A Decompositional Approach to the 1-2-3 Conjecture

Julien Bensmail* (w/ many others)

*Université Côte d'Azur, France

Universidade Federal do Ceará, Fortaleza, Brazil May 6, 2019

General introduction

Make adjacent vertices distinguishable?

Make adjacent vertices distinguishable? \Rightarrow Proper vertex-colouring \odot

Make adjacent vertices distinguishable? \Rightarrow Proper vertex-colouring \bigcirc

 $\triangle \chi$ might be as high as $\Delta + 1$ (Brooks' Theorem)

 $Col(v_i) := Set of colours "incident" to v_i:$

$$\operatorname{Col}(v_1) = \{\bullet\} \quad \operatorname{Col}(v_2) = \{\bullet, \bullet\} \quad \operatorname{Col}(v_3) = \{\bullet, \bullet, \bullet\} \\ \operatorname{Col}(v_4) = \{\bullet\} \quad \operatorname{Col}(v_5) = \{\bullet, \bullet, \bullet\} \quad \operatorname{Col}(v_6) = \{\bullet, \bullet\} \quad \operatorname{Col}(v_7) = \{\bullet, \bullet\} \\ \end{array}$$

 $Col(v_i) := Set of colours "incident" to v_i:$

$$\operatorname{Col}(v_1) = \{\bullet\} \quad \operatorname{Col}(v_2) = \{\bullet, \bullet\} \quad \operatorname{Col}(v_3) = \{\bullet, \bullet, \bullet\}$$
$$\operatorname{Col}(v_4) = \{\bullet\} \quad \operatorname{Col}(v_5) = \{\bullet, \bullet, \bullet\} \quad \operatorname{Col}(v_6) = \{\bullet, \bullet\} \quad \operatorname{Col}(v_7) = \{\bullet, \bullet\}$$

Neighbours are distinguished!

• How is Col computed?

- How is Col computed?
- Edge colour restrictions (properness, etc.)?

- How is Col computed?
- Edge colour restrictions (properness, etc.)?
- What elements are coloured (edges, vertices, both, etc.)?

- How is Col computed?
- Edge colour restrictions (properness, etc.)?
- What elements are coloured (edges, vertices, both, etc.)?

• etc.

- How is Col computed?
- Edge colour restrictions (properness, etc.)?
- What elements are coloured (edges, vertices, both, etc.)?

etc.

⇒ Dozens and dozens variants...

1-2-3 Conjecture - Introduction -

Edge-colours = Edge-weights $Col(v_i) = \sigma(v_i) :=$ Sums of weights "incident" to v_i

Edge-colours = Edge-weights $Col(v_i) = \sigma(v_i) :=$ Sums of weights "incident" to v_i

Edge-colours = Edge-weights Col $(v_i) = \sigma(v_i)$:= Sums of weights "incident" to v_i

 $\chi_{\Sigma}^{e} = 2$ while $\chi = 3$ \odot

Neighbour-sum-distinguishing edge-weighting = σ is proper $\chi_{\Sigma}^{e}(G)$ = smallest k such that G has n-s-d k-edge-weightings

1-2-3 Conjecture

Neighbour-sum-distinguishing edge-weighting = σ is proper $\chi^{e}_{\Sigma}(G)$ = smallest k such that G has n-s-d k-edge-weightings

Note: K_2 is the only connected graph with χ^e_{Σ} undefined Nice graph = no K_2 as a component

1-2-3 Conjecture

Neighbour-sum-distinguishing edge-weighting = σ is proper $\chi_{\Sigma}^{e}(G)$ = smallest k such that G has n-s-d k-edge-weightings

Note: K_2 is the only connected graph with χ^e_{Σ} undefined Nice graph = no K_2 as a component

1-2-3 Conjecture [Karoński, Łuczak, Thomason, 2004]

For every nice graph G, we have $\chi^{e}_{\Sigma}(G) \leq 3$.

Edge weights and vertex colours

Michał Karoński and Tomasz Łuczak

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland E-mail: karonski@amu.edu.ol and tomasz@amu.edu.ol

and

Andrew Thomason

DPMMS, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, England E-mail: a.g.thomason@dpmms.cam.ac.uk

Received 24th September 2002

Can the edges of any non-trivial graph be assigned weights from $\{1, 2, 3\}$ so that adjacent vertices have different sums of incident edge weights? We give a positive answer when the graph is 3-colourable, or when a finite number of real weights is allowed.

This problem is also related to irregular multigraphs

How to Define an Irregular Graph

Gary Chartrand Paul Erdös Ortrud R. Oellermann

Q.: regular = same degrees, but irregular = ?

(Note: simple graphs with ≥ 2 vertices of unique degrees do not exist)

This problem is also related to irregular multigraphs

How to Define an Irregular Graph Gary Chartrand

Paul Erdös Ortrud R. Oellermann

Q.: regular = same degrees, but irregular = ? (Note: simple graphs with \geq 2 vertices of unique degrees do not exist)

Possible definition: locally irregular = no adjacent vertices with = degree

This problem is also related to irregular multigraphs

How to Define an Irregular Graph Gary Chartrand Paul Erdős

Ortrud R. Oellermann

Q.: regular = same degrees, but irregular = ? (Note: simple graphs with ≥ 2 vertices of unique degrees do not exist)

Possible definition: locally irregular = no adjacent vertices with = degree Connection to n-s-d edge-weightings:

 \Rightarrow Finding $\chi^{e}_{\Sigma}(\mathcal{G}) \Leftrightarrow$ Perform this with minimizing maximum edge multiplication

1-2-3 Conjecture – Some families of graphs –

For every $n \ge 3$, we have $\chi_{\Sigma}^{e}(K_{n}) = 3$.

Make a guess $\textcircled{\sc s}$

For every $n \ge 3$, we have $\chi^e_{\Sigma}(K_n) = 3$.

Proof. By induction on *n*. For n = 3:

For every $n \ge 3$, we have $\chi_{\Sigma}^{e}(K_{n}) = 3$.

Proof. *n* = 4:

For every $n \ge 3$, we have $\chi_{\Sigma}^{e}(K_{n}) = 3$.

Proof. *n* = 4:

For every $n \ge 3$, we have $\chi_{\Sigma}^{e}(K_{n}) = 3$.

Proof. *n* = 5:

For every $n \ge 3$, we have $\chi_{\Sigma}^{e}(K_{n}) = 3$.

