On the "quest" towards a directed variant of the 1-2-3 Conjecture

Julien Bensmail* (w/ many others)

*Université Côte d'Azur, France

Northwestern Polytechnical University, Xi'an, China October 28, 2019

General introduction

Make adjacent vertices distinguishable?

Make adjacent vertices distinguishable? \Rightarrow Proper vertex-colouring \odot

Make adjacent vertices distinguishable? \Rightarrow Proper vertex-colouring \bigcirc

 $\triangle \chi$ might be as high as $\Delta + 1$ (Brooks' Theorem)

 $Col(v_i) := Set of colours "incident" to v_i:$

$$\operatorname{Col}(v_1) = \{\bullet\} \quad \operatorname{Col}(v_2) = \{\bullet, \bullet\} \quad \operatorname{Col}(v_3) = \{\bullet, \bullet, \bullet\} \\ \operatorname{Col}(v_4) = \{\bullet\} \quad \operatorname{Col}(v_5) = \{\bullet, \bullet\} \quad \operatorname{Col}(v_6) = \{\bullet, \bullet\} \quad \operatorname{Col}(v_7) = \{\bullet, \bullet\} \\ \end{array}$$

 $Col(v_i) := Set of colours "incident" to v_i:$

$$\operatorname{Col}(v_1) = \{\bullet\} \quad \operatorname{Col}(v_2) = \{\bullet, \bullet\} \quad \operatorname{Col}(v_3) = \{\bullet, \bullet, \bullet\} \\ \operatorname{Col}(v_4) = \{\bullet\} \quad \operatorname{Col}(v_5) = \{\bullet, \bullet\} \quad \operatorname{Col}(v_6) = \{\bullet, \bullet\} \quad \operatorname{Col}(v_7) = \{\bullet, \bullet\} \\ \end{array}$$

Neighbours are distinguished!

• How is Col computed?

- How is Col computed?
- Edge colour restrictions (properness, etc.)?

- How is Col computed?
- Edge colour restrictions (properness, etc.)?
- What elements are coloured (edges, vertices, both, etc.)?

- How is Col computed?
- Edge colour restrictions (properness, etc.)?
- What elements are coloured (edges, vertices, both, etc.)?

• etc.

- How is Col computed?
- Edge colour restrictions (properness, etc.)?
- What elements are coloured (edges, vertices, both, etc.)?

• etc.

⇒ Dozens and dozens variants...

1-2-3 Conjecture - Introduction -

Edge-colours = Edge-weights Col $(v_i) = \sigma(v_i) :=$ Sums of weights "incident" to v_i

Edge-colours = Edge-weights Col $(v_i) = \sigma(v_i) :=$ Sums of weights "incident" to v_i

Edge-colours = Edge-weights Col $(v_i) = \sigma(v_i) :=$ Sums of weights "incident" to v_i

 $\chi_{\Sigma}^{e} = 2$ while $\chi = 3$ \odot

Neighbour-sum-distinguishing edge-weighting = σ is proper $\chi_{\Sigma}^{e}(G)$ = smallest k such that G has n-s-d k-edge-weightings

1-2-3 Conjecture

Neighbour-sum-distinguishing edge-weighting = σ is proper $\chi^{e}_{\Sigma}(G)$ = smallest k such that G has n-s-d k-edge-weightings

Note: K_2 is the only connected graph with χ^e_{Σ} undefined Nice graph = no K_2 as a component

1-2-3 Conjecture

Neighbour-sum-distinguishing edge-weighting = σ is proper $\chi_{\Sigma}^{e}(G)$ = smallest k such that G has n-s-d k-edge-weightings

Note: K_2 is the only connected graph with χ^e_{Σ} undefined Nice graph = no K_2 as a component

1-2-3 Conjecture [Karoński, Łuczak, Thomason, 2004]

For every nice graph *G*, we have $\chi_{\Sigma}^{e}(G) \leq 3$.

Edge weights and vertex colours Michał Karoński and Tomasz Łuczak Foculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznad, Poland E-mail: karonski@amu.edu.pl and tomasz@amu.edu.pl and Andrew Thomason DPMMS, Centre for Mathematical Sciences, Willedforce Road, Cambridge CB3 0WB, England E-mail: a.g.thomason@dpmms.cam.ac.uk Received 24th September 2002 Can the edges of any non-trivial graph be assigned weights from {1,2,3} so that adjacent vertices have different sums of inident edge weights? We give a politive answer when the graph is 3-colourable, or when a finite number of real weights is allowed.

