
Computational complexity of partitioning
a graph into connected subgraphs

J. Bensmail
LaBRI, Bordeaux University, Talence, France

AGH University of Science and Technology
October 2nd, 2012

1 / 34

Part 1: Catching how hard is a decision problem

Part 2: Partitioning a graph following a sequence

Part 3: On some generalized graph partition problems

Part 4: A recursive version of the graph partition problem

2 / 34

Decision problems

A decision problem A is a yes-no question regarding the values of some input parameters.

An instance I of A is an application of A to some specific input parameters. If the answer
to I is yes, then I is a yes-instance of A. Otherwise, we say that I is a no-instance of A.

Ex. Prime Number
Instance: A positive integer n.
Question: Is n a prime number?

For instance:

(3) is a yes-instance of Prime Number;

(4) is a no-instance of Prime Number.

3 / 34

Decision problems

A decision problem A is a yes-no question regarding the values of some input parameters.

An instance I of A is an application of A to some specific input parameters. If the answer
to I is yes, then I is a yes-instance of A. Otherwise, we say that I is a no-instance of A.

Ex. Prime Number
Instance: A positive integer n.
Question: Is n a prime number?

For instance:

(3) is a yes-instance of Prime Number;

(4) is a no-instance of Prime Number.

3 / 34

Complexity of a decision problem

The complexity of A represents how hard is it to deal with A. It is measured as the
amount of computational resources needed by any algorithm to decide whether an
instance of A is a yes- or no-instance.

The efficiency of such an algorithm is thus usually evaluated regarding how much time
and space it needs to give an answer for a specific instance of A. An amount of one of
these two kinds of resources is ”good” if it is polynomial in the instance size. Conversely,
it is ”bad” if it is exponential in the instance size.

In computational complexity theory, problems are organized into complexity classes. At
the moment, there exist plenty of complexity classes gathering problems with similar
complexity together.

4 / 34

Deterministic poly-time problems - P problems

P is the class of decision problems for which there exists a polynomial-time solving
algorithm.

Some examples of problems known to be in P:

is n prime?

is an array sorted?

does G admit a perfect matching?

etc...

5 / 34

Deterministic poly-time problems - P problems

P is the class of decision problems for which there exists a polynomial-time solving
algorithm.

Some examples of problems known to be in P:

is n prime?

is an array sorted?

does G admit a perfect matching?

etc...

5 / 34

Non-deterministic poly-time problems - NP and co-NP problems

NP is the class of decision problems for which there exists an algorithm deciding whether
one of their instances is a yes-instance using an algorithm dealing with a problem in P.

Clearly, any P problem is also in NP.

If A is in NP −P, then it means that there is no polynomial-time algorithm going straight
to the answer for a given instance I of A. But there exists a polynomial-time checking
algorithm deciding whether I is a yes-instance of A regarding some input parameters.

Some examples of NP problems:

does there exist a vertex cover of G with size at most k?

given a set of integers, does it have a subset that sums up to 0?

is it possible to colour G with three colors?

etc...

It seems hard to believe that a problem A in NP − P is also in P since there are generally
an exponential number of things to check before being able to decide whether a single
instance I of A is a yes- or no-instance.

6 / 34

Non-deterministic poly-time problems - NP and co-NP problems

NP is the class of decision problems for which there exists an algorithm deciding whether
one of their instances is a yes-instance using an algorithm dealing with a problem in P.

Clearly, any P problem is also in NP.

If A is in NP −P, then it means that there is no polynomial-time algorithm going straight
to the answer for a given instance I of A. But there exists a polynomial-time checking
algorithm deciding whether I is a yes-instance of A regarding some input parameters.

Some examples of NP problems:

does there exist a vertex cover of G with size at most k?

given a set of integers, does it have a subset that sums up to 0?

is it possible to colour G with three colors?

etc...

It seems hard to believe that a problem A in NP − P is also in P since there are generally
an exponential number of things to check before being able to decide whether a single
instance I of A is a yes- or no-instance.

6 / 34

Non-deterministic poly-time problems - NP and co-NP problems

NP is the class of decision problems for which there exists an algorithm deciding whether
one of their instances is a yes-instance using an algorithm dealing with a problem in P.

Clearly, any P problem is also in NP.

If A is in NP −P, then it means that there is no polynomial-time algorithm going straight
to the answer for a given instance I of A. But there exists a polynomial-time checking
algorithm deciding whether I is a yes-instance of A regarding some input parameters.

Some examples of NP problems:

does there exist a vertex cover of G with size at most k?

given a set of integers, does it have a subset that sums up to 0?

is it possible to colour G with three colors?

etc...

It seems hard to believe that a problem A in NP − P is also in P since there are generally
an exponential number of things to check before being able to decide whether a single
instance I of A is a yes- or no-instance.

6 / 34

Non-deterministic poly-time problems - NP and co-NP problems

The co-NP class is almost the same as the NP one, except that the checking
polynomial-time algorithm concerns no-instances of a decision problem.