Proof. *n* = 5:

For every $n \ge 3$, we have $\chi_{\Sigma}^{e}(K_{n}) = 3$.

Proof. *n* = 5:

General case: *n* even \Rightarrow 1's. *n* odd \Rightarrow 3's.

For every nice bipartite graph G, we have $\chi^{e}_{\Sigma}(G) \leq 3$.

Any idea 🙂 ?

For every nice bipartite graph G, we have $\chi_{\Sigma}^{e}(G) \leq 3$.

Proof. Bipartition (A, B)

Aim: 3-edge-weighting where $\sigma(A) \equiv 1, 2 \pmod{3}$ and $\sigma(B) \equiv 0 \pmod{3}$ $\Leftrightarrow \{0, 1, 2\}$ -edge-weighting with the same properties

For every nice bipartite graph G, we have $\chi_{\Sigma}^{e}(G) \leq 3$.

Proof. Assume |A| is even. Start with weights 0. Second condition fulfilled by B.

For every nice bipartite graph G, we have $\chi^e_{\Sigma}(G) \leq 3$.

Proof. Pick a path from A to A with new ends, and apply +1, -1, ... along

For every nice bipartite graph G, we have $\chi^e_{\Sigma}(G) \leq 3$.

Proof. Pick a path from A to A with new ends, and apply +1, -1, ... along

For every nice bipartite graph G, we have $\chi^{e}_{\Sigma}(G) \leq 3$.

Proof. Repeat until *A* fulfils the first condition

For every nice bipartite graph G, we have $\chi_{\Sigma}^{e}(G) \leq 3$.

Proof. Repeat until *A* fulfils the first condition

For every nice bipartite graph G, we have $\chi^e_{\Sigma}(G) \leq 3$.

Proof. If |A| and |B| are odd \odot ... but can reach:

For every nice bipartite graph G, we have $\chi^e_{\Sigma}(G) \leq 3$.

Proof. Eventually apply +1, -1, ... or conversely towards another vertex in A

For every nice bipartite graph G, we have $\chi^e_{\Sigma}(G) \leq 3$.

Proof. Eventually apply +1, -1, ... or conversely towards another vertex in A

- Proof applies to 3-chromatic graphs with partite sets A, B, C:
 - Use weights 0,1,2
 - Aim $\sigma(A) \equiv 0 \pmod{3}$, $\sigma(B) \equiv 1 \pmod{3}$, $\sigma(C) \equiv 2 \pmod{3}$

- Proof applies to 3-chromatic graphs with partite sets A, B, C:
 - Use weights 0,1,2
 - Aim $\sigma(A) \equiv 0 \pmod{3}$, $\sigma(B) \equiv 1 \pmod{3}$, $\sigma(C) \equiv 2 \pmod{3}$
- More generally, k-chromatic graphs, $k \ge 3$ odd, with partite sets $S_0, ..., S_{k-1}$:
 - Use weights 0, ..., k-1
 - Aim $\sigma(S_i) \equiv i \pmod{k}$ for i = 0, ..., k-1

- Proof applies to 3-chromatic graphs with partite sets A, B, C:
 - Use weights 0,1,2
 - Aim $\sigma(A) \equiv 0 \pmod{3}$, $\sigma(B) \equiv 1 \pmod{3}$, $\sigma(C) \equiv 2 \pmod{3}$
- More generally, k-chromatic graphs, $k \ge 3$ odd, with partite sets $S_0, ..., S_{k-1}$:
 - Use weights 0, ..., k-1
 - Aim $\sigma(S_i) \equiv i \pmod{k}$ for i = 0, ..., k 1
- k-chromatic graphs, $k \ge 4$ even, same trick as bipartite graphs

- In general, using {1,2,3} is best possible!
 - Examples: complete graphs, some cycles, etc.
 - Deciding whether $\chi^e_{\Sigma} \leq 2$ is NP-complete [Dudek, Wajc, 2011]

- In general, using {1,2,3} is best possible!
 - Examples: complete graphs, some cycles, etc.
 - Deciding whether $\chi_{\Sigma}^{e} \leq 2$ is NP-complete [Dudek, Wajc, 2011]
- Q.: Is this true for bipartite graphs?

A.: χ^{e}_{Σ} (Bipartite) = 3: odd multicacti [Thomassen, Wu, Zhang, 2016]

These graphs can also be described in another way as follows. Take a collection of simple cycles each of length 2 modulo 4 and each with edges colored alternately red and green. Then form a connected simple graph by pasting the cycles together, one by one, in a tree-like fashion along green edges. Finally replace every green edge by a multiple edge of any multiplicity ≥ 1 . The graph with one edge and two vertices is also called an odd multi-cactus.

Intuition: Essentially, with $\{1, 2\}$, paths of length $\equiv 1 \pmod{4}$ act as edges:

1-2-3 Conjecture - Best bound -

Best bound on χ^e_Σ obtained from one for a total variant of the problem

Best bound on χ^e_{Σ} obtained from one for a total variant of the problem

(~ adding a loop at each vertex) $\chi^t_{\Sigma}(G) =$ smallest k such that G has n-s-d k-total-weightings

Remarks and a 1-2 Conjecture

Remarks:

- $\chi_{\Sigma}^{t}(G)$ defined for all G
- $\chi_{\Sigma}^{t}(G) \leq \chi_{\Sigma}^{e}(G)$ for every G

Remarks and a 1-2 Conjecture

Remarks:

- $\chi_{\Sigma}^{t}(G)$ defined for all G
- $\chi_{\Sigma}^{t}(G) \leq \chi_{\Sigma}^{e}(G)$ for every G

On a 1, 2 Conjecture

Jakub Przybyło[†] and Mariusz Woźniak[‡]

AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland

received February 12, 2008, accepted February 3, 2010.

Let us assign positive integers to the edges and vertices of a simple graph G. As a result we obtain a vertex-colouring of G with integers, where a vertex colour is simply a sum of the weight assigned to the vertex itself and the weights of its incident edges. Can we obtain a proper colouring using only weights 1 and 2 for an arbitrary G?

We give a positive answer when G is a 3-colourable, complete or 4-regular graph. We also show that it is enough to use weights from 1 to 11, as well as from 1 to $\lfloor \frac{\chi(G)}{2} \rfloor + 1$, for an arbitrary graph G.

Keywords: neighbour-distinguishing total-weighting, irregularity strength

1-2 Conjecture [Przybyło, Woźniak, 2010]

For every graph *G*, we have $\chi_{\Sigma}^{t}(G) \leq 2$.

