP and (= 3)-MP

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Attach a leaf to the base of every spike. Previous remark still applies.

27 / 36

On (≤ 3)-MP and (= 3)-MP

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Add a variable gadget Gi for each xi . Pushing left=True. Pushing right=False.

Next add a clause vertex ci for every clause Ci , and, for every distinct literal `j it
contains, join ci and one non-used spike of Gi (left if positive, right otherwise).

ci

Gj1 Gj2 Gj3

⇒ One additional augmentation covering ci can be done.

28 / 36

On (≤ 3)-MP and (= 3)-MP

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Add a variable gadget Gi for each xi . Pushing left=True. Pushing right=False.

Next add a clause vertex ci for every clause Ci , and, for every distinct literal `j it
contains, join ci and one non-used spike of Gi (left if positive, right otherwise).

ci

Gj1 Gj2 Gj3

⇒ One additional augmentation covering ci can be done.

28 / 36

On (≤ 3)-MP and (= 3)-MP

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Add a variable gadget Gi for each xi . Pushing left=True. Pushing right=False.

Next add a clause vertex ci for every clause Ci , and, for every distinct literal `j it
contains, join ci and one non-used spike of Gi (left if positive, right otherwise).

ci

Gj1 Gj2 Gj3

⇒ One additional augmentation covering ci can be done.
28 / 36

On (≤ 3)-MP and (= 3)-MP

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Maximum # of 3-augmentations:

1 For every Gi , push the matching to the left (xi true) or to the right (xi false).

2 For every ci , do an additional augmentation (if made true by a literal).

⇒ Maximum µ=3 achievable is

(#variables ·#spikes) + #clauses,

which is attainable iff F is satisfiable. �

29 / 36

On (≤ 3)-MP and (= 3)-MP

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Maximum # of 3-augmentations:

1 For every Gi , push the matching to the left (xi true) or to the right (xi false).

2 For every ci , do an additional augmentation (if made true by a literal).

⇒ Maximum µ=3 achievable is

(#variables ·#spikes) + #clauses,

which is attainable iff F is satisfiable. �

29 / 36

About the reduction

We have ∆ ≤ 4 in the reduction.

Furthermore:

If F planar, then the reduced graph is planar.

All cycles go through ci ’s and variables gadgets:

Conveniently choose the joined spikes ⇒ Bipartite.
Same ⇒ Arbitrarily large girth.

+ by slight modifications, we can also guarantee ∆ ≤ 3.

But we still do not get trees!

30 / 36

About the reduction

We have ∆ ≤ 4 in the reduction. Furthermore:

If F planar, then the reduced graph is planar.

All cycles go through ci ’s and variables gadgets:

Conveniently choose the joined spikes ⇒ Bipartite.
Same ⇒ Arbitrarily large girth.

+ by slight modifications, we can also guarantee ∆ ≤ 3.

But we still do not get trees!

30 / 36

About the reduction

We have ∆ ≤ 4 in the reduction. Furthermore:

If F planar, then the reduced graph is planar.

All cycles go through ci ’s and variables gadgets:

Conveniently choose the joined spikes ⇒ Bipartite.
Same ⇒ Arbitrarily large girth.

+ by slight modifications, we can also guarantee ∆ ≤ 3.

But we still do not get trees!

30 / 36

About the reduction

We have ∆ ≤ 4 in the reduction. Furthermore:

If F planar, then the reduced graph is planar.

All cycles go through ci ’s and variables gadgets:

Conveniently choose the joined spikes ⇒ Bipartite.
Same ⇒ Arbitrarily large girth.

+ by slight modifications, we can also guarantee ∆ ≤ 3.

But we still do not get trees!

30 / 36

About the reduction

We have ∆ ≤ 4 in the reduction. Furthermore:

If F planar, then the reduced graph is planar.

All cycles go through ci ’s and variables gadgets:

Conveniently choose the joined spikes ⇒ Bipartite.
Same ⇒ Arbitrarily large girth.

+ by slight modifications, we can also guarantee ∆ ≤ 3.

But we still do not get trees!

