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General introduction



Make adjacent vertices distinguishable?




Make adjacent vertices distinguishable? = Proper vertex-colouring ©




Make adjacent vertices distinguishable? = Proper vertex-colouring ©

o o
/\ y might be as high as A+1 (Brooks' Theorem)
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Motivation (cont'd)

“Encode” a proper vertex-colouring using few different types of resources?

v2 Vs

v3 V6

Col(v;) := Set of colours "“incident” to v;:

Col(vi)={@} Col(vy)={e,@} Col(v3)={e,0 6}
Col(va) ={@} Col(vs)={e,@,0 Col(vs)={e,@ Col(vr)=/{e @}

Neighbours are distinguished!
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From edge colours to vertex colours

Many parameters:
@ How is Col computed?
@ Edge colour restrictions (properness, etc.)?
@ What elements are coloured (edges, vertices, both, etc.)?
@ etc.

= Dozens and dozens variants...
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Abstract

A graph labeling is an assignment of integers to the vertices or edges, or both,
subject to certain conditions. Graph labelings were first introduced in the mid
1960s. In the intervening 50 years over 200 graph labelings techniques have been
studied in over 2500 papers. Finding out what has been done for any particular
kind of labeling and keeping up with new discoveries is difficult because of the sheer
number of papers and because many of the papers have appeared in journals that
are not widely available. In this survey T have collected everything I could find on
graph labeling. For the convenience of the reader the survey includes a detailed
table of contents and index.




1-2-3 Conjecture

— Introduction —
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Col(v;) = a(v;) := Sums of weights “incident” to v;
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Distinguishing neighbours via their incident sums

Edge-colours = Edge-weights
Col(v;) = a(v;) := Sums of weights “incident” to v;

v2 vs
{2}
1B

Vi

xs =2 while y =3 ©
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Neighbour-sum-distinguishing edge-weighting = o is proper
x5(G) = smallest k such that G has n-s-d k-edge-weightings

Note: K3 is the only connected graph with x§ undefined
Nice graph = no K as a component

1-2-3 Conjecture [Karonski, tuczak, Thomason, 2004]

For every nice graph G, we have y§(G) <3.

Edge weights and vertex colours
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Can the edges of any non-trivial graph be assigned weights from {1,2,3} so that

adjacent vertices have difforent sums of incident cdge weights?

‘We give a positive answer when the graph is 3-colourable, or when a finite number of
real weights is allowed.
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(Note: simple graphs with =2 vertices of unique degrees do not exist)
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An additional motivation

This problem is also related to irregular multigraphs

How to Define an Irregular Graph

Gary Chartrand
Paul Erdos
Ortrud R. Oellermann

Q.: regular = same degrees, but irregular = 7
(Note: simple graphs with =2 vertices of unique degrees do not exist)

Possible definition: locally irregular = no adjacent vertices with = degree
Connection to n-s-d edge-weightings:

= Finding x$(G) © Perform this with minimizing maximum edge multiplication



1-2-3 Conjecture

— Some families of graphs —



Complete graphs

For every n=3, we have y§(K,) =3.

Make a guess ©



Complete graphs

For every n=3, we have y§(K,) =3.

Proof. By induction on n. For n=3:
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Complete graphs
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Complete graphs

For every n=3, we have y§(K,) =3.

Proof. n=5:

General case: neven = 1's. nodd = 3's.



Bipartite graphs

For every nice bipartite graph G, we have y§(G) <3.

Any idea © 7



Bipartite graphs

For every nice bipartite graph G, we have y$(G) <3.

Proof. Bipartition (A, B)
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Aim: 3-edge-weighting where o(A)=1,2 (mod 3) and ¢(B) =0 (mod 3)
< {0,1,2}-edge-weighting with the same properties



Bipartite graphs

For every nice bipartite graph G, we have y§(G) <3.

Proof. Assume |A| is even. Start with weights 0. Second condition fulfilled by B.
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Bipartite graphs

For every nice bipartite graph G, we have y§(G) <3.

Proof. If |A| and |B] are odd ® ... but can reach:
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Proof. Eventually apply +1,-1,... or conversely towards another vertex in A [ |




On that proof...