1-2-3 Conjecture – Some families of graphs –

For every $n \ge 3$, we have $\chi_{\Sigma}^{e}(K_{n}) = 3$.

Make a guess $\textcircled{\sc s}$

For every $n \ge 3$, we have $\chi_{\Sigma}^{e}(K_{n}) = 3$.

Proof. By induction on *n*. For n = 3:

For every $n \ge 3$, we have $\chi_{\Sigma}^{e}(K_{n}) = 3$.

Proof. *n* = 4:

For every $n \ge 3$, we have $\chi_{\Sigma}^{e}(K_{n}) = 3$.

Proof. *n* = 4:

For every $n \ge 3$, we have $\chi_{\Sigma}^{e}(K_{n}) = 3$.

Proof. *n* = 5:

For every $n \ge 3$, we have $\chi_{\Sigma}^{e}(K_{n}) = 3$.

Proof. *n* = 5:

For every $n \ge 3$, we have $\chi_{\Sigma}^{e}(K_{n}) = 3$.

Proof. *n* = 5:

General case: *n* even \Rightarrow 1's. *n* odd \Rightarrow 3's.

For every nice bipartite graph G, we have $\chi_{\Sigma}^{e}(G) \leq 3$.

Any idea 🙂 ?

For every nice bipartite graph G, we have $\chi_{\Sigma}^{e}(G) \leq 3$.

Proof. Bipartition (A, B)

Aim: 3-edge-weighting where $\sigma(A) \equiv 1, 2 \pmod{3}$ and $\sigma(B) \equiv 0 \pmod{3}$ $\Leftrightarrow \{0, 1, 2\}$ -edge-weighting with the same properties

For every nice bipartite graph G, we have $\chi_{\Sigma}^{e}(G) \leq 3$.

Proof. Assume |A| is even. Start with weights 0. Second condition fulfilled by B.

For every nice bipartite graph G, we have $\chi_{\Sigma}^{e}(G) \leq 3$.

Proof. Pick a path from A to A with new ends, and apply +1, -1, ... along

For every nice bipartite graph *G*, we have $\chi_{\Sigma}^{e}(G) \leq 3$.

Proof. Pick a path from A to A with new ends, and apply +1, -1, ... along

For every nice bipartite graph G, we have $\chi^{e}_{\Sigma}(G) \leq 3$.

Proof. Repeat until *A* fulfils the first condition

For every nice bipartite graph G, we have $\chi^{e}_{\Sigma}(G) \leq 3$.

Proof. Repeat until *A* fulfils the first condition

For every nice bipartite graph G, we have $\chi_{\Sigma}^{e}(G) \leq 3$.

Proof. If |A| and |B| are odd \odot ... but can reach:

For every nice bipartite graph G, we have $\chi_{\Sigma}^{e}(G) \leq 3$.

Proof. Eventually apply +1, -1, ... or conversely towards another vertex in A

For every nice bipartite graph G, we have $\chi_{\Sigma}^{e}(G) \leq 3$.

Proof. Eventually apply +1, -1, ... or conversely towards another vertex in A

- Proof applies to 3-chromatic graphs with partite sets A, B, C:
 - Use weights 0,1,2
 - Aim $\sigma(A) \equiv 0 \pmod{3}$, $\sigma(B) \equiv 1 \pmod{3}$, $\sigma(C) \equiv 2 \pmod{3}$

- Proof applies to 3-chromatic graphs with partite sets A, B, C:
 - Use weights 0,1,2
 - Aim $\sigma(A) \equiv 0 \pmod{3}$, $\sigma(B) \equiv 1 \pmod{3}$, $\sigma(C) \equiv 2 \pmod{3}$
- More generally, k-chromatic graphs, $k \ge 3$ odd, with partite sets $S_0, ..., S_{k-1}$:
 - Use weights 0, ..., k-1
 - Aim $\sigma(S_i) \equiv i \pmod{k}$ for i = 0, ..., k-1

- Proof applies to 3-chromatic graphs with partite sets A, B, C:
 - Use weights 0,1,2
 - Aim $\sigma(A) \equiv 0 \pmod{3}$, $\sigma(B) \equiv 1 \pmod{3}$, $\sigma(C) \equiv 2 \pmod{3}$
- More generally, k-chromatic graphs, $k \ge 3$ odd, with partite sets $S_0, ..., S_{k-1}$:
 - Use weights 0, ..., k − 1
 - Aim $\sigma(S_i) \equiv i \pmod{k}$ for i = 0, ..., k-1
- k-chromatic graphs, $k \ge 4$ even, same trick as bipartite graphs

1-2-3 Conjecture - Other results -

• In general, using {1,2,3} is best possible!

