On augmenting matchings via bounded-length augmentations

Julien Bensmail, Valentin Garnero, Nicolas Nisse

Université Côte d'Azur, France

COATI Seminar October 24, 2017

Introduction

Cast

Graph

Cast

Graph, Matching

• Marriage problem:

• Marriage problem:

• More generally, all assignation problems.

• Marriage problem:

• More generally, all assignation problems.

Maximum matching = Biggest matching. $\mu(G)$ = Cardinality of a maximum matching of *G*.

• Marriage problem:

• More generally, all assignation problems.

Maximum matching = Biggest matching. $\mu(G)$ = Cardinality of a maximum matching of *G*.

Hardness of determining $\mu(G)$?

Exposed vertex (\circ), Covered vertex (\bullet)

Exposed vertex (\circ), Covered vertex (\bullet) Augmenting path, Augmentation

Augmentation \Rightarrow Bigger matching.

Theorem [Berge, 1957]

Maximum matching \Leftrightarrow No augmenting path.

Theorem [Berge, 1957]

Maximum matching \Leftrightarrow No augmenting path.

Finding augmenting paths?

Theorem [Edmonds' Blossom Algorithm, 1965]

Detection in polynomial time.

Hence, $\mu(G)$ can be determined in poly-time.

 $\mathsf{Plane} \rightarrow \mathsf{Suitable} \ \mathsf{landing} \ \mathsf{times}/\mathsf{tracks} \ \mathsf{(edges)} + \mathsf{Scheduled} \ \mathsf{option} \ \mathsf{(matching)}.$

Today's motivation

Issue: 2nd plane is delayed...

Today's motivation

Issue: 2nd plane is delayed...

How to fix that??

For practical reasons, only

- I-paths (= pick a free slot), and
- 3-paths (= shift a busy slot)

should actually be augmented. Hence (\leq 3)-paths.

For practical reasons, only

- 1-paths (= pick a free slot), and
- 3-paths (= shift a busy slot)

should actually be augmented. Hence (\leq 3)-paths.

For odd $k \ge 1$, attain a largest matching via $(\le k)$ -augmentations?

 $\mu_{\leq k}(G, M)$: Its cardinality for G equipped with M.

Note: $\mu_{\leq 1}(G, \emptyset) = \mu(G)$.

k = 5. Second attempt.

k = 5. Second attempt.

k = 5. Second attempt.

First dichotomy

 $(\leq k)$ -MATCHING PROBLEM – $(\leq k)$ -MP Input: A graph *G*, and a matching *M* of *G*. Question: What is the value of $\mu_{\leq k}(G, M)$? $(\leq k)$ -MATCHING PROBLEM – $(\leq k)$ -MP Input: A graph G, and a matching M of G. Question: What is the value of $\mu_{\leq k}(G, M)$?

Dichotomy on k:

Theorem [Nisse, Salch, Weber, 2015+] $(\leq k)$ -MP is • in P for k = 1, 3; • NP-hard for every odd $k \geq 5$.

Latter statement true for planar bipartite graphs with $\Delta \leq$ 3 and arb. large girth.

- For k = 1, 3, the problem is settled.
- For odd $k \ge 5$, NP-hard for graphs close to trees.

- For k = 1, 3, the problem is settled.
- For odd $k \ge 5$, NP-hard for graphs close to trees.

Complexity of $(\leq k)$ -MP for trees?

- For k = 1, 3, the problem is settled.
- For odd $k \ge 5$, NP-hard for graphs close to trees.

Complexity of $(\leq k)$ -MP for trees?

Today's talk:

• $(\leq k)$ -MP is in P for caterpillars, subdivided stars, "sparse trees", etc.

- For k = 1, 3, the problem is settled.
- For odd $k \ge 5$, NP-hard for graphs close to trees.

Complexity of $(\leq k)$ -MP for trees?

Today's talk:

- $(\leq k)$ -MP is in P for caterpillars, subdivided stars, "sparse trees", etc.
- A modified version is NP-complete for trees.

Positive results

Theorem [Nisse, Salch, Weber, 2015+]

 $(\leq k)$ -MP is in P for paths.

1st key idea: Consider exposed degree-2 nodes joined by an augmenting path.

Theorem [Nisse, Salch, Weber, 2015+]

 $(\leq k)$ -MP is in P for paths.