In particular, the complement of any NP problem is a co-NP problem:

is it true that every vertex cover of G has size at least k?

given a set of integers, does no subset sum up to 0?

cannot G be coloured with three colors?

etc...

Observe that if A is in P, then A is in NP ∩ co-NP.

7 / 34

Non-deterministic poly-time problems - NP and co-NP problems

The co-NP class is almost the same as the NP one, except that the checking
polynomial-time algorithm concerns no-instances of a decision problem.

In particular, the complement of any NP problem is a co-NP problem:

is it true that every vertex cover of G has size at least k?

given a set of integers, does no subset sum up to 0?

cannot G be coloured with three colors?

etc...

Observe that if A is in P, then A is in NP ∩ co-NP.

7 / 34

Non-deterministic poly-time problems - NP and co-NP problems

The co-NP class is almost the same as the NP one, except that the checking
polynomial-time algorithm concerns no-instances of a decision problem.

In particular, the complement of any NP problem is a co-NP problem:

is it true that every vertex cover of G has size at least k?

given a set of integers, does no subset sum up to 0?

cannot G be coloured with three colors?

etc...

Observe that if A is in P, then A is in NP ∩ co-NP.

7 / 34

Reducible problems

Given two problems A and B, we say that A is reducible to B if there exists a function
that maps instances of A to instances of B in such a way that if we manage to solve B,
then we also solve A. The existence of a polynomial-time reduction from A to B is
denoted by A ≤p B.

Let us now consider the following well-known decision problem.

Boolean Satisfiability - SAT
Instance: A CNF formula F over variables x1, ..., xn.
Question: Is F satisfiable?

A quick reminder:

a boolean variable xi can be either assigned to true or false;

a literal li is either a boolean variable xj or its negation xj ;

the conjunction li ∧ lj of two literals is evaluated true iff li and lj are both true;

the disjunction li ∨ lj of two literals is evaluated true iff at least one of li and lj is true;

a clause Ci is a disjunction of several literals;

a CNF formula is a conjunction of several clauses;

a CNF formula is satisfiable iff there exists a truth assignment of its variables that
makes it evaluated true.

8 / 34

Reducible problems

Given two problems A and B, we say that A is reducible to B if there exists a function
that maps instances of A to instances of B in such a way that if we manage to solve B,
then we also solve A. The existence of a polynomial-time reduction from A to B is
denoted by A ≤p B.

Let us now consider the following well-known decision problem.

Boolean Satisfiability - SAT
Instance: A CNF formula F over variables x1, ..., xn.
Question: Is F satisfiable?

A quick reminder:

a boolean variable xi can be either assigned to true or false;

a literal li is either a boolean variable xj or its negation xj ;

the conjunction li ∧ lj of two literals is evaluated true iff li and lj are both true;

the disjunction li ∨ lj of two literals is evaluated true iff at least one of li and lj is true;

a clause Ci is a disjunction of several literals;

a CNF formula is a conjunction of several clauses;

a CNF formula is satisfiable iff there exists a truth assignment of its variables that
makes it evaluated true.

8 / 34

Complete problems in NP - NP-complete problems

Boolean Satisfiability - SAT
Instance: A CNF formula F over variables x1, ..., xn.
Question: Is F satisfiable?

For example, F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) is a satisfiable CNF formula.

Clearly, SAT is in NP. Moreover, Cook-Levin theorem states that every NP problem A is
reducible to SAT in polynomial time. Thus, SAT can be viewed as one of the hardest
problems of NP since solving it under polynomial time would imply that any NP problem
is solvable in polynomial time too.

The complexity class of the hardest problems in NP is the NP-complete class. As
explained, we consider, as a starting point, that SAT is complete in NP. Then, a
problem A is a NP-complete problem iff:

A is in NP,

there exists a NP-complete problem B such that B ≤p A.

If you manage to solve one particular NP-complete problem in polynomial time, then you
can solve every NP-complete problem in polynomial time by transitivity, and also every
NP problem...

9 / 34

Complete problems in NP - NP-complete problems

Boolean Satisfiability - SAT
Instance: A CNF formula F over variables x1, ..., xn.
Question: Is F satisfiable?

For example, F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) is a satisfiable CNF formula.

Clearly, SAT is in NP. Moreover, Cook-Levin theorem states that every NP problem A is
reducible to SAT in polynomial time. Thus, SAT can be viewed as one of the hardest
problems of NP since solving it under polynomial time would imply that any NP problem
is solvable in polynomial time too.

The complexity class of the hardest problems in NP is the NP-complete class. As
explained, we consider, as a starting point, that SAT is complete in NP. Then, a
problem A is a NP-complete problem iff:

A is in NP,

there exists a NP-complete problem B such that B ≤p A.

If you manage to solve one particular NP-complete problem in polynomial time, then you
can solve every NP-complete problem in polynomial time by transitivity, and also every
NP problem...

9 / 34

Part 1: Catching how hard is a decision problem

Part 2: Partitioning a graph following a sequence

Part 3: On some generalized graph partition problems

Part 4: A recursive version of the graph partition problem

10 / 34

Partitioning graphs into connected subgraphs

Let us now consider the following definition...