- Examples: complete graphs, some cycles, etc.
- Deciding whether $\chi^e_{\Sigma} \leq 2$ is NP-complete [Dudek, Wajc, 2011]

• In general, using {1,2,3} is best possible!

- Examples: complete graphs, some cycles, etc.
- Deciding whether $\chi^e_{\Sigma} \leq 2$ is NP-complete [Dudek, Wajc, 2011]
- Q.: Is this true for bipartite graphs?
 - **A.:** χ^{e}_{Σ} (Bipartite) = 3: *odd multicacti* [Thomassen, Wu, Zhang, 2016]

- In general, using {1,2,3} is best possible!
 - Examples: complete graphs, some cycles, etc.
 - Deciding whether $\chi^e_{\Sigma} \leq 2$ is NP-complete [Dudek, Wajc, 2011]
- Q.: Is this true for bipartite graphs?
 A.: χ^e_Σ(Bipartite) = 3: odd multicacti [Thomassen, Wu, Zhang, 2016]
- Q.: Can we do with using {1,...,c} for some constant c?
 A.: 30, 16, 13, 6,..., 5! [Kalkowski, Karoński, Pfender, 2012]

1-2-3 Conjecture - Open questions -

- Prove the 1-2-3 Conjecture for 4-chromatic graphs
 - Done for 4-edge-connected 4-chromatic graphs [Wu, Zhang, Zhu, 2017]

- Prove the 1-2-3 Conjecture for 4-chromatic graphs
 - Done for 4-edge-connected 4-chromatic graphs [Wu, Zhang, Zhu, 2017]
- More classes of graphs?
 - Need strong properties to prove this...
 - $\bullet \ \ldots \ but not so interesting if too strong <math display="inline">\circledast$

- Prove the 1-2-3 Conjecture for 4-chromatic graphs
 - Done for 4-edge-connected 4-chromatic graphs [Wu, Zhang, Zhu, 2017]
- More classes of graphs?
 - Need strong properties to prove this...
 - $\bullet \ \ldots \ but not so interesting if too strong <math display="inline">\circledast$
- Prove that $\chi^e_{\Sigma}(G) \leq 4$ for every nice graph G
 - Done for 5-regular graphs [B., 2019]
 - Generalized to regular graphs [Przybyło, 2019+]

- Prove the 1-2-3 Conjecture for 4-chromatic graphs
 - Done for 4-edge-connected 4-chromatic graphs [Wu, Zhang, Zhu, 2017]
- More classes of graphs?
 - Need strong properties to prove this...
 - $\bullet \ \ldots \ but not so interesting if too strong <math display="inline">\circledast$
- Prove that $\chi^e_{\Sigma}(G) \leq 4$ for every nice graph G
 - Done for 5-regular graphs [B., 2019]
 - Generalized to regular graphs [Przybyło, 2019+]
- List variants?
 - Every graph is (2,3)-choosable [Wong, Zhu, 2016]
 - $\bullet\,$ No constant bound for the edge version \circledast

Going to digraphs

Going to Digraphs (IWonder tow the 1235 generalizes to disaphs. Would like some challenge In particular: L- Save effects when weighting arcs. L- Inductive arguments hard to work our Chance Several options, because "two saws" for the vertices : a, v b, vinconung a oesteroing " Sun ? J Sulles \$ 5 + 5 + OF course , asking 5+ 7+ is just the 123th ouje dune First work : "Relative seves" Borowiecki 18-5+) Bilsmale 2012 12 suffice. Also list version Khatirinejad Naserasr Newman 2011. Stevens Here, focus on disting. one of 5(w), 5(0) and ac on 5(v), 5(v) D(+,+) u v otel 7 sto) Bauda 11 1. 1 o so otel 7 sto) Bauda 2015 all digraphs can be weighted Suctives read 1,2,3 79 1,2,3 works ! induction of choose v st d(r); d(v) exists some sed = E dt

