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Make adjacent vertices distinguishable? = Proper vertex-colouring ©

[ o
/\ y might be as high as A+ 1 (Brooks' Theorem)
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Motivation (cont'd)

“Encode” a proper vertex-colouring using few different types of resources?
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“Encode” a proper vertex-colouring using few different types of resources?

v2 V5

v3 V6

Col(v;) := Set of colours “incident” to v;:

Col(vi)={@} Col(wy)={e,@} Col(v3)={e,0 6}
Col(va) ={@ Col(vs)={e,@,0 Col(vs)={e,@ Col(v7)=/{e @}
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Motivation (cont'd)

“Encode” a proper vertex-colouring using few different types of resources?

1% V5

v3 V6

Col(v;) := Set of colours “incident” to v;:

Col(vi)={@} Col(wy)={e,@} Col(v3)={e,0 6}
Col(va) ={@ Col(vs)={e,@,0 Col(vs)={e,@ Col(v7)=/{e @}

Neighbours are distinguished!
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From edge colours to vertex colours

Many parameters:
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From edge colours to vertex colours

Many parameters:
@ How is Col computed?
e Edge colour restrictions (properness, etc.)?
@ What elements are coloured (edges, vertices, both, etc.)?
@ etc.

= Dozens and dozens variants...

A Dynamic Survey of Graph Labeling

Joseph A. Gallian
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Mathematics Subject Classifications: 05C78

Abstract

A graph labeling is an assignment of integers to the vertices or edges, or both,
subject to certain conditions. Graph labelings were first introduced in the mid
1960s. In the intervening 50 years over 200 graph labelings techniques have been
studied in over 2500 papers. Finding out what has been done for any particular
kind of labeling and keeping up with new discoveries is difficult because of the sheer
number of papers and because many of the papers have appeared in journals that
are not widely available. In this survey I have collected everything I could find on
graph labeling. For the convenience of the reader the survey includes a detailed
table of contents and index.
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1-2-3 Conjecture

— Introduction —
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Distinguishing neighbours via their incident sums

Edge-colours = Edge-weights
Col(v;) = o(v;) := Sums of weights “incident” to v;
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Distinguishing neighbours via their incident sums

Edge-colours = Edge-weights
Col(v;) = o(v;) := Sums of weights “incident” to v;

v2 vs
{z}
1B

Vi

xS =2 while y =3 ©
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1-2-3 Conjecture

Neighbour-sum-distinguishing edge-weighting = o is proper
x5(G) = smallest k such that G has n-s-d k-edge-weightings
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1-2-3 Conjecture

Neighbour-sum-distinguishing edge-weighting = o is proper
x5(G) = smallest k such that G has n-s-d k-edge-weightings

Note: K3 is the only connected graph with x§ undefined
Nice graph = no K5 as a component

1-2-3 Conjecture [Karonski, tuczak, Thomason, 2004]

For every nice graph G, we have y§(G) <3.

Edge weights and vertex colours
Michat Karoiiski and Tomasz Euczak
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Pozna,
Poland

E-mailz i edu.pl and edu.pl

and
Andrew Thomason
DPMMS, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 OWB,
E-mail: a.g.thomason @dpmms.cam.ac.uk
Received 24th September 2002
Can the edges of any non-trivial graph be assigned weights from {1,2,3} so that
adjacent vertices have different sums of incident edge weights?

‘We give a positive answer when the graph is 3-colourable, or when a finite number of
real weights is allowed.,
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1-2-3 Conjecture

— Some families of graphs —

9/17



Complete graphs

For every n=3, we have y§(K,)=3.

Make a guess ©
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Complete graphs

For every n=3, we have y§(K,)=3.

Proof. By induction on n. For n=3:
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Complete graphs
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Proof. n=4:
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Complete graphs

For every n=3, we have y§(K,)=3.

Proof. n=5:

General case: neven = 1's. nodd = 3's.
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Bipartite graphs

For every nice bipartite graph G, we have y§(G) <3.

Any idea © 7
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Bipartite graphs

For every nice bipartite graph G, we have y$(G) <3.

Proof. Bipartition (A, B)

=

(I\\\l

Aim: 3-edge-weighting where o(A)=1,2 (mod 3) and ¢(B) =0 (mod 3)
< {0,1,2}-edge-weighting with the same properties
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Bipartite graphs

For every nice bipartite graph G, we have y§(G) <3.

Proof. Assume |A| is even. Start with weights 0. Second condition fulfilled by B.
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Bipartite graphs

For every nice bipartite graph G, we have y§(G) <3.

Proof. Repeat until A fulfils the first condition
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Bipartite graphs

For every nice bipartite graph G, we have y§(G) <3.

Proof. If |A| and |B] are odd ® ... but can reach:

=12 @ I| |
: 5 ® =0
=12 @ 1 =
| !
=12 @ 1 : ® =0
1 1
i |
=12 @ | 4
] 1 ® =0
| !
1 X
=0 ® i '| ® =0

11/17



Bipartite graphs

For every nice bipartite graph G, we have y§(G) <3.

Proof. Eventually apply +1,-1,... or conversely towards another vertex in A
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On that proof...

@ Proof applies to 3-chromatic graphs with partite sets A, B, C:

e Use weights 0,1,2
o Aim o(A)=0 (mod 3), o(B)=1 (mod 3), 0(C)=2 (mod 3)
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@ Proof applies to 3-chromatic graphs with partite sets A, B, C:
e Use weights 0,1,2
o Aim o(A)=0 (mod 3), o(B)=1 (mod 3), 0(C)=2 (mod 3)
@ More generally, k-chromatic graphs, k=3 odd, with partite sets Sy, ..., Sk_1:
o Use weights 0,...,k—1
o Aim o(S;)=i (mod k) for i=0,..,. k-1
@ k-chromatic graphs, k =4 even, same trick as bipartite graphs
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1-2-3 Conjecture
— Other results —
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More on the 1-2-3 Conjecture

@ In general, using {1,2,3} is best possible!

o Examples: complete graphs, some cycles, etc.
o Deciding whether y§ <2 is NP-complete [Dudek, Wajc, 2011]
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More on the 1-2-3 Conjecture

@ In general, using {1,2,3} is best possible!

o Examples: complete graphs, some cycles, etc.
o Deciding whether y§ <2 is NP-complete [Dudek, Wajc, 2011]

@ Q.: Is this true for bipartite graphs?

A.: xS (Bipartite) = 3: odd multicacti [Thomassen, Wu, Zhang, 2016]
@ Q.: Can we do with using {1,...,c} for some constant c?

A.: 30, 16, 13, 6,..., 5! [Kalkowski, Karonski, Pfender, 2012]
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1-2-3 Conjecture

— Open questions —
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Some open problems/questions

@ Prove the 1-2-3 Conjecture for 4-chromatic graphs
e Done for 4-edge-connected 4-chromatic graphs [Wu, Zhang, Zhu, 2017]
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Some open problems/questions

Prove the 1-2-3 Conjecture for 4-chromatic graphs
e Done for 4-edge-connected 4-chromatic graphs [Wu, Zhang, Zhu, 2017]
@ More classes of graphs?

o Need strong properties to prove this...
e ... but not so interesting if too strong ®

Prove that y$(G) <4 for every nice graph G

e Done for 5-regular graphs [B., 2019]
o Generalized to regular graphs [Przybyto, 2019+]

o List variants?

e Every graph is (2,3)-choosable [Wong, Zhu, 2016]
e No constant bound for the edge version ®
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Going to digraphs
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