Def. Realizable sequence - Realization
Let G be a graph. A sequence τ = (n1, ..., nk) of positive integers summing up to
|V (G)| is realizable in G if there exists a partition (V1, ...,Vk) of V (G) such that
every Vi has size ni and induces a connected subgraph of G . The partition
(V1, ...,Vk) of V (G) is a realization of τ in G .

... and the associated decision problem.

Realizable Sequence - RealSeq
Instance: A graph G and a sequence τ .
Question: Is τ realizable in G?

11 / 34

On the complexity of RealSeq

It is already known that RealSeq is a NP-complete problem even when:

τ = (k, ..., k), where k is a divisor of |V (G)| [DF85];

G is a tree with maximum degree 3 [BF06].

These results have been proved by reduction from the Planar 3-Dimensional
Matching and Exact Cover By 3-Sets problems, respectively.

We give another proof of this result showing that RealSeq remains a NP-complete
problem even if τ has only two elements. Our reduction is from the following 1-in-3
SAT problem, where a 3CNF formula is a CNF formula whose clauses have exactly three
literals.

1-in-3 SAT
Instance: A 3CNF formula F over variables x1, ..., xn.
Question: Is F satisfiable in such a way that each of its clauses has exactly one true
literal?

12 / 34

On the complexity of RealSeq

It is already known that RealSeq is a NP-complete problem even when:

τ = (k, ..., k), where k is a divisor of |V (G)| [DF85];

G is a tree with maximum degree 3 [BF06].

These results have been proved by reduction from the Planar 3-Dimensional
Matching and Exact Cover By 3-Sets problems, respectively.

We give another proof of this result showing that RealSeq remains a NP-complete
problem even if τ has only two elements. Our reduction is from the following 1-in-3
SAT problem, where a 3CNF formula is a CNF formula whose clauses have exactly three
literals.

1-in-3 SAT
Instance: A 3CNF formula F over variables x1, ..., xn.
Question: Is F satisfiable in such a way that each of its clauses has exactly one true
literal?

12 / 34

RealSeq is complete in NP

Thm. B. - 2012
RealSeq is complete in NP even if τ has exactly two elements.

Proof.
First notice that RealSeq is in NP. One can provide a satisfying partition of G to an
algorithm that makes sure that each part has the correct size and induces a connected
subgraph of G . This can be done in polynomial time.

We now show that 1-in-3 SAT ≤p RealSeq. For a given 3CNF formula F over
variables x1, ..., xn and clauses C1, ...,Cm we construct a graph G and a sequence
τ = (n1, n2) such that

F is satisfiable in such a way that each of its clauses has only one true literal
⇔

τ is realizable in G .

13 / 34

RealSeq is complete in NP

Thm. B. - 2012
RealSeq is complete in NP even if τ has exactly two elements.

Proof.
First notice that RealSeq is in NP. One can provide a satisfying partition of G to an
algorithm that makes sure that each part has the correct size and induces a connected
subgraph of G . This can be done in polynomial time.

We now show that 1-in-3 SAT ≤p RealSeq. For a given 3CNF formula F over
variables x1, ..., xn and clauses C1, ...,Cm we construct a graph G and a sequence
τ = (n1, n2) such that

F is satisfiable in such a way that each of its clauses has only one true literal
⇔

τ is realizable in G .

13 / 34

Reduction from 1-in-3 SAT to RealSeq

Thm. B. - 2012
RealSeq is complete in NP even if τ has exactly two elements.

We may suppose that every literal appears in F - if xi does not appear in F , then

F ′ = F ∧ (xi ∨ xi ∨ xn+1) ∧ (xn+1 ∨ xn+1 ∨ xn+1)

is satisfiable iff F is satisfiable.

We first construct the clause subgraph of G :

to each literal li in F is associated a literal vertex vli in G ;

a pair of literal vertices {vli , vlj } is linked to the root of a star Sn+1 if li and lj
are a variable and its negation, or
appear in a same clause of F ;

a control vertex o in G is adjacent to all literal vertices and to n pendant vertices.

14 / 34

Reduction from 1-in-3 SAT to RealSeq

Thm. B. - 2012
RealSeq is complete in NP even if τ has exactly two elements.

We may suppose that every literal appears in F - if xi does not appear in F , then

F ′ = F ∧ (xi ∨ xi ∨ xn+1) ∧ (xn+1 ∨ xn+1 ∨ xn+1)

is satisfiable iff F is satisfiable.

We first construct the clause subgraph of G :

to each literal li in F is associated a literal vertex vli in G ;

a pair of literal vertices {vli , vlj } is linked to the root of a star Sn+1 if li and lj
are a variable and its negation, or
appear in a same clause of F ;

a control vertex o in G is adjacent to all literal vertices and to n pendant vertices.

14 / 34

Reduction from 1-in-3 SAT to RealSeq

Thm. B. - 2012
RealSeq is complete in NP even if τ has exactly two elements.

