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General introduction
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Motivation

Make adjacent vertices distinguishable?

⇒ Proper vertex-colouring ,

B χ might be as high as ∆+1 (Brooks’ Theorem)
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Motivation (cont’d)

“Encode” a proper vertex-colouring using few different types of resources?

v1

v2

v3

v4

v5

v6

v7

Col(vi ) := Set of colours “incident” to vi :

Col(v1)= { } Col(v2)= { , } Col(v3)= { , , }
Col(v4)= { } Col(v5)= { , , } Col(v6)= { , } Col(v7)= { , }

Neighbours are distinguished!
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From edge colours to vertex colours

Many parameters:

How is Col computed?
Edge colour restrictions (properness, etc.)?
What elements are coloured (edges, vertices, both, etc.)?
etc.

⇒ Dozens and dozens variants...
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1-2-3 Conjecture
– Introduction –
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Distinguishing neighbours via their incident sums

Edge-colours = Edge-weights
Col(vi ) = σ(vi ) := Sums of weights “incident” to vi

v1

v2

v3

v4

v5

v6

v7

1

1

2

1

2

1

1

1

1

2

2

2

σ(v1)= 2 σ(v2)= 6 σ(v3)= 5 σ(v4)= 4
σ(v5)= 7 σ(v6)= 6 σ(v7)= 4

χeΣ = 2 while χ= 3 ,
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1-2-3 Conjecture

Neighbour-sum-distinguishing edge-weighting = σ is proper
χeΣ(G ) = smallest k such that G has n-s-d k-edge-weightings

Note: K2 is the only connected graph with χeΣ undefined
Nice graph = no K2 as a component

1-2-3 Conjecture [Karoński, Łuczak, Thomason, 2004]

For every nice graph G , we have χeΣ(G )≤ 3.
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An additional motivation

This problem is also related to irregular multigraphs

Q.: regular = same degrees, but irregular = ?
(Note: simple graphs with ≥ 2 vertices of unique degrees do not exist)

Possible definition: locally irregular = no adjacent vertices with = degree
Connection to n-s-d edge-weightings:

1

1

2

2

⇒ Finding χeΣ(G ) ⇔ Perform this with minimizing maximum edge multiplication
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1-2-3 Conjecture
– Some families of graphs –
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Complete graphs

Theorem

For every n≥ 3, we have χeΣ(Kn)= 3.

Make a guess ,
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Complete graphs

Theorem

For every n≥ 3, we have χeΣ(Kn)= 3.

Proof. By induction on n. For n= 3:

4 3

5

1

23
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Complete graphs

Theorem

For every n≥ 3, we have χeΣ(Kn)= 3.

Proof. n= 5:

?

3 4 5 6

General case: n even ⇒ 1’s. n odd ⇒ 3’s.

■
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Bipartite graphs

Theorem

For every nice bipartite graph G , we have χeΣ(G )≤ 3.

Any idea , ?
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Bipartite graphs

Theorem

For every nice bipartite graph G , we have χeΣ(G )≤ 3.

Proof. Bipartition (A,B)

Aim: 3-edge-weighting where σ(A)≡ 1,2 (mod 3) and σ(B)≡ 0 (mod 3)
⇔ {0,1,2}-edge-weighting with the same properties
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Bipartite graphs

Theorem

For every nice bipartite graph G , we have χeΣ(G )≤ 3.

Proof. Assume |A| is even. Start with weights 0. Second condition fulfilled by B.

≡0

≡0

≡0

≡0

≡0

≡0

≡0

≡0

0

0

0

0

0

0

0

0
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Bipartite graphs

Theorem

For every nice bipartite graph G , we have χeΣ(G )≤ 3.

Proof. Pick a path from A to A with new ends, and apply +1,−1, ... along

≡0

≡0

≡0

≡0

≡0

≡0

≡0

≡0

0

0

0

0
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Bipartite graphs

Theorem

For every nice bipartite graph G , we have χeΣ(G )≤ 3.