30 / 36

About the reduction

We have ∆ ≤ 4 in the reduction. Furthermore:

If F planar, then the reduced graph is planar.

All cycles go through ci ’s and variables gadgets:

Conveniently choose the joined spikes ⇒ Bipartite.
Same ⇒ Arbitrarily large girth.

+ by slight modifications, we can also guarantee ∆ ≤ 3.

But we still do not get trees!

30 / 36

(= k)-MP in trees for non-fixed k

Modified version:

(=)-Matching Problem – (=)-MP
Input: A graph G , a matching M of G , and an odd k ≥ 1.
Question: What is the value of µ=k(G ,M)?

At last (!), negative result for trees:

Theorem [B., Garnero, Nisse, 2017+]

(=)-MP is NP-hard for trees.

Proof (sketch): Reduction from 3-SAT.

31 / 36

(= k)-MP in trees for non-fixed k

Modified version:

(=)-Matching Problem – (=)-MP
Input: A graph G , a matching M of G , and an odd k ≥ 1.
Question: What is the value of µ=k(G ,M)?

At last (!), negative result for trees:

Theorem [B., Garnero, Nisse, 2017+]

(=)-MP is NP-hard for trees.

Proof (sketch): Reduction from 3-SAT.

31 / 36

(=)-MP in trees

x1

forth back

x2

forth back

C1

forth back

C2

forth back

x1
in

out

in

out

C1
inout C1

C2

in out

in out

x2
in

out

in

out

C2
inout C1

in out

32 / 36

(=)-MP in trees

Theorem [B., Garnero, Nisse, 2017+]

(=)-MP is NP-hard for trees.

Lengths of the dashed paths chosen so that:

for each xi , open either the true or false gate;

for each Ci , reach only the arrival points.

⇒ Needed k depends on #clauses and #variables. �

33 / 36

(=)-MP in trees

Theorem [B., Garnero, Nisse, 2017+]

(=)-MP is NP-hard for trees.

Lengths of the dashed paths chosen so that:

for each xi , open either the true or false gate;

for each Ci , reach only the arrival points.

⇒ Needed k depends on #clauses and #variables. �

33 / 36

After a few months suffering ,/ ...

u

v

hv hc

switch edge

G (x1)

back

forth

G (x2)

back

forth

G (C1)

back

forth

G (C2)

back

forth

G (x1, x1)

A(x1,C1) A(x1,C2)

in

out

in

out

in

out

in

out

G (x2, x2)

A(x2,C1) A(x2,C2)

in

out

in

out

in

out

in

out

`x1 <
⌊

1
10 k

⌋
`x2 <

⌊
1
10 k

⌋
`C1 <

⌊
1
10 k

⌋
`C2 <

⌊
1
10 k

⌋

`v =
⌊

9
10 k

⌋
`c =

⌊
2
10 k

⌋

`x1,x1 <
⌊

1
10 k

⌋
`x2,x2 <

⌊
1
10 k

⌋

`′x1
=

⌊
6
10 k

⌋
`′x1

=
⌊

6
10 k

⌋

`x1,C1 <
⌊

2
10 k

⌋
`x1,C2 <

⌊
2
10 k

⌋

`′x2
=

⌊
6
10 k

⌋
`′x2

=
⌊

6
10 k

⌋

`x2,C2 <
⌊

2
10 k

⌋
`x2,C1 <

⌊
2
10 k

⌋

34 / 36

Conclusion

35 / 36

Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?
subdivided combs?
etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!

36 / 36

Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?

subdivided combs?
etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!

36 / 36

Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?
subdivided combs?

etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!

36 / 36

Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?
subdivided combs?
etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!

36 / 36

Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?
subdivided combs?
etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!

36 / 36

Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?
subdivided combs?
etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!

36 / 36

Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?
subdivided combs?
etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!

36 / 36

Conclusion and perspectives

Status of (≤ k)-MP still unclear for trees.

What about:

trees with ∆ ≤ 3?
subdivided combs?
etc.

Dynamic programming yields algorithms.

What about (= k)-MP in trees?

Appealing case: k = 3.

Other classes of graphs?

e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!

36 / 36