Let n2 be the number of vertices of the clause subgraph of G . Then

n2 ≤ 2n + n(n + 1) + 3m(n + 1) + n + 1
n2 ≤ n(n + 3m(1 + 1/n) + 4) + 1.

G is finally augmented with a base subgraph as follows:

for each clause Ci of F , we add a new clause vertex vCi to G ;

each vertex vCi is linked to n2 − n pendant vertices;

for each i ∈ [1,m − 1], we add vCi vCi+1 to E(G);

if Ci = (li1 ∨ li2 ∨ li3), then we add vCi vli1 , vCi vli2 and vCi vli3 to E(G).

We added n1 = m(n2 − n + 1) vertices to G .

Finally, |V (G)| = n1 + n2. Let us consider τ = (n1 + n, n2 − n).

15 / 34

Reduction from 1-in-3 SAT to RealSeq

Thm. B. - 2012
RealSeq is complete in NP even if τ has exactly two elements.

Let n2 be the number of vertices of the clause subgraph of G . Then

n2 ≤ 2n + n(n + 1) + 3m(n + 1) + n + 1
n2 ≤ n(n + 3m(1 + 1/n) + 4) + 1.

G is finally augmented with a base subgraph as follows:

for each clause Ci of F , we add a new clause vertex vCi to G ;

each vertex vCi is linked to n2 − n pendant vertices;

for each i ∈ [1,m − 1], we add vCi vCi+1 to E(G);

if Ci = (li1 ∨ li2 ∨ li3), then we add vCi vli1 , vCi vli2 and vCi vli3 to E(G).

We added n1 = m(n2 − n + 1) vertices to G .

Finally, |V (G)| = n1 + n2. Let us consider τ = (n1 + n, n2 − n).

15 / 34

Reduction from 1-in-3 SAT to RealSeq

Thm. B. - 2012
RealSeq is complete in NP even if τ has exactly two elements.

Let n2 be the number of vertices of the clause subgraph of G . Then

n2 ≤ 2n + n(n + 1) + 3m(n + 1) + n + 1
n2 ≤ n(n + 3m(1 + 1/n) + 4) + 1.

G is finally augmented with a base subgraph as follows:

for each clause Ci of F , we add a new clause vertex vCi to G ;

each vertex vCi is linked to n2 − n pendant vertices;

for each i ∈ [1,m − 1], we add vCi vCi+1 to E(G);

if Ci = (li1 ∨ li2 ∨ li3), then we add vCi vli1 , vCi vli2 and vCi vli3 to E(G).

We added n1 = m(n2 − n + 1) vertices to G .

Finally, |V (G)| = n1 + n2. Let us consider τ = (n1 + n, n2 − n).

15 / 34

Reduction from 1-in-3 SAT to RealSeq

Thm. B. - 2012
RealSeq is complete in NP even if τ has exactly two elements.

Observe that if a part of the realization contains the root of an induced star, then it also
has to cover all of its pending vertices. Hence, in a realization of τ in G , the base
subgraph has to be covered by the part V1 of size n1 + n.

Once the base subgraph is covered by V1, this part is missing n additional vertices from
the clause subgraph of G . Because of the structure of the clause subgraph, we may only
pick up some literal vertices. It has to be done in such a way that the clause subgraph
remains connected so that it can eventually be considered as the part V2 with size n2 − n.

Choosing a literal vertex vli to belong to V1 is like setting li to true. In particular:

two covered literal vertices cannot be both linked to a same clause vertex;

two covered literal vertices cannot be a variable and its negation.

Finally, a realization of τ in G exists iff F is satisfiable in such a way that each of its
clauses has only one true literal. Moreover, G has a polynomial number of vertices
regarding the size of F . Thus, the reduction is performed in polynomial time.

�

16 / 34

Reduction from 1-in-3 SAT to RealSeq

Thm. B. - 2012
RealSeq is complete in NP even if τ has exactly two elements.

Observe that if a part of the realization contains the root of an induced star, then it also
has to cover all of its pending vertices. Hence, in a realization of τ in G , the base
subgraph has to be covered by the part V1 of size n1 + n.

Once the base subgraph is covered by V1, this part is missing n additional vertices from
the clause subgraph of G . Because of the structure of the clause subgraph, we may only
pick up some literal vertices. It has to be done in such a way that the clause subgraph
remains connected so that it can eventually be considered as the part V2 with size n2 − n.

Choosing a literal vertex vli to belong to V1 is like setting li to true. In particular:

two covered literal vertices cannot be both linked to a same clause vertex;

two covered literal vertices cannot be a variable and its negation.

Finally, a realization of τ in G exists iff F is satisfiable in such a way that each of its
clauses has only one true literal. Moreover, G has a polynomial number of vertices
regarding the size of F . Thus, the reduction is performed in polynomial time.

�
16 / 34

Another graph partition problem

Let us now consider the following stronger definition...

Def. Prescription - Realization under prescription
A k-tuple (v1, ..., vk) of pairwise distinct vertices of G is called a k-prescription of G .
If p ≥ k and there exists a realization (V1, ...,Vp) of τ in G such that for every
i ∈ [1, k] we have vi ∈ Vi , then τ is realizable in G under (v1, ..., vk).