Proof. Repeat until A fulfils the first condition

≡1

≡2

≡0

≡0

≡0

≡0

≡0

≡0

w1

w2

w3

w4
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Bipartite graphs

Theorem

For every nice bipartite graph G , we have χeΣ(G )≤ 3.

Proof. If |A| and |B | are odd / ... but can reach:

≡1,2

≡1,2

≡1,2

≡1,2

≡0

≡0

≡0

≡0

≡0
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Bipartite graphs

Theorem

For every nice bipartite graph G , we have χeΣ(G )≤ 3.

Proof. Eventually apply +1,−1, ... or conversely towards another vertex in A

≡2

≡1

≡1

≡2

≡0

≡0

≡0

≡0

≡0
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Bipartite graphs

Theorem

For every nice bipartite graph G , we have χeΣ(G )≤ 3.

Proof. Eventually apply +1,−1, ... or conversely towards another vertex in A ■

≡1

≡1

≡1

≡2

≡1

≡0

≡0

≡0

≡0

w1 −1

w2 +1
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On that proof...

Proof applies to 3-chromatic graphs with partite sets A, B, C :
Use weights 0,1,2
Aim σ(A)≡ 0 (mod 3), σ(B)≡ 1 (mod 3), σ(C)≡ 2 (mod 3)

More generally, k-chromatic graphs, k ≥ 3 odd, with partite sets S0, ...,Sk−1:
Use weights 0, ...,k −1
Aim σ(Si )≡ i (mod k) for i = 0, ...,k −1

k-chromatic graphs, k ≥ 4 even, same trick as bipartite graphs
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More on the 1-2-3 Conjecture

In general, using {1,2,3} is best possible!
Examples: complete graphs, some cycles, etc.
Deciding whether χe

Σ
≤ 2 is NP-complete [Dudek, Wajc, 2011]

Q.: Is this true for bipartite graphs?
A.: χeΣ(Bipartite)= 3: odd multicacti [Thomassen, Wu, Zhang, 2016]

Intuition: Essentially, with {1,2}, paths of length ≡ 1 (mod 4) act as edges:

u v
1 1 2 2 1

u v
1 2 2 1 1

⇔
u v

1
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1-2-3 Conjecture
– Best bound –
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Total variant

Best bound on χeΣ obtained from one for a total variant of the problem

1

v1

2 v2

1
v3

2v4

1

1

1

2

2

1

σ(v1)= 4 σ(v2)= 7 σ(v3)= 5 σ(v4)= 6

(∼ adding a loop at each vertex)
χtΣ(G ) = smallest k such that G has n-s-d k-total-weightings
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Remarks and a 1-2 Conjecture

Remarks:
χtΣ(G ) defined for all G
χtΣ(G )≤χeΣ(G ) for every G

1-2 Conjecture [Przybyło, Woźniak, 2010]

For every graph G , we have χtΣ(G )≤ 2.
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Kalkowski’s result

Theorem [Kalkowski, 2009]

For every graph G , we have χtΣ(G )≤ 3.

Proof. Essentially, a clever induction:

Start from all edges at 2, all vertices at 1
Consider the vertices in any order; for every vi :

Choose a set {φ(vi ),φ(vi )+1} of possible sums
(φ(vi )+1 = eventual sum, φ(vi ) the only allowed different sum)
B Make sure that φ(vi ) 6=φ(vj ) for every backward edge!
Make “valid” weight changes backwards so that σ(vi ) ∈ {φ(vi ),φ(vi )+1}

Eventually, do +1 on every vertex weight where σ(vi )=φ(vi )
Note: Actually, only 1,2 are used as vertex weights

18 / 45
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Kalkowski’s Algorithm: Initial weighting

Vertex ordering: v1,v2,v3,v4,v5,v6,v7

1v1

1

v2

1
v3

1v4

1

v5

1
v6

1 v7

2

2

2

2

2

2

2

2

2

2

2

2
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Kalkowski’s Algorithm: Dealing with v1

Vertex ordering: v1,v2,v3,v4,v5,v6,v7
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Kalkowski’s Algorithm: Dealing with v2

Vertex ordering: v1,v2,v3,v4,v5,v6,v7
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Kalkowski’s Algorithm: Dealing with v3