For every graph *G*, we have $\chi_{\Sigma}^{t}(G) \leq 3$.

For every graph *G*, we have $\chi_{\Sigma}^{t}(G) \leq 3$.

Proof. Essentially, a clever induction:

• Start from all edges at 2, all vertices at 1

For every graph *G*, we have $\chi_{\Sigma}^{t}(G) \leq 3$.

- Start from all edges at 2, all vertices at 1
- Consider the vertices in any order; for every v_i:

For every graph G, we have $\chi_{\Sigma}^{t}(G) \leq 3$.

- Start from all edges at 2, all vertices at 1
- Consider the vertices in any order; for every v_i:
 - Choose a set $\{\phi(v_i), \phi(v_i) + 1\}$ of possible sums $(\phi(v_i) + 1 = \text{eventual sum}, \phi(v_i) \text{ the only allowed different sum})$ \triangle Make sure that $\phi(v_i) \neq \phi(v_j)$ for every backward edge!

For every graph G, we have $\chi_{\Sigma}^{t}(G) \leq 3$.

- Start from all edges at 2, all vertices at 1
- Consider the vertices in any order; for every v_i:
 - Choose a set $\{\phi(v_i), \phi(v_i) + 1\}$ of possible sums $(\phi(v_i) + 1 = \text{eventual sum}, \phi(v_i) \text{ the only allowed different sum})$ \triangle Make sure that $\phi(v_i) \neq \phi(v_j)$ for every backward edge!
 - Make "valid" weight changes backwards so that $\sigma(v_i) \in \{\phi(v_i), \phi(v_i) + 1\}$

For every graph *G*, we have $\chi_{\Sigma}^{t}(G) \leq 3$.

Proof. Essentially, a clever induction:

- Start from all edges at 2, all vertices at 1
- Consider the vertices in any order; for every v_i:
 - Choose a set $\{\phi(v_i), \phi(v_i) + 1\}$ of possible sums $(\phi(v_i) + 1 = \text{eventual sum}, \phi(v_i) \text{ the only allowed different sum})$ \triangle Make sure that $\phi(v_i) \neq \phi(v_j)$ for every backward edge!
 - Make "valid" weight changes backwards so that $\sigma(v_i) \in \{\phi(v_i), \phi(v_i) + 1\}$
- Eventually, do +1 on every vertex weight where $\sigma(v_i) = \phi(v_i)$

Note: Actually, only 1,2 are used as vertex weights

Vertex ordering: v₁, v₂, v₃, v₄, v₅, v₆, v₇

Vertex ordering: v₁, v₂, v₃, v₄, v₅, v₆, v₇

Vertex ordering: $v_1, v_2, v_3, v_4, v_5, v_6, v_7$

Vertex ordering: $v_1, v_2, v_3, v_4, v_5, v_6, v_7$

Kalkowski's Algorithm: Final adjustments

Kalkowski's Algorithm: Final adjustments

Kalkowski's Algorithm: Final adjustments

Kalkowski's Algorithm: Final picture

- Works because:
 - All edge weight changes are done backwards
 - \Rightarrow When treating v_i , every backward edge $v_i v_i$ is weighted 2
 - \Rightarrow A valid change (-1 or +1) per backward edge
 - \Rightarrow # of candidates as $\phi(v_i) + 1 > \#$ of backward neighbours

- Works because:
 - All edge weight changes are done backwards
 - \Rightarrow When treating v_i , every backward edge $v_i v_i$ is weighted 2
 - \Rightarrow A valid change (-1 or +1) per backward edge
 - \Rightarrow # of candidates as $\phi(v_i) + 1 > \#$ of backward neighbours
- Multiple generalizations...

For every nice graph *G*, we have $\chi_{\Sigma}^{e}(G) \leq 5$.

- Works because:
 - All edge weight changes are done backwards
 - \Rightarrow When treating v_i , every backward edge $v_i v_i$ is weighted 2
 - \Rightarrow A valid change (-1 or +1) per backward edge
 - \Rightarrow # of candidates as $\phi(v_i) + 1 > \#$ of backward neighbours
- Multiple generalizations...

For every nice graph G, we have $\chi^e_{\Sigma}(G) \leq 5$.

Needed modifications:

• No final adjustments \Rightarrow Two dedicated sums { $\phi(v_i), \phi(v_i) + 2$ } per vertex

- Works because:
 - All edge weight changes are done backwards
 - \Rightarrow When treating v_i , every backward edge $v_i v_i$ is weighted 2
 - \Rightarrow A valid change (-1 or +1) per backward edge
 - \Rightarrow # of candidates as $\phi(v_i) + 1 > \#$ of backward neighbours
- Multiple generalizations...

For every nice graph G, we have $\chi^{e}_{\Sigma}(G) \leq 5$.

- No final adjustments \Rightarrow Two dedicated sums { $\phi(v_i), \phi(v_i) + 2$ } per vertex
- Initially, 3 on all edges \Rightarrow Valid changes are of the form -2 or +2

- Works because:
 - All edge weight changes are done backwards
 - \Rightarrow When treating v_i , every backward edge $v_i v_i$ is weighted 2
 - \Rightarrow A valid change (-1 or +1) per backward edge
 - \Rightarrow # of candidates as $\phi(v_i) + 1 > \#$ of backward neighbours
- Multiple generalizations...

For every nice graph G, we have $\chi^{e}_{\Sigma}(G) \leq 5$.

- No final adjustments \Rightarrow Two dedicated sums { $\phi(v_i), \phi(v_i) + 2$ } per vertex
- Initially, 3 on all edges \Rightarrow Valid changes are of the form -2 or +2
- To reach a valid $\{\phi(v_i), \phi(v_i) + 2\}$, allow to do -1 or +1 on a forward edge
 - The vertex ordering must guarantee forward edges

- Works because:
 - All edge weight changes are done backwards
 - \Rightarrow When treating v_i , every backward edge $v_i v_i$ is weighted 2
 - \Rightarrow A valid change (-1 or +1) per backward edge
 - \Rightarrow # of candidates as $\phi(v_i) + 1 > \#$ of backward neighbours
- Multiple generalizations...

For every nice graph G, we have $\chi^{e}_{\Sigma}(G) \leq 5$.