... and the associated decision problem.

Prescriptible Sequence - PrescSeq
Instance: A graph G , a sequence τ and a prescription P of G .
Question: Is τ realizable in G under P?

17 / 34

PrescSeq is complete in NP

Prescriptible Sequence - PrescSeq
Instance: A graph G , a sequence τ and a prescription P of G .
Question: Is τ realizable in G under P?

Surprisingly, this problem is equivalent to RealSeq without any regard to the
prescription size.

Thm. B. - 2012
PrescSeq is complete in NP no matter how long is the prescription.

Proof.
It is possible to modify the checking algorithm for RealSeq in such a way that it also
makes sure that the vertices of the prescription belong to the associated parts. This
modification does not alter the complexity of the algorithm. Therefore, PrescSeq is in
NP.

18 / 34

Reduction from RealSeq to PrescSeq

Thm. B. - 2012
PrescSeq is complete in NP no matter how long is the prescription.

We now show that PrescSeq is complete in NP by reduction from RealSeq. Given a
graph G and a sequence τ , we have to construct a graph G ′, a sequence τ ′ and a
prescription P of G ′ such that

τ is realizable in G
⇔

τ ′ is realizable in G ′ under P.

Consider v an arbitrary vertex of G , and link v to one extremity of a path on np vertices.
Let us denote by vp the other endvertex of this path, and by G ′ the resulting graph.

Then observe that if τ = (n1, ..., nk), then τ ′ = (np, n1, ..., nk) is realizable in G ′ under
(vp) iff τ is realizable in G since there is only one connected subgraph of G ′ with order np

that contains vp.

Of course, this graph and sequence transformations can be repeated at will so that the
prescription size grows as wanted. �

19 / 34

Reduction from RealSeq to PrescSeq

Thm. B. - 2012
PrescSeq is complete in NP no matter how long is the prescription.

We now show that PrescSeq is complete in NP by reduction from RealSeq. Given a
graph G and a sequence τ , we have to construct a graph G ′, a sequence τ ′ and a
prescription P of G ′ such that

τ is realizable in G
⇔

τ ′ is realizable in G ′ under P.

Consider v an arbitrary vertex of G , and link v to one extremity of a path on np vertices.
Let us denote by vp the other endvertex of this path, and by G ′ the resulting graph.

Then observe that if τ = (n1, ..., nk), then τ ′ = (np, n1, ..., nk) is realizable in G ′ under
(vp) iff τ is realizable in G since there is only one connected subgraph of G ′ with order np

that contains vp.

Of course, this graph and sequence transformations can be repeated at will so that the
prescription size grows as wanted. �

19 / 34

Reduction from RealSeq to PrescSeq

Thm. B. - 2012
PrescSeq is complete in NP no matter how long is the prescription.

We now show that PrescSeq is complete in NP by reduction from RealSeq. Given a
graph G and a sequence τ , we have to construct a graph G ′, a sequence τ ′ and a
prescription P of G ′ such that

τ is realizable in G
⇔

τ ′ is realizable in G ′ under P.

Consider v an arbitrary vertex of G , and link v to one extremity of a path on np vertices.
Let us denote by vp the other endvertex of this path, and by G ′ the resulting graph.

Then observe that if τ = (n1, ..., nk), then τ ′ = (np, n1, ..., nk) is realizable in G ′ under
(vp) iff τ is realizable in G since there is only one connected subgraph of G ′ with order np

that contains vp.

Of course, this graph and sequence transformations can be repeated at will so that the
prescription size grows as wanted. �

19 / 34

Part 1: Catching how hard is a decision problem

Part 2: Partitioning a graph following a sequence

Part 3: On some generalized graph partition problems

Part 4: A recursive version of the graph partition problem

20 / 34

What about some generalized problems?

Once again, we consider a definition...

Def. AP graph
A graph G is arbitrarily partitionable if it can be partitioned following every sequence
that sums up to |V (G)|.

... and the decision problem related to it.

AP Graph
Instance: A graph G .
Question: Is G an AP graph?

Because the number of sequences we have to consider is exponential in |V (G)| and
RealSeq is a NP-complete problem, this problem does not seem to belong to either NP
or co-NP.

21 / 34

Beyond the NP and co-NP classes

Sometimes, the complexity inherent to a decision problem A cannot be caught by the
definitions of the NP and co-NP classes. It means that we cannot design a
polynomial-time checking algorithm for A based on a subalgorithm dealing with a
problem in P. But in some situations we feel that we could design such an algorithm
thanks to a ”stronger” subalgorithm - one dealing with a problem that lies in either NP
or co-NP typically.

Consequently, the NP and co-NP classes were generalized in the following way:

∆p
0 = Σp

0 = Πp
0 = P;

∆p
i+1 = PΣ

p
i ;

Σp
i+1 = NPΣ

p
i ;

Πp
i+1 = co-NPΣ

p
i ;

where

PC is the class of problems that have a polynomial-time solving algorithm that can
use an efficient algorithm for a problem in C ;

NPC (co-NPC , resp.) is the class of problems that have a polynomial-time checking
algorithm for their yes-instances (for their no-instances, resp.) that can use an
efficient algorithm for a problem in C .