1st key idea: Consider exposed degree-2 nodes joined by an augmenting path.

Theorem [Nisse, Salch, Weber, 2015+]

 $(\leq k)$ -MP is in P for paths.

1st key idea: Consider exposed degree-2 nodes joined by an augmenting path.

Theorem [Nisse, Salch, Weber, 2015+]

 $(\leq k)$ -MP is in P for paths.

1st key idea: Consider exposed degree-2 nodes joined by an augmenting path.

 \Rightarrow Decompose the problem into two sub-problems. In a path \Rightarrow Exposed nodes have one on the left/right at distance $\leq k$.

2nd key idea: We can augment paths joining "consecutive" exposed nodes only.

 $(\leq k)$ -MP is in P for paths.

2nd key idea: We can augment paths joining "consecutive" exposed nodes only.

3 \Rightarrow The paths $v_1...v_2,~v_3...v_4$ and $v_5...v_6$ have length $\leq k$ and alternate. So

yield the same matching.

 $(\leq k)$ -MP is in P for paths.

2nd key idea: We can augment paths joining "consecutive" exposed nodes only.

3 \Rightarrow The paths $v_1...v_2$, $v_3...v_4$ and $v_5...v_6$ have length $\leq k$ and alternate. So

yield the same matching.

 \Rightarrow In a path, just go from left to right, and augment paths when possible.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

Remark: Matched leaf edge \Rightarrow Simplification.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

Remark: Matched leaf edge \Rightarrow Simplification.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

Remark: Matched leaf edge \Rightarrow Simplification.

 \Rightarrow Being adjacent to two leaves is useless.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

Remark: Matched leaf edge \Rightarrow Simplification.

 \Rightarrow Being adjacent to two leaves is useless.

Focus on caterpillars with $\Delta = 3$ (\sim paths).

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for caterpillars.

Remark: Matched leaf edge \Rightarrow Simplification.

 \Rightarrow Being adjacent to two leaves is useless.

Focus on caterpillars with $\Delta = 3$ (\sim paths).

A few cases apart, just like the path case.

T looks like a path \Rightarrow Augment ($\leq k$)-paths as going along.

T looks like a path \Rightarrow Augment ($\leq k$)-paths as going along.

T looks like a path \Rightarrow Augment ($\leq k$)-paths as going along.

T looks like a path \Rightarrow Augment ($\leq k$)-paths as going along.

T looks like a path \Rightarrow Augment ($\leq k$)-paths as going along.

T looks like a path \Rightarrow Augment ($\leq k$)-paths as going along.

T looks like a path \Rightarrow Augment ($\leq k$)-paths as going along.

T looks like a path \Rightarrow Augment ($\leq k$)-paths as going along.

What about branching nodes?

 \Rightarrow How should we "play" around the branching nodes?

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

Claim: Augmentations through the root should behave in a path way:

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

Claim: Augmentations through the root should behave in a path way:

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

Claim: Augmentations through the root should behave in a path way:

(because 1, 2, 3 and 4 are augmenting ($\leq k$)-paths.)

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

This being said, when are augmentations through the root necessary?

Main points:

- Branches \sim Paths \Rightarrow If α exp. nodes, $\lfloor \alpha/2 \rfloor$ augmentations right away:
 - α even \Rightarrow All matched.
 - otherwise \Rightarrow All but one.

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

This being said, when are augmentations through the root necessary?

Main points:

- Branches \sim Paths \Rightarrow If α exp. nodes, $\lfloor \alpha/2 \rfloor$ augmentations right away:
 - α even \Rightarrow All matched.
 - otherwise \Rightarrow All but one.
- Sequence of augmentations through the root...
 - \Rightarrow ... changes parity of # exp. nodes of the two end-branches only:

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

"Root-augmentations" matter only when the two end-branches are "odd".
Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

"Root-augmentations" matter only when the two end-branches are "odd".

How to check that such a sequence of root-augmentations exists?

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

"Root-augmentations" matter only when the two end-branches are "odd". How to check that such a sequence of root-augmentations exists?

- The 1st end-branch is the one having the "root" matching (if any).
- Accessibility of a 2nd branch checked via a BFS in an auxiliary digraph:

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

"Root-augmentations" matter only when the two end-branches are "odd". How to check that such a sequence of root-augmentations exists?