- No final adjustments \Rightarrow Two dedicated sums { $\phi(v_i), \phi(v_i) + 2$ } per vertex
- Initially, 3 on all edges \Rightarrow Valid changes are of the form -2 or +2
- To reach a valid $\{\phi(v_i), \phi(v_i) + 2\}$, allow to do -1 or +1 on a forward edge
 - The vertex ordering must guarantee forward edges
 - For a backward edge weighted 2 or 4, only +2 and -2 can be done

- Works because:
 - All edge weight changes are done backwards
 - \Rightarrow When treating v_i , every backward edge $v_i v_i$ is weighted 2
 - \Rightarrow A valid change (-1 or +1) per backward edge
 - \Rightarrow # of candidates as $\phi(v_i) + 1 > \#$ of backward neighbours
- Multiple generalizations...

For every nice graph G, we have $\chi^{e}_{\Sigma}(G) \leq 5$.

- No final adjustments \Rightarrow Two dedicated sums { $\phi(v_i), \phi(v_i) + 2$ } per vertex
- Initially, 3 on all edges \Rightarrow Valid changes are of the form -2 or +2
- To reach a valid $\{\phi(v_i), \phi(v_i) + 2\}$, allow to do -1 or +1 on a forward edge
 - The vertex ordering must guarantee forward edges
 - For a backward edge weighted 2 or 4, only +2 and -2 can be done
 - A Valid changes backwards are trickier

1-2-3 Conjecture - Open questions -

- Prove the 1-2-3 Conjecture for 4-chromatic graphs
 - Done for 4-edge-connected 4-chromatic graphs [Wu, Zhang, Zhu, 2017]

- Prove the 1-2-3 Conjecture for 4-chromatic graphs
 - Done for 4-edge-connected 4-chromatic graphs [Wu, Zhang, Zhu, 2017]
- More classes of graphs?
 - Need strong properties to prove this...
 - $\bullet \ \ldots \ but not so interesting if too strong <math display="inline">\circledast$

- Prove the 1-2-3 Conjecture for 4-chromatic graphs
 - Done for 4-edge-connected 4-chromatic graphs [Wu, Zhang, Zhu, 2017]
- More classes of graphs?
 - Need strong properties to prove this...
 - ... but not so interesting if too strong ③
- Prove that $\chi^{e}_{\Sigma}(G) \leq 4$ for every nice graph G
 - Done for 5-regular graphs [B., 2019]
 - Generalized to regular graphs [Przybyło, 2019+]

- Prove the 1-2-3 Conjecture for 4-chromatic graphs
 - Done for 4-edge-connected 4-chromatic graphs [Wu, Zhang, Zhu, 2017]
- More classes of graphs?
 - Need strong properties to prove this...
 - ... but not so interesting if too strong ③
- Prove that $\chi^e_{\Sigma}(G) \leq 4$ for every nice graph G
 - Done for 5-regular graphs [B., 2019]
 - Generalized to regular graphs [Przybyło, 2019+]
- Prove/Disprove the 1-2 Conjecture

- Prove the 1-2-3 Conjecture for 4-chromatic graphs
 - Done for 4-edge-connected 4-chromatic graphs [Wu, Zhang, Zhu, 2017]
- More classes of graphs?
 - Need strong properties to prove this...
 - ... but not so interesting if too strong ③
- Prove that $\chi^e_{\Sigma}(G) \leq 4$ for every nice graph G
 - Done for 5-regular graphs [B., 2019]
 - Generalized to regular graphs [Przybyło, 2019+]
- Prove/Disprove the 1-2 Conjecture
- List variants?
 - Every graph is (2,3)-choosable [Wong, Zhu, 2016]
 - $\bullet\,$ No constant bound for the edge version \circledast

Locally irregular decompositions - Introduction -

Locally irregular = Every two adjacent vertices have distinct degrees

Locally irregular = Every two adjacent vertices have distinct degrees

Decomposition of G = Partition $E_1, ..., E_k$ of E(G)Locally irregular decomposition = Decomposition into locally irregular graphs (equivalently, locally irregular edge-colouring) Locally irregular = Every two adjacent vertices have distinct degrees

Decomposition of G = Partition $E_1, ..., E_k$ of E(G)Locally irregular decomposition = Decomposition into locally irregular graphs (equivalently, locally irregular edge-colouring)

 $\chi'_{irr}(G) =$ Smallest $k \ge 1$ s.t. G has locally irregular k-edge-colourings G decomposable = $\chi'_{irr}(G)$ exists G exceptional, otherwise

Local irregularity = Possible antonym notion to regularity
 χ'_{irr} = Measure of closeness to irregularity

- Local irregularity = Possible antonym notion to regularity
- **2** χ'_{irr} = Measure of closeness to irregularity
- Onnections and applications to the 1-2-3 Conjecture

In regular graphs, $\chi^e_{\Sigma} = 2$ if and only if $\chi'_{irr} = 2$

Exceptional graphs?

Exceptional graphs?

Some obvious ones: odd-length paths and odd-length cycles...

Exceptional graphs?

Some obvious ones: odd-length paths and odd-length cycles... ... but also \mathcal{T} :

Every connected graph of even size can be decomposed into paths of length 2 and is thus decomposable. Hence, all exceptional graphs have odd size and a complete characterisation of exceptional graphs was given by Baudon, Bensmail, Przybyło, and Woźniak [1]. To state this characterisation, we first need to define a family T of graphs. The definition is recursive:

- The triangle K₃ belongs to T.
- Every other graph in *T* can be constructed by (1) taking an auxiliary graph *F* being either a path
 of even length or a path of odd length with a triangle glued to one of its ends, then (2) choosing
 a graph *G* ∈ *T* containing a triangle with at least one vertex, say *v*, of degree 2 in *G*, and finally
 (3) identifying *v* with a vertex of degree 1 of *F*.

In other words, the graphs in \mathcal{T} are obtained by connecting a collection of triangles in a tree-like fashion, using paths with certain lengths, depending on what elements these paths connect. Let us point out that all graphs in \mathcal{T} have maximum degree 3, have odd size, and all of their cycles are triangles.

Theorem [Baudon, B., Przybyło, Woźniak, 2015]

Exceptional graphs are exactly these three classes of graphs.

How large can χ'_{irr} be?

How large can χ'_{irr} be?

Conjecture [Baudon, B., Przybyło, Woźniak, 2015]

For every decomposable graph G, we have $\chi'_{irr}(G) \leq 3$.