All these classes form the so-called polynomial hierarchy.

22 / 34

Beyond the NP and co-NP classes

Sometimes, the complexity inherent to a decision problem A cannot be caught by the
definitions of the NP and co-NP classes. It means that we cannot design a
polynomial-time checking algorithm for A based on a subalgorithm dealing with a
problem in P. But in some situations we feel that we could design such an algorithm
thanks to a ”stronger” subalgorithm - one dealing with a problem that lies in either NP
or co-NP typically.

Consequently, the NP and co-NP classes were generalized in the following way:

∆p
0 = Σp

0 = Πp
0 = P;

∆p
i+1 = PΣ

p
i ;

Σp
i+1 = NPΣ

p
i ;

Πp
i+1 = co-NPΣ

p
i ;

where

PC is the class of problems that have a polynomial-time solving algorithm that can
use an efficient algorithm for a problem in C ;

NPC (co-NPC , resp.) is the class of problems that have a polynomial-time checking
algorithm for their yes-instances (for their no-instances, resp.) that can use an
efficient algorithm for a problem in C .

All these classes form the so-called polynomial hierarchy.
22 / 34

On the complexity of AP Graph

Notice that AP Graph belongs to the second level of the polynomial hierarchy.

Obs. AP Graph is in Πp
2 .

Indeed, one can design an algorithm that, provided the graph G and some sequence τ ,
consults an efficient algorithm dealing with RealSeq to make sure that τ is not
realizable in G . We thus have a polynomial-time checking algorithm for no-instances of
AP Graph based on a NP problem.

Inspired by the relationship between the NP and NP-complete complexity classes, the
notion of hardest problems for any class of the polynomial hierarchy was also introduced.
The main complete problem in Πp

2 is the following one.

∀∃SAT
Instance: A CNF formula F over variables X ∪ Y .
Question: For every truth assignation to the variables in X , does there exist a truth
assignation to the variables in Y such that F is satisfied?

Although the structure of the AP Graph problem fits the Πp
2 class well, we did not

manage to design a reduction from ∀∃SAT to AP Graph so far.

Qst. Is AP Graph complete in Πp
2?

23 / 34

On the complexity of AP Graph

Notice that AP Graph belongs to the second level of the polynomial hierarchy.

Obs. AP Graph is in Πp
2 .

Indeed, one can design an algorithm that, provided the graph G and some sequence τ ,
consults an efficient algorithm dealing with RealSeq to make sure that τ is not
realizable in G . We thus have a polynomial-time checking algorithm for no-instances of
AP Graph based on a NP problem.

Inspired by the relationship between the NP and NP-complete complexity classes, the
notion of hardest problems for any class of the polynomial hierarchy was also introduced.
The main complete problem in Πp

2 is the following one.

∀∃SAT
Instance: A CNF formula F over variables X ∪ Y .
Question: For every truth assignation to the variables in X , does there exist a truth
assignation to the variables in Y such that F is satisfied?

Although the structure of the AP Graph problem fits the Πp
2 class well, we did not

manage to design a reduction from ∀∃SAT to AP Graph so far.

Qst. Is AP Graph complete in Πp
2?

23 / 34

An example of Πp
2-complete graph partition problem

What seems difficult is that, to represent the structure of a given formula as a graph, the
latter has to have a strong structure. But then we are sure that some sequences will
never be realizable in the resulting graph - just like in the previous reduction from 1-in-3
SAT to RealSeq.

Maybe the formulation of the AP Graph problem is actually not so representative of
the one of more common Πp

2 problems. For example, the following problem looks like a
Πp

2 problem much more.

Dynamic Realizable Sequence - DynRealSeq
Instance: A graph G , a sequence τ and some partial realizations P1, ...,Pr of τ in G .
Question: For every partial realization Pi of τ in G , is it possible to extend it so that
we get a realization of τ in G?

One can prove that DynRealSeq is actually a Πp
2-complete problem.

Thm. B. - 2012
DynRealSeq is complete in Πp

2 .

24 / 34

An example of Πp
2-complete graph partition problem

What seems difficult is that, to represent the structure of a given formula as a graph, the
latter has to have a strong structure. But then we are sure that some sequences will
never be realizable in the resulting graph - just like in the previous reduction from 1-in-3
SAT to RealSeq.

Maybe the formulation of the AP Graph problem is actually not so representative of
the one of more common Πp

2 problems. For example, the following problem looks like a
Πp

2 problem much more.

Dynamic Realizable Sequence - DynRealSeq
Instance: A graph G , a sequence τ and some partial realizations P1, ...,Pr of τ in G .
Question: For every partial realization Pi of τ in G , is it possible to extend it so that
we get a realization of τ in G?

One can prove that DynRealSeq is actually a Πp
2-complete problem.

Thm. B. - 2012
DynRealSeq is complete in Πp

2 .

