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General introduction
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Motivation

Make adjacent vertices distinguishable?

) Proper vertex-colouring ,

B ¬ might be as high as ¢+1 (Brooks’ Theorem)
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Motivation (cont’d)

“Encode” a proper vertex-colouring using few different types of resources?

v1

v2

v3

v4

v5

v6

v7

Col(vi ) := Set of colours “incident” to vi :

Col(v1)= { } Col(v2)= { , } Col(v3)= { , , }
Col(v4)= { } Col(v5)= { , , } Col(v6)= { , } Col(v7)= { , }

Neighbours are distinguished!
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From edge colours to vertex colours

Many parameters:

How is Col computed?
Edge colour restrictions (properness, etc.)?
What elements are coloured (edges, vertices, both, etc.)?
etc.

) Dozens and dozens variants...
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1-2-3 Conjecture
– Introduction –
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Distinguishing neighbours via their incident sums

Edge-colours = Edge-weights
Col(vi ) = æ(vi ) := Sums of weights “incident” to vi

v1

v2

v3

v4

v5

v6

v7

1

1

2

1

2

1

1

1

1

2

2

2

æ(v1)= 2 æ(v2)= 6 æ(v3)= 5 æ(v4)= 4
æ(v5)= 7 æ(v6)= 6 æ(v7)= 4

¬eß = 2 while ¬= 3 ,
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1-2-3 Conjecture

Neighbour-sum-distinguishing edge-weighting = æ is proper
¬eß(G ) = smallest k such that G has n-s-d k-edge-weightings

Note: K2 is the only connected graph with ¬eß undefined
Nice graph = no K2 as a component

1-2-3 Conjecture [Karoński, Łuczak, Thomason, 2004]

For every nice graph G , we have ¬eß(G )∑ 3.
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1-2-3 Conjecture
– Some families of graphs –
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Complete graphs

Theorem

For every n∏ 3, we have ¬eß(Kn)= 3.

Make a guess ,
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Complete graphs

Theorem

For every n∏ 3, we have ¬eß(Kn)= 3.

Proof. By induction on n. For n= 3:

4 3

5

1

23
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Complete graphs

Theorem

For every n∏ 3, we have ¬eß(Kn)= 3.

Proof. n= 5:

?

3 4 5 6

General case: n even ) 1’s. n odd ) 3’s.

Á
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Bipartite graphs

Theorem

For every nice bipartite graph G , we have ¬eß(G )∑ 3.

Any idea , ?
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Bipartite graphs

Theorem

For every nice bipartite graph G , we have ¬eß(G )∑ 3.

Proof. Bipartition (A,B)

Aim: 3-edge-weighting where æ(A)¥ 1,2 (mod 3) and æ(B)¥ 0 (mod 3)
, {0,1,2}-edge-weighting with the same properties
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Bipartite graphs

Theorem

For every nice bipartite graph G , we have ¬eß(G )∑ 3.

Proof. Assume |A| is even. Start with weights 0. Second condition fulfilled by B .

¥0

¥0

¥0

¥0

¥0

¥0

¥0

¥0

0

0

0

0

0

0

0

0
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Bipartite graphs

Theorem

For every nice bipartite graph G , we have ¬eß(G )∑ 3.

Proof. Pick a path from A to A with new ends, and apply +1,°1, ... along
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¥0
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0

0
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Bipartite graphs

Theorem

For every nice bipartite graph G , we have ¬eß(G )∑ 3.

Proof. Repeat until A fulfils the first condition
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Bipartite graphs

Theorem

For every nice bipartite graph G , we have ¬eß(G )∑ 3.

Proof. If |A| and |B | are odd / ... but can reach:
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Bipartite graphs

Theorem

For every nice bipartite graph G , we have ¬eß(G )∑ 3.

Proof. Eventually apply +1,°1, ... or conversely towards another vertex in A

¥2

¥1

¥1

¥2

¥0

¥0

¥0

¥0

¥0

w1

w2

11/17



Bipartite graphs

Theorem

For every nice bipartite graph G , we have ¬eß(G )∑ 3.

Proof. Eventually apply +1,°1, ... or conversely towards another vertex in A Á
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On that proof...

Proof applies to 3-chromatic graphs with partite sets A, B , C :
Use weights 0,1,2
Aim æ(A)¥ 0 (mod 3), æ(B)¥ 1 (mod 3), æ(C)¥ 2 (mod 3)

More generally, k-chromatic graphs, k ∏ 3 odd, with partite sets S0, ...,Sk°1:
Use weights 0, ...,k °1

Aim æ(Si )¥ i (mod k) for i = 0, ...,k °1

k-chromatic graphs, k ∏ 4 even, same trick as bipartite graphs
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1-2-3 Conjecture
– Other results –
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More on the 1-2-3 Conjecture

In general, using {1,2,3} is best possible!
Examples: complete graphs, some cycles, etc.

Deciding whether ¬eß ∑ 2 is NP-complete [Dudek, Wajc, 2011]

Q.: Is this true for bipartite graphs?
A.: ¬eß(Bipartite)= 3: odd multicacti [Thomassen, Wu, Zhang, 2016]

Q.: Can we do with using {1, ...,c} for some constant c?
A.: 30, 16, 13, 6,..., 5! [Kalkowski, Karoński, Pfender, 2012]
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1-2-3 Conjecture
– Open questions –
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Some open problems/questions

Prove the 1-2-3 Conjecture for 4-chromatic graphs
Done for 4-edge-connected 4-chromatic graphs [Wu, Zhang, Zhu, 2017]

More classes of graphs?
Need strong properties to prove this...

... but not so interesting if too strong /
Prove that ¬eß(G )∑ 4 for every nice graph G

Done for 5-regular graphs [B., 2019]

Generalized to regular graphs [Przybyło, 2019+]

List variants?
Every graph is (2,3)-choosable [Wong, Zhu, 2016]

No constant bound for the edge version /
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Going to digraphs
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