- The 1st end-branch is the one having the "root" matching (if any).
- Accessibility of a 2nd branch checked via a BFS in an auxiliary digraph:

Theorem [B., Garnero, Nisse, 2017+]

 $(\leq k)$ -MP is in P for subdivided stars.

"Root-augmentations" matter only when the two end-branches are "odd". How to check that such a sequence of root-augmentations exists?

- The 1st end-branch is the one having the "root" matching (if any).
- Accessibility of a 2nd branch checked via a BFS in an auxiliary digraph:

 $(\leq k)$ -MP is in P for subdivided stars.

To summarize:

If necessary, do an augmentation involving the root.

 $(\leq k)$ -MP is in P for subdivided stars.

- If necessary, do an augmentation involving the root.
- **2** If possible, join two odd branches via root-augmentations.

 $(\leq k)$ -MP is in P for subdivided stars.

- If necessary, do an augmentation involving the root.
- **2** If possible, join two odd branches via root-augmentations.
- Finally, match the remaining exposed nodes on the branches.

 $(\leq k)$ -MP is in P for subdivided stars.

- If necessary, do an augmentation involving the root.
- **②** If possible, join two odd branches via root-augmentations.
- Finally, match the remaining exposed nodes on the branches.
- \Rightarrow Polynomial-time algorithm.

 $(\leq k)$ -MP is in P for subdivided stars.

- If necessary, do an augmentation involving the root.
- **②** If possible, join two odd branches via root-augmentations.
- Finally, match the remaining exposed nodes on the branches.
- \Rightarrow Polynomial-time algorithm.
- \Rightarrow Generalizes to *k*-sparse tree, i.e., when branching nodes are at distance $\geq k$.

Negative results

For $(\leq k)$ -MP in trees, sounds hard because of the " $\leq k$ " requirement.

For $(\leq k)$ -MP in trees, sounds hard because of the " $\leq k$ " requirement.

 \Rightarrow What if we augment *k*-paths only?

For $(\leq k)$ -MP in trees, sounds hard because of the " $\leq k$ " requirement.

 \Rightarrow What if we augment *k*-paths only?

(= k)-MATCHING PROBLEM – (= k)-MP **Input:** A graph G, and a matching M of G. **Question:** What is the value of $\mu_{=k}(G, M)$?

For $(\leq k)$ -MP in trees, sounds hard because of the " $\leq k$ " requirement.

 \Rightarrow What if we augment *k*-paths only?

(= k)-MATCHING PROBLEM – (= k)-MP **Input:** A graph G, and a matching M of G. **Question:** What is the value of $\mu_{=k}(G, M)$?

Good news: Some properties of $(\leq k)$ -MP derive to (= k)-MP:

- NP-hardness for odd $k \ge 5$;
- all polynomial-time algorithms for classes of trees.

Recall that (\leq 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+] (= 3)-MP is NP-hard.

Recall that (\leq 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+] (= 3)-MP is NP-hard.

Recall that (\leq 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+] (= 3)-MP is NP-hard.

Recall that (\leq 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+] (= 3)-MP is NP-hard.

Recall that (\leq 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+] (= 3)-MP is NP-hard.

Recall that (\leq 3)-MP is in P.

Theorem [B., Garnero, Nisse, 2017+](= 3)-MP is NP-hard.

Proof: Reduction from 3-SAT. Just need variable gadgets:

Longest sequence: Matched edges on all spikes of a single side.

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Attach a leaf to the base of every spike. Previous remark still applies.

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Add a variable gadget G_i for each x_i . Pushing left=True. Pushing right=False.

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Add a variable gadget G_i for each x_i . Pushing left=True. Pushing right=False. Next add a clause vertex c_i for every clause C_i , and, for every distinct literal ℓ_j it

contains, join c_i and one non-used spike of G_i (left if positive, right otherwise).

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Add a variable gadget G_i for each x_i . Pushing left=True. Pushing right=False. Next add a clause vertex c_i for every clause C_i , and, for every distinct literal ℓ_j it contains, join c_i and one non-used spike of G_i (left if positive, right otherwise).

 \Rightarrow One additional augmentation covering c_i can be done.

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Maximum # of 3-augmentations:

- **()** For every G_i , push the matching to the left (x_i true) or to the right (x_i false).
- Solution For every c_i , do an additional augmentation (if made true by a literal).

Theorem [B., Garnero, Nisse, 2017+]

(= 3)-MP is NP-hard.