Note: Would be tight (e.g. C_{4k+2} , K_n , etc.). Actually, unless P = NP, no "good" characterization of when $\chi'_{irr}(G) \leq 2$ [Baudon, B., Sopena, 2015].
How large can χ'_{irr} be?

Conjecture [Baudon, B., Przybyło, Woźniak, 2015]

For every decomposable graph *G*, we have $\chi'_{irr}(G) \leq 3$.

Note: Would be tight (e.g. C_{4k+2} , K_n , etc.). Actually, unless P = NP, no "good" characterization of when $\chi'_{irr}(G) \leq 2$ [Baudon, B., Sopena, 2015].

Conjecture verified for:

• trees, regular bipartite graphs, $K_{n,m}$, K_n , some Cartesian products, regular graphs with degree $\geq 10^7$ [Baudon, B., Przybyło, Woźniak, 2015]

How large can χ'_{irr} be?

Conjecture [Baudon, B., Przybyło, Woźniak, 2015]

For every decomposable graph *G*, we have $\chi'_{irr}(G) \leq 3$.

Note: Would be tight (e.g. C_{4k+2} , K_n , etc.). Actually, unless P = NP, no "good" characterization of when $\chi'_{irr}(G) \leq 2$ [Baudon, B., Sopena, 2015].

Conjecture verified for:

• trees, regular bipartite graphs, $K_{n,m}$, K_n , some Cartesian products, regular graphs with degree $\geq 10^7$ [Baudon, B., Przybyło, Woźniak, 2015]

• graphs with $\delta \ge 10^{10}$ [Przybyło, 2016]

For every $n \ge 4$, we have $\chi'_{irr}(K_n) = 3$.

Your turn ③

For every $n \ge 4$, we have $\chi'_{irr}(K_n) = 3$.

Proof. Quite similar as for the 1-2-3 Conjecture. For n = 4:

For every $n \ge 4$, we have $\chi'_{irr}(K_n) = 3$.

Proof. For n = 5:

For every $n \ge 4$, we have $\chi'_{irr}(K_n) = 3$.

Proof. For n = 6:

For every $n \ge 4$, we have $\chi'_{irr}(K_n) = 3$.

Proof. For n = 6:

General case: $n \text{ even} \Rightarrow /$'s. $n \text{ odd} \Rightarrow /$'s.

For every decomposable tree *T*, we have $\chi'_{irr}(T) \leq 3$.

Proof. For instance, by induction. If a pendant path of length ≥ 3 :

For every decomposable tree *T*, we have $\chi'_{irr}(T) \leq 3$.

Proof. For instance, by induction. If a pendant path of length ≥ 3 :

For every decomposable tree *T*, we have $\chi'_{irr}(T) \leq 3$.

Proof. For instance, by induction. If a pendant path of length ≥ 3 :

For every decomposable tree T, we have $\chi'_{irr}(T) \leq 3$.

Proof. If a deepest branching node with \geq 3 children:

For every decomposable tree *T*, we have $\chi'_{irr}(T) \leq 3$.

Proof. If a deepest branching node with \geq 3 children:

For every decomposable tree T, we have $\chi'_{irr}(T) \leq 3$.

Proof. If a deepest branching node with \geq 3 children:

For every decomposable tree T, we have $\chi'_{irr}(T) \leq 3$.

For every decomposable tree *T*, we have $\chi'_{irr}(T) \leq 3$.

For every decomposable tree *T*, we have $\chi'_{irr}(T) \leq 3$.

For every decomposable tree *T*, we have $\chi'_{irr}(T) \leq 3$.

For every decomposable tree T, we have $\chi'_{irr}(T) \leq 3$.

For every decomposable bipartite graph *G*, we have $\chi'_{irr}(G) \le 10$. For every decomposable graph *G*, we have $\chi'_{irr}(G) \le 328$.

General idea: Find edge-disjoint subgraphs $G_1, ..., G_k$ of G s.t.

- $\chi'_{irr}(G (E(G_1) \cup ... \cup E(G_k)))$ is "small"
- $\chi'_{irr}(G_1), ..., \chi'_{irr}(G_k)$ are "small"

⇒ Decompose the G_i 's and $G - (E(G_1) \cup ... \cup E(G_k))$ independently

For every decomposable bipartite graph *G*, we have $\chi'_{irr}(G) \le 10$. For every decomposable graph *G*, we have $\chi'_{irr}(G) \le 328$.

General idea: Find edge-disjoint subgraphs $G_1, ..., G_k$ of G s.t.

- $\chi'_{irr}(G (E(G_1) \cup ... \cup E(G_k)))$ is "small"
- $\chi'_{irr}(G_1), ..., \chi'_{irr}(G_k)$ are "small"

⇒ Decompose the G_i 's and $G - (E(G_1) \cup ... \cup E(G_k))$ independently

 $\label{eq:components} \begin{array}{l} \mbox{Even-size graph} = \mbox{Graph} \mbox{whose all components have even size} \\ \mbox{Analogously, notion of odd-size graph} \end{array}$

For every decomposable bipartite graph *G*, we have $\chi'_{irr}(G) \le 10$. For every decomposable graph *G*, we have $\chi'_{irr}(G) \le 328$.

General idea: Find edge-disjoint subgraphs $G_1, ..., G_k$ of G s.t.

- $\chi'_{irr}(G (E(G_1) \cup ... \cup E(G_k)))$ is "small"
- $\chi'_{irr}(G_1), ..., \chi'_{irr}(G_k)$ are "small"
- ⇒ Decompose the G_i 's and $G (E(G_1) \cup ... \cup E(G_k))$ independently

 $\label{eq:components} \begin{array}{l} \mbox{Even-size graph} = \mbox{Graph} \mbox{ whose all components have even size} \\ \mbox{Analogously, notion of odd-size graph} \end{array}$

Main steps:

Reducing the conjecture to even-size graphs

For every decomposable bipartite graph *G*, we have $\chi'_{irr}(G) \le 10$. For every decomposable graph *G*, we have $\chi'_{irr}(G) \le 328$.

General idea: Find edge-disjoint subgraphs $G_1, ..., G_k$ of G s.t.