@ Proof applies to 3-chromatic graphs with partite sets A, B, C:

o Use weights 0,1,2
e Aim 0(A)=0 (mod 3), 0(B)=1 (mod 3), o(C)=2 (mod 3)
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@ Proof applies to 3-chromatic graphs with partite sets A, B, C:
o Use weights 0,1,2
e Aim g(A)=0 (mod 3), 0(B)=1 (mod 3), ¢(C)=2 (mod 3)
@ More generally, k-chromatic graphs, k =3 odd, with partite sets Sy, ..., Sk_1:
o Use weights 0,...,k—1
o Aim o(S;)=i (mod k) for i=0,... k-1

@ k-chromatic graphs, k=4 even, same trick as bipartite graphs
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More on the 1-2-3 Conjecture

@ In general, using {1,2,3} is best possible!

o Examples: complete graphs, some cycles, etc.
o Deciding whether y§ <2 is NP-complete [Dudek, Wajc, 2011]

@ Q.: Is this true for bipartite graphs?
A.: x$(Bipartite) = 3: odd multicacti [Thomassen, Wu, Zhang, 2016]

These graphs can also be described in another way as follows. Take a collection of
simple cycles each of length 2 modulo 4 and each with edges colored alternately red and
green. Then form & connected simple graph by pasting the cycles together, one by one,
in a tree-like fashion along green edges. Finally replace every green edge by a multiple
edge of any multiplicity > 1. The graph with one edge and two vertices is also called an

odd multi-cactus.

Intuition: Essentially, with {1,2}, paths of length =1 (mod 4) act as edges:




1-2-3 Conjecture
— Best bound —



Total variant

Best bound on x§ obtained from one for a total variant of the problem

v @ L




Total variant

Best bound on x§ obtained from one for a total variant of the problem

v @ 1
L

o(vi)=4 o(w)=7 o(w)=5 o(v4)=6

(~ adding a loop at each vertex)
15 (G) = smallest k such that G has n-s-d k-total-weightings
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Remarks and a 1-2 Conjecture

Remarks:
o 1%(G) defined for all G
o xi(G)=x5(G) for every G

On a 1, 2 Conjecture

Takub Przybyto! and Mariusz Wozniak?
AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakdw, Poland

received February 12, 2008, accepted February 3, 2010.

Let us assign positive integers to the edges and vertices of a simple praph (3. As a result we obtain a vertex-colouring
of G with integers, where a vertex colour is simply a sum of the weight assigned to the vertex itself and the weights
of its incident edges. Can we obtain a proper colouring using only weights 1 and 2 for an arbitrary G'?

We give a positive answer when G is a 3-colourable, complete or 4-regular graph. We also show that it is enough to
use weights from 1 to 11, as well as from 1 to [ 22| 4 1, for an arbitrary gragh G.

Keywords: neighbour-distinguishing total-weighting, irregularity strength

1-2 Conjecture [Przybyfo, Wozniak, 2010]

For every graph G, we have y{(G)<2.
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Kalkowski's result

Theorem [Kalkowski, 2009]

For every graph G, we have y{(G)<3.

Proof. Essentially, a clever induction:

@ Start from all edges at 2, all vertices at 1
o Consider the vertices in any order; for every v;:

o Choose a set {¢(v;),¢(v;)+1} of possible sums
(¢(v;) +1 = eventual sum, ¢(v;) the only allowed different sum)
A\ Make sure that ¢(v;) # ¢(v;) for every backward edge!
e Make "valid” weight changes backwards so that o(v;) € {¢p(v;), p(v;) + 1}

e Eventually, do +1 on every vertex weight where a(v;) = ¢(v;)

Note: Actually, only 1,2 are used as vertex weights



Kalkowski's Algorithm: Initial weighting

Vertex ordering: vi,v», V3, vy, Vs, Vg, V7
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Kalkowski's Algorithm: Dealing with v3
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Kalkowski's Algorithm: Dealing with v4

Vertex ordering: vi,v», V3, vy, Vs, Vg, V7
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Kalkowski's Algorithm: Dealing with vg

Vertex ordering: vi,v», V3, vy, Vs, Vg, V7
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Kalkowski's Algorithm: Dealing with vg