24 / 34

DynRealSeq is complete in Πp
2

Thm. B. - 2012
DynRealSeq is complete in Πp

2 .

Sketch of the proof.

To prove that DynRealSeq is in Πp
2 , consider a checking algorithm for

no-instances based on the RealSeq NP problem.

To show that this problem is complete in Πp
2 , one can consider a 1-in-3 version of

∀∃SAT. Consider next the same reduction as the one we designed from 1-in-3 SAT
to RealSeq except that the resulting sequence τ contains some small elements
instead of the big one with size n1 + n. Finally, for every possible truth assignation
to the variables in X , add a corresponding partial realization to the instance.

�

25 / 34

DynRealSeq is complete in Πp
2

Thm. B. - 2012
DynRealSeq is complete in Πp

2 .

Sketch of the proof.

To prove that DynRealSeq is in Πp
2 , consider a checking algorithm for

no-instances based on the RealSeq NP problem.

To show that this problem is complete in Πp
2 , one can consider a 1-in-3 version of

∀∃SAT. Consider next the same reduction as the one we designed from 1-in-3 SAT
to RealSeq except that the resulting sequence τ contains some small elements
instead of the big one with size n1 + n. Finally, for every possible truth assignation
to the variables in X , add a corresponding partial realization to the instance.

�

25 / 34

What about a generalized version of PrescSeq?

We previously considered the RealSeq and PrescSeq problems and then only
considered a generalized version of RealSeq. But what about a generalization of
PrescSeq?

One may consider the following graph property introduced during previous works.

Def. AP+k graph
A graph G is arbitrarily partitionable under k-prescriptions if it can be partitioned
following every sequence that sums up to |V (G)| and under every k-prescription.

A quite natural decision problem then arises from the definition above.

AP+k Graph
Instance: A graph G .
Question: Is G an AP+k graph?

Since we proved that PrescSeq is in NP, it follows that AP+k Graph is in Πp
2 for

every k. But once again, we do not know whether this problem is complete in Πp
2 .

Qst. Is AP+k Graph complete in Πp
2?

26 / 34

A last graph partition problem that lies in the polynomial hierarchy...

If a graph has a spanning AP tree, then it is AP. But there exist some AP graphs that
cannot be obtained by adding edges to some AP trees. Thus, we formerly interested
ourselves in the following property.

Def. min-AP graph
A minimal arbitrarily partitionable graph is an AP graph that does not admit an AP
partial subgraph.

Once again, we can derive a new decision problem from this definition.

Min-AP Graph
Instance: An AP graph G .
Question: Is G a min-AP graph?

For every edge e of G , we can provide a sequence that is not realizable in G − {e} to a
checking algorithm for yes-instances. Thus, Min-AP Graph is in Σp

2 thanks to the
RealSeq NP problem.

Qst. Is Min-AP Graph complete in Σp
2?

27 / 34

Part 1: Catching how hard is a decision problem

Part 2: Partitioning a graph following a sequence

Part 3: On some generalized graph partition problems

Part 4: A recursive version of the graph partition problem

28 / 34

When time is not enough

Some problems cannot be solved or checked within a reasonable amount of time like the
previous problems we introduced. Such problems are then rather classified regarding the
amount of space needed by an algorithm to solve them.

As an illustration, let us consider the following procedure working on some graph G .
Some integer n1 comes in and we are asked to pick up a part V1 of vertices of G that
induces a connected subgraph of G on n1 vertices. Then, a second positive integer n2 is
provided and we are requested a part V2 of vertices in G − V1 inducing a connected
subgraph of G on n2 vertices. And so on until G has some remaining vertices.

Def. OL-AP graph
If we can achieve the procedure above for every sequence of incoming positive
integers, then G is on-line arbitrarily partitionable.

An alternative definition is the following.

Obs. G is OL-AP iff one the following holds:

it is isomorphic to K1;

it is connected and for every positive integer λ ∈ [1, |V (G)| − 1] we can find a
subset Vλ ⊂ V (G) such that G [Vλ] is a connected graph on λ vertices and
G − Vλ is OL-AP.

29 / 34

When time is not enough

Some problems cannot be solved or checked within a reasonable amount of time like the
previous problems we introduced. Such problems are then rather classified regarding the
amount of space needed by an algorithm to solve them.

As an illustration, let us consider the following procedure working on some graph G .
Some integer n1 comes in and we are asked to pick up a part V1 of vertices of G that
induces a connected subgraph of G on n1 vertices. Then, a second positive integer n2 is
provided and we are requested a part V2 of vertices in G − V1 inducing a connected
subgraph of G on n2 vertices. And so on until G has some remaining vertices.

Def. OL-AP graph
If we can achieve the procedure above for every sequence of incoming positive
integers, then G is on-line arbitrarily partitionable.

An alternative definition is the following.

Obs. G is OL-AP iff one the following holds:

it is isomorphic to K1;

it is connected and for every positive integer λ ∈ [1, |V (G)| − 1] we can find a
subset Vλ ⊂ V (G) such that G [Vλ] is a connected graph on λ vertices and
G − Vλ is OL-AP.