- $\chi'_{irr}(G (E(G_1) \cup ... \cup E(G_k)))$ is "small"
- $\chi'_{irr}(G_1), ..., \chi'_{irr}(G_k)$ are "small"

⇒ Decompose the G_i 's and $G - (E(G_1) \cup ... \cup E(G_k))$ independently

 $\label{eq:components} \begin{array}{l} \mbox{Even-size graph} = \mbox{Graph} \mbox{ whose all components have even size} \\ \mbox{Analogously, notion of odd-size graph} \end{array}$

Main steps:

- Reducing the conjecture to even-size graphs
- Occomposing even-size bipartite graphs

For every decomposable bipartite graph *G*, we have $\chi'_{irr}(G) \le 10$. For every decomposable graph *G*, we have $\chi'_{irr}(G) \le 328$.

General idea: Find edge-disjoint subgraphs $G_1, ..., G_k$ of G s.t.

- $\chi'_{irr}(G (E(G_1) \cup ... \cup E(G_k)))$ is "small"
- $\chi'_{irr}(G_1), ..., \chi'_{irr}(G_k)$ are "small"

⇒ Decompose the G_i 's and $G - (E(G_1) \cup ... \cup E(G_k))$ independently

 $\label{eq:components} \begin{array}{l} \mbox{Even-size graph} = \mbox{Graph} \mbox{whose all components have even size} \\ \mbox{Analogously, notion of odd-size graph} \end{array}$

Main steps:

- Reducing the conjecture to even-size graphs
- Occomposing even-size bipartite graphs
- Using Przybyło's and the bipartite results

- Reducing the conjecture to even-size graphs
 - \Rightarrow Because exceptional graphs are odd-size!

- Reducing the conjecture to even-size graphs
 - \Rightarrow Because exceptional graphs are odd-size!
 - **Result:** In every odd-size decomposable graph, one can find a \triangleleft or a \triangleleft whose deletion makes the graph (all components) even-size

- Reducing the conjecture to even-size graphs
 - \Rightarrow Because exceptional graphs are odd-size!
 - **Result**: In every odd-size decomposable graph, one can find a **4** or a
 - **Result 2:** $\chi'_{irr}(\text{decomposable}, \text{odd} \text{size}) \le \chi'_{irr}(\text{even} \text{size}) + 1$

- Reducing the conjecture to even-size graphs
 - \Rightarrow Because exceptional graphs are odd-size!
 - **Result**: In every odd-size decomposable graph, one can find a *d* or or a *d* or or a *d* or a *d*
 - **Result 2:** $\chi'_{irr}(\text{decomposable}, \text{odd} \text{size}) \le \chi'_{irr}(\text{even} \text{size}) + 1$
 - How: Seat at a vertex, and try selecting edges

- Reducing the conjecture to even-size graphs
 - \Rightarrow Because exceptional graphs are odd-size!
 - **Result:** In every odd-size decomposable graph, one can find a \triangleleft or a \triangleleft whose deletion makes the graph (all components) even-size
 - **Result 2:** $\chi'_{irr}(\text{decomposable}, \text{odd} \text{size}) \le \chi'_{irr}(\text{even} \text{size}) + 1$
 - How: Seat at a vertex, and try selecting edges
- Occomposing even-size bipartite graphs

- Reducing the conjecture to even-size graphs
 - \Rightarrow Because exceptional graphs are odd-size!
 - **Result**: In every odd-size decomposable graph, one can find a *d* or or a *d* or or a *d* or a *d*
 - **Result 2:** $\chi'_{irr}(\text{decomposable}, \text{odd} \text{size}) \le \chi'_{irr}(\text{even} \text{size}) + 1$
 - How: Seat at a vertex, and try selecting edges
- Occomposing even-size bipartite graphs
 - **Result:** χ'_{irr} (bipartite, even size) ≤ 9

- Reducing the conjecture to even-size graphs
 - \Rightarrow Because exceptional graphs are odd-size!
 - **Result**: In every odd-size decomposable graph, one can find a **4** or a
 - **Result 2:** $\chi'_{irr}(\text{decomposable}, \text{odd} \text{size}) \le \chi'_{irr}(\text{even} \text{size}) + 1$
 - How: Seat at a vertex, and try selecting edges
- Occomposing even-size bipartite graphs
 - **Result:** $\chi'_{irr}(bipartite, even size) \le 9$
 - How: Remove "nice" structures \Rightarrow even degrees in A and odd degrees in B

- Reducing the conjecture to even-size graphs
 - \Rightarrow Because exceptional graphs are odd-size!
 - **Result**: In every odd-size decomposable graph, one can find a **4** or a
 - **Result 2:** $\chi'_{irr}(\text{decomposable}, \text{odd} \text{size}) \le \chi'_{irr}(\text{even} \text{size}) + 1$
 - How: Seat at a vertex, and try selecting edges
- Occomposing even-size bipartite graphs
 - **Result:** χ'_{irr} (bipartite, even size) ≤ 9
 - How: Remove "nice" structures \Rightarrow even degrees in A and odd degrees in B
- Using Przybyło's and the bipartite results

- Reducing the conjecture to even-size graphs
 - \Rightarrow Because exceptional graphs are odd-size!
 - **Result:** In every odd-size decomposable graph, one can find a *d* or or a *d* or or a *d* or a *d*
 - **Result 2:** $\chi'_{irr}(\text{decomposable}, \text{odd} \text{size}) \le \chi'_{irr}(\text{even} \text{size}) + 1$
 - How: Seat at a vertex, and try selecting edges
- Occomposing even-size bipartite graphs
 - **Result:** χ'_{irr} (bipartite, even size) ≤ 9
 - How: Remove "nice" structures \Rightarrow even degrees in A and odd degrees in B
- Using Przybyło's and the bipartite results
 - Decompose G (even-size) into H + D, where
 - $\delta(H) \ge 10^{10}$
 - *D* is an even-size $(2 \cdot 10^{10} + 2)$ -degenerate graph

- Reducing the conjecture to even-size graphs
 - \Rightarrow Because exceptional graphs are odd-size!
 - **Result:** In every odd-size decomposable graph, one can find a or a whose deletion makes the graph (all components) even-size
 - **Result 2:** $\chi'_{irr}(\text{decomposable, odd} \text{size}) \le \chi'_{irr}(\text{even} \text{size}) + 1$
 - How: Seat at a vertex, and try selecting edges
- Occomposing even-size bipartite graphs
 - **Result:** χ'_{irr} (bipartite, even size) ≤ 9
 - How: Remove "nice" structures \Rightarrow even degrees in A and odd degrees in B
- Using Przybyło's and the bipartite results
 - **1** Decompose G (even-size) into H + D, where
 - $\delta(H) \ge 10^{10}$
 - *D* is an even-size $(2 \cdot 10^{10} + 2)$ -degenerate graph
 - **O** Decompose D into $\log_2(2 \cdot 10^{10} + 3) + 1$ even-size bipartite graphs