Maximum # of 3-augmentations:

• For every G_i , push the matching to the left (x_i true) or to the right (x_i false).

Sor every c_i, do an additional augmentation (if made true by a literal).

 \Rightarrow Maximum $\mu_{=3}$ achievable is

```
(\# \text{variables} \cdot \# \text{spikes}) + \# \text{clauses},
```

which is attainable iff F is satisfiable.

We have $\Delta \leq 4$ in the reduction.

• If F planar, then the reduced graph is planar.

- If F planar, then the reduced graph is planar.
- All cycles go through c_i's and variables gadgets:

- If F planar, then the reduced graph is planar.
- All cycles go through c_i's and variables gadgets:
 - Conveniently choose the joined spikes \Rightarrow Bipartite.
 - Same \Rightarrow Arbitrarily large girth.

- If F planar, then the reduced graph is planar.
- All cycles go through c_i 's and variables gadgets:
 - Conveniently choose the joined spikes \Rightarrow Bipartite.
 - Same \Rightarrow Arbitrarily large girth.

+ by slight modifications, we can also guarantee $\Delta \leq$ 3.

- If F planar, then the reduced graph is planar.
- All cycles go through c_i 's and variables gadgets:
 - Conveniently choose the joined spikes \Rightarrow Bipartite.
 - Same \Rightarrow Arbitrarily large girth.

+ by slight modifications, we can also guarantee $\Delta \leq$ 3.

But we still do not get trees!

(= k)-MP in trees for non-fixed k

Modified version:

(=)-MATCHING PROBLEM – (=)-MP **Input:** A graph G, a matching M of G, and an odd $k \ge 1$. **Question:** What is the value of $\mu_{=k}(G, M)$?

(= k)-MP in trees for non-fixed k

Modified version:

(=)-MATCHING PROBLEM – (=)-MP **Input:** A graph G, a matching M of G, and an odd $k \ge 1$. **Question:** What is the value of $\mu_{=k}(G, M)$?

At last (!), negative result for trees:

Theorem [B., Garnero, Nisse, 2017+] (=)-MP is NP-hard for trees.

Proof (sketch): Reduction from 3-SAT.

(=)-MP in trees

(=)-MP is NP-hard for trees.

Lengths of the dashed paths chosen so that:

- for each x_i, open either the *true* or *false* gate;
- for each C_i , reach only the arrival points.

(=)-MP is NP-hard for trees.

Lengths of the dashed paths chosen so that:

- for each x_i, open either the *true* or *false* gate;
- for each C_i , reach only the arrival points.
- \Rightarrow Needed k depends on #clauses and #variables.

After a few months suffering \odot \odot ...

Conclusion

• Status of $(\leq k)$ -MP still unclear for trees.

- Status of $(\leq k)$ -MP still unclear for trees.
- What about:
 - trees with $\Delta \leq 3?$

- Status of $(\leq k)$ -MP still unclear for trees.
- What about:
 - trees with $\Delta \leq 3?$
 - subdivided combs?

- Status of $(\leq k)$ -MP still unclear for trees.
- What about:
 - trees with $\Delta \leq 3?$
 - subdivided combs?
 - etc.

- Status of $(\leq k)$ -MP still unclear for trees.
- What about:
 - trees with $\Delta \leq 3?$
 - subdivided combs?
 - etc.
- Dynamic programming yields algorithms.

- Status of $(\leq k)$ -MP still unclear for trees.
- What about:
 - trees with $\Delta \leq 3?$
 - subdivided combs?
 - etc.
- Dynamic programming yields algorithms.
- What about (= k)-MP in trees?
- Appealing case: k = 3.

• Status of $(\leq k)$ -MP still unclear for trees.

- What about:
 - trees with $\Delta \leq 3?$
 - subdivided combs?
 - etc.
- Dynamic programming yields algorithms.
- What about (= k)-MP in trees?
- Appealing case: k = 3.
- Other classes of graphs?
- e.g. interval graphs, other sparse classes, etc.

• Status of $(\leq k)$ -MP still unclear for trees.

- What about:
 - trees with $\Delta \leq 3?$
 - subdivided combs?
 - etc.
- Dynamic programming yields algorithms.
- What about (= k)-MP in trees?
- Appealing case: k = 3.
- Other classes of graphs?
- e.g. interval graphs, other sparse classes, etc.

Thank you for your attention!