29 / 34

When time is not enough

The following decision problem then comes to mind naturally.

OL-AP Graph
Instance: A graph G .
Question: Is G an OL-AP graph?

This problem does not seem to belong to the polynomial hierarchy:

a yes-instance checker has to consider every possible sequences of incoming integers;

a no-instance checker has to consider every possible way to take a part with size ni .

Hence, we now consider space resources to characterize this problem. A problem belongs
to the PSPACE class if there exists a solving algorithm for it that uses a polynomial
amount of space regarding an instance size.

Since a polynomial-time algorithm can only use a polynomial amount of space, it follows
that the polynomial hierarchy is included in PSPACE .

30 / 34

When time is not enough

The following decision problem then comes to mind naturally.

OL-AP Graph
Instance: A graph G .
Question: Is G an OL-AP graph?

This problem does not seem to belong to the polynomial hierarchy:

a yes-instance checker has to consider every possible sequences of incoming integers;

a no-instance checker has to consider every possible way to take a part with size ni .

Hence, we now consider space resources to characterize this problem. A problem belongs
to the PSPACE class if there exists a solving algorithm for it that uses a polynomial
amount of space regarding an instance size.

Since a polynomial-time algorithm can only use a polynomial amount of space, it follows
that the polynomial hierarchy is included in PSPACE .

30 / 34

When time is not enough

The following decision problem then comes to mind naturally.

OL-AP Graph
Instance: A graph G .
Question: Is G an OL-AP graph?

This problem does not seem to belong to the polynomial hierarchy:

a yes-instance checker has to consider every possible sequences of incoming integers;

a no-instance checker has to consider every possible way to take a part with size ni .

Hence, we now consider space resources to characterize this problem. A problem belongs
to the PSPACE class if there exists a solving algorithm for it that uses a polynomial
amount of space regarding an instance size.

Since a polynomial-time algorithm can only use a polynomial amount of space, it follows
that the polynomial hierarchy is included in PSPACE .

30 / 34

A polynomial-space algorithm for OL-AP Graph

Algorithm 1: isOLAP(G : Graph): boolean

if G ' K1 then
return TRUE ;

else if G is not connected then
return FALSE ;

else
foreach λ ∈ {1, ..., n − 1} do

foreach subset Vλ ⊂ V (G) with size λ do
if G [Vλ] is not connected then

Next Vλ;
else if isOLAP(G − Vλ) then

Next λ;
end

end
return FALSE ;

end
return TRUE ;

end

31 / 34

On the complexity of OL-AP Graph

For a given value of λ, all the Vλ subsets can be generated thanks to a binary array with
size |V (G)|. Since the tree of the recursive calls of this algorithm has depth |V (G)|, then
we only need |V (G)| such arrays to cover all the recursive calls. Thus, this algorithm only
uses quadratic space.

The notion of hardest problems was also defined for the PSPACE class. However, for the
same reasons as the ones we mentioned about the completeness of AP Graph for Πp

2 ,
we do not know if the following holds.

Qst. Is OL-AP Graph complete in PSPACE?

But using once again the reduction we saw earlier, we can show that if the possible part
sizes for each level of the procedure are considered as input parameters, then we are
dealing with a PSPACE -complete problem...

32 / 34

On the complexity of OL-AP Graph

For a given value of λ, all the Vλ subsets can be generated thanks to a binary array with
size |V (G)|. Since the tree of the recursive calls of this algorithm has depth |V (G)|, then
we only need |V (G)| such arrays to cover all the recursive calls. Thus, this algorithm only
uses quadratic space.

The notion of hardest problems was also defined for the PSPACE class. However, for the
same reasons as the ones we mentioned about the completeness of AP Graph for Πp

2 ,
we do not know if the following holds.

Qst. Is OL-AP Graph complete in PSPACE?

But using once again the reduction we saw earlier, we can show that if the possible part
sizes for each level of the procedure are considered as input parameters, then we are
dealing with a PSPACE -complete problem...

32 / 34

On the complexity of OL-AP Graph

For a given value of λ, all the Vλ subsets can be generated thanks to a binary array with
size |V (G)|. Since the tree of the recursive calls of this algorithm has depth |V (G)|, then
we only need |V (G)| such arrays to cover all the recursive calls. Thus, this algorithm only
uses quadratic space.

The notion of hardest problems was also defined for the PSPACE class. However, for the
same reasons as the ones we mentioned about the completeness of AP Graph for Πp

2 ,
we do not know if the following holds.

Qst. Is OL-AP Graph complete in PSPACE?

But using once again the reduction we saw earlier, we can show that if the possible part
sizes for each level of the procedure are considered as input parameters, then we are
dealing with a PSPACE -complete problem...

32 / 34

Thank you for your attention!

33 / 34

References

D. Barth and H. Fournier.
A degree bound on decomposable trees.
Discret. Math., 306(5):469–477, 2006.

M.E. Dyer and A.M. Frieze.
On the complexity of partitioning graphs into connected subgraphs.
Discret. Appl. Math., 10:139–153, 1985.

34 / 34