Vertex ordering: vi,v», V3, vy, Vs, Vg, V7
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Kalkowski's Algorithm: Dealing with vg
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Kalkowski's Algorithm: Dealing with vg

Vertex ordering: vi,v», V3, vy, Vs, Vg, V7
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Kalkowski's Algorithm: Dealing with v

Vertex ordering: vi,v», V3, vy, Vs, V6, V7
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Kalkowski's Algorithm: Dealing with v

Vertex ordering: vi,v», V3, vy, Vs, V6, V7

an]NEa D
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Kalkowski's Algorithm: Final adjustments




Kalkowski's Algorithm: Final picture
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= A valid change (-1 or +1) per backward edge

= # of candidates as ¢(v;)+1 > # of backward neighbours
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Kalkowski's Algorithms: Some comments

@ Works because:

All edge weight changes are done backwards
= When treating v;, every backward edge v;v; is weighted 2
= A valid change (-1 or +1) per backward edge

= # of candidates as ¢(v;)+1 > # of backward neighbours

@ Multiple generalizations...

Theorem [Kalkowski, Karonski, Pfender, 2012]

For every nice graph G, we have x§(G) <b.

Needed modifications:
@ No final adjustments = Two dedicated sums {¢p(v;),p(v;) +2} per vertex
o Initially, 3 on all edges = Valid changes are of the form —2 or +2

@ To reach a valid {¢(v;),(v;) +2}, allow to do —1 or +1 on a forward edge

o The vertex ordering must guarantee forward edges
o For a backward edge weighted 2 or 4, only +2 and —2 can be done



Kalkowski's Algorithms: Some comments

@ Works because:

All edge weight changes are done backwards
= When treating v;, every backward edge v;v; is weighted 2
= A valid change (-1 or +1) per backward edge

= # of candidates as ¢(v;)+1 > # of backward neighbours

@ Multiple generalizations...

Theorem [Kalkowski, Karonski, Pfender, 2012]

For every nice graph G, we have x§(G) <b.

Needed modifications:
@ No final adjustments = Two dedicated sums {¢p(v;),p(v;) +2} per vertex
o Initially, 3 on all edges = Valid changes are of the form —2 or +2

@ To reach a valid {¢(v;),(v;) +2}, allow to do —1 or +1 on a forward edge

o The vertex ordering must guarantee forward edges
o For a backward edge weighted 2 or 4, only +2 and —2 can be done
e A\ Valid changes backwards are trickier
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@ Prove the 1-2-3 Conjecture for 4-chromatic graphs
e Done for 4-edge-connected 4-chromatic graphs [Wu, Zhang, Zhu, 2017]

More classes of graphs?

o Need strong properties to prove this...
e ... but not so interesting if too strong ®

Prove that y$(G) <4 for every nice graph G

e Done for 5-regular graphs [B., 2019]
e Generalized to regular graphs [Przybyto, 2019+]

Prove/Disprove the 1-2 Conjecture



Some open problems/questions

@ Prove the 1-2-3 Conjecture for 4-chromatic graphs
e Done for 4-edge-connected 4-chromatic graphs [Wu, Zhang, Zhu, 2017]

More classes of graphs?

o Need strong properties to prove this...
e ... but not so interesting if too strong ®

Prove that y$(G) <4 for every nice graph G

e Done for 5-regular graphs [B., 2019]
e Generalized to regular graphs [Przybyto, 2019+]

Prove/Disprove the 1-2 Conjecture

List variants?

e Every graph is (2,3)-choosable [Wong, Zhu, 2016]
e No constant bound for the edge version ®



Locally irregular decompositions
— Introduction —
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Definitions and main notions

Locally irregular = Every two adjacent vertices have distinct degrees

O <o

Decomposition of G = Partition Eq, ..., Ex of E(G)
Locally irregular decomposition = Decomposition into locally irregular graphs
(equivalently, locally irregular edge-colouring)

Xi;(G) = Smallest k=1 s.t. G has locally irregular k-edge-colourings
G decomposable = yi (G) exists
G exceptional, otherwise















SET




Some motivations

© Local irregularity = Possible antonym notion to regularity

;o . .
© i, = Measure of closeness to irregularity



Some motivations

© Local irregularity = Possible antonym notion to regularity
;o . .