- Reducing the conjecture to even-size graphs
 - \Rightarrow Because exceptional graphs are odd-size!
 - **Result:** In every odd-size decomposable graph, one can find a *d* or or a *d* or or a *d* or a *d*
 - **Result 2:** $\chi'_{irr}(\text{decomposable, odd} \text{size}) \le \chi'_{irr}(\text{even} \text{size}) + 1$
 - How: Seat at a vertex, and try selecting edges
- Occomposing even-size bipartite graphs
 - **Result:** χ'_{irr} (bipartite, even size) ≤ 9
 - How: Remove "nice" structures \Rightarrow even degrees in A and odd degrees in B
- Using Przybyło's and the bipartite results
 - Decompose G (even-size) into H + D, where
 - $\delta(H) \ge 10^{10}$
 - *D* is an even-size $(2 \cdot 10^{10} + 2)$ -degenerate graph
 - **O** Decompose *D* into $\log_2(2 \cdot 10^{10} + 3) + 1$ even-size bipartite graphs
 - **9** $\chi'_{irr}(G) \le \chi'_{irr}(H) + \chi'_{irr}(D) \le 3 + 9 \cdot 36 = 327$

• Lužar, Przybyło and Soták proved $\chi'_{irr}(\text{decomposable, bipartite}) \leq 6$

- $\bullet\,$ Lužar, Przybyło and Soták proved $\chi_{\rm irr}^\prime({\rm decomposable, bipartite})\,{\leq}\,6$
- $\Rightarrow \chi'_{irr}(\text{decomposable}) \le 220!$
- (just plug new result in previous approach)
Locally irregular decompositions – Open questions –

• Prove that χ'_{irr} (decomposable, bipartite) ≤ 3

 $\bullet\,$ By our approach, would improve the best bound on $\chi_{\rm irr}'$

- Prove that χ'_{irr} (decomposable, bipartite) ≤ 3
 - By our approach, would improve the best bound on $\chi'_{
 m irr}$
- Prove that $\chi'_{irr}(\text{decomposable, subcubic}) \leq 3$
 - Best bound is 4 [Lužar, Przybyło, Soták, 2018]

- Prove that χ'_{irr} (decomposable, bipartite) ≤ 3
 - By our approach, would improve the best bound on $\chi'_{
 m irr}$
- Prove that $\chi'_{irr}(\text{decomposable, subcubic}) \leq 3$
 - Best bound is 4 [Lužar, Przybyło, Soták, 2018]
- Complexity of determining whether χ'_{irr} (decomposable, bipartite) ≤ 2 ?

- Prove that χ'_{irr} (decomposable, bipartite) ≤ 3
 - By our approach, would improve the best bound on $\chi'_{
 m irr}$
- Prove that $\chi'_{irr}(\text{decomposable, subcubic}) \leq 3$
 - Best bound is 4 [Lužar, Przybyło, Soták, 2018]
- Complexity of determining whether χ'_{irr} (decomposable, bipartite) ≤ 2 ?
- Better general bounds via different approaches?

A generalization - Introduction -

Each edge \rightarrow Coloured weight (α, β) w/ colour α and value β \Rightarrow Each vertex \rightarrow Several coloured sums $\sigma_{\bullet}, \sigma_{\bullet}, \sigma_{\bullet}$, etc. (or $\sigma_1, \sigma_2, ...$)

Coloured weights and sums

Each edge \rightarrow Coloured weight (α, β) w/ colour α and value β \Rightarrow Each vertex \rightarrow Several coloured sums $\sigma_{\bullet}, \sigma_{\bullet}, \sigma_{\bullet},$ etc. (or $\sigma_1, \sigma_2, ...$)

Coloured weights and sums

Each edge \rightarrow Coloured weight (α, β) w/ colour α and value β \Rightarrow Each vertex \rightarrow Several coloured sums $\sigma_{\bullet}, \sigma_{\bullet}, \sigma_{\bullet}$, etc. (or $\sigma_1, \sigma_2, ...$)

Coloured weights and sums

Each edge \rightarrow Coloured weight (α, β) w/ colour α and value β \Rightarrow Each vertex \rightarrow Several coloured sums $\sigma_{\bullet}, \sigma_{\bullet}, \sigma_{\bullet}$, etc. (or $\sigma_1, \sigma_2, ...$)

When are adjacent vertices considered distinguished?

Three more or less strong distinction conditions:

$$\overset{u}{\blacktriangleright} \qquad \underbrace{(\alpha,\beta)} \overset{v}{\checkmark}$$

• Weak condition: $\exists c \in \{1, ..., \ell\}$ s.t. $\sigma_c(u) \neq \sigma_c(v)$

Three more or less strong distinction conditions:

- Weak condition: $\exists c \in \{1, ..., \ell\}$ s.t. $\sigma_c(u) \neq \sigma_c(v)$
- Standard condition: $\sigma_{\alpha}(u) \neq \sigma_{\alpha}(v)$

Three more or less strong distinction conditions:

- Weak condition: $\exists c \in \{1, ..., \ell\}$ s.t. $\sigma_c(u) \neq \sigma_c(v)$
- Standard condition: $\sigma_{\alpha}(u) \neq \sigma_{\alpha}(v)$
- Strong condition: $\forall c \in \{1, ..., \ell\}$ s.t. $\sigma_c(u), \sigma_c(v) \neq 0$, we have $\sigma_c(u) \neq \sigma_c(v)$

Three more or less strong distinction conditions:

- Weak condition: $\exists c \in \{1, ..., \ell\}$ s.t. $\sigma_c(u) \neq \sigma_c(v)$
- Standard condition: $\sigma_{\alpha}(u) \neq \sigma_{\alpha}(v)$
- Strong condition: $\forall c \in \{1, ..., \ell\}$ s.t. $\sigma_c(u), \sigma_c(v) \neq 0$, we have $\sigma_c(u) \neq \sigma_c(v)$

Note: Strong \Rightarrow Standard \Rightarrow Weak; but no converse is true:

Remarks: For $\ell = 1$:

• weak = standard = strong

Remarks: For $\ell = 1$:

- weak = standard = strong
- strong (1, k)-colouring = n-s-d k-edge-weighting
- Hence:

Remarks: For $\ell = 1$:

- weak = standard = strong
- strong (1, k)-colouring = n-s-d k-edge-weighting

- 1-2-3 Conjecture = Are all nice graphs strongly (1,3)-colourable?
- They are strongly (1,5)-colourable

Remarks: For $\ell = 1$:

- weak = standard = strong
- strong (1, k)-colouring = n-s-d k-edge-weighting

• Hence:

- 1-2-3 Conjecture = Are all nice graphs strongly (1,3)-colourable?
- They are strongly (1,5)-colourable

Also: For k = 1:

• standard $(\ell, 1)$ -colouring = locally irregular ℓ -edge-colouring

Remarks: For $\ell = 1$:

- weak = standard = strong
- strong (1, k)-colouring = n-s-d k-edge-weighting

• Hence:

- 1-2-3 Conjecture = Are all nice graphs strongly (1,3)-colourable?
- They are strongly (1,5)-colourable

Also: For k = 1:

• standard $(\ell, 1)$ -colouring = locally irregular ℓ -edge-colouring

- L.I. Conjecture = Are all decomposable graphs standardly (3,1)-colourable?
- They are all (220,1)-colourable

Remarks: For $\ell = 1$:

- weak = standard = strong
- strong (1, k)-colouring = n-s-d k-edge-weighting

• Hence:

- 1-2-3 Conjecture = Are all nice graphs strongly (1,3)-colourable?
- They are strongly (1,5)-colourable

Also: For k = 1:

• standard $(\ell, 1)$ -colouring = locally irregular ℓ -edge-colouring

• Hence:

- L.I. Conjecture = Are all decomposable graphs standardly (3,1)-colourable?
- They are all (220,1)-colourable
- also, weak $(\ell, 1)$ -colouring = ℓ -edge-colouring distinguishing by *multisets*

- All nice graphs are (3,1)-colourable
- Are they all (1,3)-colourable?

Playing with at least two colours and at least two weights?

Playing with at least two colours and at least two weights?

nicer graph = no K_2 nor K_3 as connected component

Conjecture [Baudon, B., Davot, Hocquard, Przybyło, Senhaji, Sopena, Woźniak, 2019]

Every nicer graph is strongly (2,2)-colourable.

Note: K_2 and K_3 are the only exceptional graphs with $\chi_{\Sigma}^e > 2$

Playing with at least two colours and at least two weights?

nicer graph = no K_2 nor K_3 as connected component

Conjecture [Baudon, B., Davot, Hocquard, Przybyło, Senhaji, Sopena, Woźniak, 2019]

Every nicer graph is strongly (2,2)-colourable.

Note: K_2 and K_3 are the only exceptional graphs with $\chi_{\Sigma}^e > 2$

Recall: "Strong Conjecture" ⇒ "Standard Conjecture" ⇒ "Weak Conjecture"

Strong Conjecture verified for:

Strong Conjecture verified for:

- Complete graphs
 - \Rightarrow Earlier proof: alternate between using •,2's and •,2's only

Strong Conjecture verified for:

• Complete graphs

 \Rightarrow Earlier proof: alternate between using •,2's and •,2's only

- Bipartite graphs
 - \Rightarrow Proof reduces to odd multicacti

Standard Conjecture

Nicer graphs decompose into two graphs fulfilling the 1-2-3 Conjecture.

A.t.m., only a few graphs are known to fulfil the 1-2-3 Conjecture \odot ...

Standard Conjecture

Nicer graphs decompose into two graphs fulfilling the 1-2-3 Conjecture.

A.t.m., only a few graphs are known to fulfil the 1-2-3 Conjecture \odot ...

Recall: Results towards the Strong Conjecture apply Standard Conjecture further verified for:

Standard Conjecture

Nicer graphs decompose into two graphs fulfilling the 1-2-3 Conjecture.

A.t.m., only a few graphs are known to fulfil the 1-2-3 Conjecture \odot ...

Recall: Results towards the Strong Conjecture apply Standard Conjecture further verified for:

- 2-degenerate graphs
 - \Rightarrow Via basic induction, decomposition into two nice forests

Standard Conjecture

Nicer graphs decompose into two graphs fulfilling the 1-2-3 Conjecture.

A.t.m., only a few graphs are known to fulfil the 1-2-3 Conjecture \odot ...

Recall: Results towards the Strong Conjecture apply Standard Conjecture further verified for:

- 2-degenerate graphs
 - \Rightarrow Via basic induction, decomposition into two nice forests
- Subcubic graphs
 - \Rightarrow Via the previous result + induction

Standard Conjecture

Nicer graphs decompose into two graphs fulfilling the 1-2-3 Conjecture.

A.t.m., only a few graphs are known to fulfil the 1-2-3 Conjecture © ...

Recall: Results towards the Strong Conjecture apply Standard Conjecture further verified for:

- 2-degenerate graphs
 - \Rightarrow Via basic induction, decomposition into two nice forests
- Subcubic graphs
 - \Rightarrow Via the previous result + induction
- 9-colourable graphs
 - \Rightarrow Decompositions into two nice 3-colourable graphs

Watch out: When using induction, \triangle bad components!

Base result: nice graphs are weakly (1,3)-colourable

Base result: nice graphs are weakly (1,3)-colourable **Bound towards** (3,1)-colourability: **Base result:** nice graphs are weakly (1,3)-colourable

Bound towards (3,1)-colourability:

- Weak (3,2)-colourability
 - \Rightarrow Proof that $\chi^e_{\Sigma} \leq$ 5, replacing one weight by the additional colour
Base result: nice graphs are weakly (1,3)-colourable

Bound towards (3,1)-colourability:

- Weak (3,2)-colourability
 - \Rightarrow Proof that $\chi^e_{\Sigma} \leq$ 5, replacing one weight by the additional colour

Recall: Results towards the Strong or Standard Conjecture apply

A generalization – Open questions –

• For strong (ℓ, k) -colourability, general bounds when $\ell, k \ge 2$?

- For strong (ℓ, k) -colourability, general bounds when $\ell, k \ge 2$?
- For standard (ℓ, k) -colourability?

- For strong (ℓ, k) -colourability, general bounds when $\ell, k \ge 2$?
- For standard (ℓ, k) -colourability?
- More classes of graphs?

- For strong (ℓ, k) -colourability, general bounds when $\ell, k \ge 2$?
- For standard (ℓ, k) -colourability?
- More classes of graphs?

Thank you for your attention!