© i, = Measure of closeness to irregularity

© Connections and applications to the 1-2-3 Conjecture

In regular graphs, y§ =2 if and only if y| =2



Exceptional graphs
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Exceptional graphs

Exceptional graphs?

Some obvious ones: odd-length paths and odd-length cycles...
... but also J:

Every connected graph of even size can be decomposed into paths of length 2 and is thus decom-
posable. Hence, all exceptional graphs have odd size and a complete characterisation of exceptional
eraphs was given by Baudon, Bensmail, Preybylo, and Wo#niak | 1]. To state this characterisation, we
first need to define a family 7 of graphs. The definition is recursive:

« The triangle K belongs to 7.

# Every other graph in 7 can be constructed by (1) taking an auxiliary graph F being either a path
of even length or a path of odd length with a triangle glued to one of its ends, then (2) choosing
agraph C € T containing a triangle with at least one vertex, say v, of degree 2 in G, and finally
(3) identifying v with a vertex of degree 1 of F.

In other words, the graphs in 7 are obtained by connecting a collection of triangles in a tree-like fash-
ion, using paths with certain lengths, depending on what elements these paths connect. Let us point
out that all graphs in 7 have maximum degree 3, have odd size, and all of their cycles are triangles.

Theorem [Baudon, B., Przybyto, Wozniak, 2015]

Exceptional graphs are exactly these three classes of graphs.




Main conjecture
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Main conjecture

How large can y; . be?

Conjecture [Baudon, B., Przybyto, Wozniak, 2015]

For every decomposable graph G, we have y{ (G)<3.

Note: Would be tight (e.g. Cak+2, Kn, etc.). Actually, unless P = NP, no “good"”
characterization of when x| (G) =2 [Baudon, B., Sopena, 2015].
Conjecture verified for:

@ trees, regular bipartite graphs, K, m, K,, some Cartesian products, regular
graphs with degree =107 [Baudon, B., Przybyto, Wozniak, 2015]

o graphs with 6 =10 [Przybyto, 2016]



Complete graphs

For every n=4, we have y! (K,)=3.

Your turn ®



Complete graphs

For every n=4, we have y! (K,)=3.
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For every decomposable tree T, we have y; (T)<3.

Proof. So, deepest branching nodes have degree 3 (thus 2 children):

< L K
N

L G &
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Main steps, explained

© Reducing the conjecture to even-size graphs
e = Because exceptional graphs are odd-size!
o Result: In every odd-size decomposable graph, one can find a -é or a -é::
whose deletion makes the graph (all components) even-size
o Result 2: y{ (decomposable,odd - size) < y{_(even-size)+1
o How: Seat at a vertex, and try selecting edges

© Decomposing even-size bipartite graphs
o Result: x| (bipartite, even —size) <9
o How: Remove “nice” structures = even degrees in A and odd degrees in B

@ Using Przybyto's and the bipartite results
@ Decompose G (even-size) into H + D, where
o 6(H)=10%0
@ D is an even-size (2~1010+2)—degenerate graph
© Decompose D into logy(2- 1010 +3)+1 even-size bipartite graphs
© 1. (G)=xi, (H)+xi, (D)<3+9-36=327

irr
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Recent result

o Luzar, Przybyto and Sotak proved y! (decomposable,bipartite) <6
e = y! (decomposable) < 220!

@ (just plug new result in previous approach)
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Some open problems/questions

Prove that y| (decomposable,bipartite) <3

e By our approach, would improve the best bound on Xgrr

Prove that y| (decomposable,subcubic) <3
e Best bound is 4 [Luzar, Przybyto, Sotak, 2018]

Complexity of determining whether y! (decomposable,bipartite) < 2?7

Better general bounds via different approaches?



A generalization
— Introduction —



Coloured weights and sums

Each edge — Coloured weight (a, 8) w/ colour a and value $
= Each vertex — Several coloured sums 0., 0., 0., etc. (or 01,09,...)



Coloured weights and sums

Each edge — Coloured weight (a, 8) w/ colour a and value $
= Each vertex — Several coloured sums a., 0., 0., etc. (or 01,09,...)




Coloured weights and sums

Each edge — Coloured weight (a, 8) w/ colour a and value $
= Each vertex — Several coloured sums a., 0., 0., etc. (or 01,09,...)

o.(v1)=3,0.(v1)=0 0.(»)=3,0.w)=3 0.(v3)=5,0.(v3)=2
0.(v4)=7, 0.(va)=0 0.(v5)=2, 0.(v5)=4 o.(v6)=2, 0.(vs)=3
0.(v7)=2, 0.(v7)=0



Coloured weights and sums

Each edge — Coloured weight (a, 8) w/ colour a and value $
= Each vertex — Several coloured sums a., 0., 0., etc. (or 01,09,...)

o.(v1)=3,0.(v1)=0 0.(»)=3,0.w)=3 0.(v3)=5,0.(v3)=2
0.(v4)=7, 0.(va)=0 0.(v5)=2, 0.(v5)=4 o.(v6)=2, 0.(vs)=3
0.(v7)=2, 0.(v7)=0

When are adjacent vertices considered distinguished?



Three distinction conditions

Colours € {1,...,a}, Weights € {1,..., k}
Three more or less strong distinction conditions:

u v

>

o Weak condition: 3c€{l,..., 0} s.t. oc(u)#oc(v)




Three distinction conditions

Colours € {1,...,a}, Weights € {1,..., k}
Three more or less strong distinction conditions:

u v

>

o Weak condition: 3c€{l,..., 0} s.t. oc(u)#oc(v)

e Standard condition: o4 (u) #0q(v)




Three distinction conditions

Colours € {1,...,a}, Weights € {1,..., k}
Three more or less strong distinction conditions:

u v

>

o Weak condition: 3c€{l,..., 0} s.t. oc(u)#oc(v)

e Standard condition: o4 (u) #0q(v)

@ Strong condition: Yce{l,..., ¢} s.t. oc(u),0.(v)#0, we have a.(u) #ac(v)



Three distinction conditions

Colours € {1,...,a}, Weights € {1,..., k}
Three more or less strong distinction conditions:

u

e {5} <
o Weak condition: 3c€{l,..., 0} s.t. oc(u)#oc(v)
e Standard condition: o4 (u) #0q(v)

@ Strong condition: Yce{l,..., ¢} s.t. oc(u),0.(v)#0, we have a.(u) #ac(v)
Note: Strong = Standard = Weak; but no converse is true:
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Playing with at least two colours and at least two weights?

nicer graph = no K> nor K3 as connected component

Conjecture [Baudon, B., Davot, Hocquard, Przybyto, Senhaji,

Sopena, Wozniak, 2019]

Every nicer graph is strongly (2,2)-colourable.

Note: K> and K3 are the only exceptional graphs with y§ >2

Recall: “Strong Conjecture” = “Standard Conjecture” = “Weak Conjecture”
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Results towards the Strong Conjecture

Base result: nicer graphs are strongly (1,5)-colourable

Strong Conjecture verified for:
o Complete graphs
= Earlier proof: alternate between using ¢,2's and ,2’s only
@ Bipartite graphs
= Proof reduces to odd multicacti
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Results towards the Standard Conjecture

Alternative formulation:

Standard Conjecture

Nicer graphs decompose into two graphs fulfilling the 1-2-3 Conjecture.

A.t.m., only a few graphs are known to fulfil the 1-2-3 Conjecture @ ...
Recall: Results towards the Strong Conjecture apply
Standard Conjecture further verified for:

@ 2-degenerate graphs
= Via basic induction, decomposition into two nice forests

@ Subcubic graphs
= Via the previous result + induction

@ 9-colourable graphs
= Decompositions into two nice 3-colourable graphs

Watch out: When using induction, A\ bad components!
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Results towards the Weak Conjecture

Base result: nice graphs are weakly (1,3)-colourable

Bound towards (3,1)-colourability:
o Weak (3,2)-colourability
= Proof that y§ <5, replacing one weight by the additional colour
Recall: Results towards the Strong or Standard Conjecture apply
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Thank you for your attention!