Vertex ordering: v1,v2,v3,v4,v5,v6,v7
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Kalkowski’s Algorithm: Dealing with v4

Vertex ordering: v1,v2,v3,v4,v5,v6,v7
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Kalkowski’s Algorithm: Dealing with v4
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Kalkowski’s Algorithm: Dealing with v5

Vertex ordering: v1,v2,v3,v4,v5,v6,v7
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Kalkowski’s Algorithm: Dealing with v5
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Kalkowski’s Algorithm: Dealing with v6

Vertex ordering: v1,v2,v3,v4,v5,v6,v7
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Kalkowski’s Algorithm: Final adjustments
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Kalkowski’s Algorithm: Final adjustments
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Kalkowski’s Algorithm: Final picture
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Kalkowski’s Algorithms: Some comments

Works because:
All edge weight changes are done backwards
⇒ When treating vi , every backward edge vjvi is weighted 2
⇒ A valid change (-1 or +1) per backward edge
⇒ # of candidates as φ(vi )+1 > # of backward neighbours

Multiple generalizations...

Theorem [Kalkowski, Karoński, Pfender, 2012]

For every nice graph G , we have χeΣ(G )≤ 5.

Needed modifications:
No final adjustments ⇒ Two dedicated sums {φ(vi ),φ(vi )+2} per vertex
Initially, 3 on all edges ⇒ Valid changes are of the form −2 or +2
To reach a valid {φ(vi ),φ(vi )+2}, allow to do −1 or +1 on a forward edge

The vertex ordering must guarantee forward edges
For a backward edge weighted 2 or 4, only +2 and −2 can be done
B Valid changes backwards are trickier
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1-2-3 Conjecture
– Open questions –

21 / 45



Some open problems/questions

Prove the 1-2-3 Conjecture for 4-chromatic graphs
Done for 4-edge-connected 4-chromatic graphs [Wu, Zhang, Zhu, 2017]

More classes of graphs?
Need strong properties to prove this...
... but not so interesting if too strong /

Prove that χeΣ(G )≤ 4 for every nice graph G

Done for 5-regular graphs [B., 2019]
Generalized to regular graphs [Przybyło, 2019+]

Prove/Disprove the 1-2 Conjecture
List variants?

Every graph is (2,3)-choosable [Wong, Zhu, 2016]
No constant bound for the edge version /
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Locally irregular decompositions
– Introduction –
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Definitions and main notions

Locally irregular = Every two adjacent vertices have distinct degrees

7 7 3

Decomposition of G = Partition E1, ...,Ek of E (G )
Locally irregular decomposition = Decomposition into locally irregular graphs
(equivalently, locally irregular edge-colouring)

χ′irr(G ) = Smallest k ≥ 1 s.t. G has locally irregular k-edge-colourings
G decomposable = χ′irr(G ) exists
G exceptional, otherwise
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Some motivations

1 Local irregularity = Possible antonym notion to regularity
2 χ′irr = Measure of closeness to irregularity

3 Connections and applications to the 1-2-3 Conjecture

⇔

1

2

2

11

2

2

1

In regular graphs, χeΣ = 2 if and only if χ′irr = 2
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Exceptional graphs

Exceptional graphs?

Some obvious ones: odd-length paths and odd-length cycles...
... but also T :

Theorem [Baudon, B., Przybyło, Woźniak, 2015]

Exceptional graphs are exactly these three classes of graphs.
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Main conjecture

How large can χ′irr be?

Conjecture [Baudon, B., Przybyło, Woźniak, 2015]

For every decomposable graph G , we have χ′irr(G )≤ 3.

Note: Would be tight (e.g. C4k+2, Kn, etc.). Actually, unless P = NP, no “good”
characterization of when χ′irr(G )≤ 2 [Baudon, B., Sopena, 2015].

Conjecture verified for:
trees, regular bipartite graphs, Kn,m, Kn, some Cartesian products, regular
graphs with degree ≥ 107 [Baudon, B., Przybyło, Woźniak, 2015]
graphs with δ≥ 1010 [Przybyło, 2016]
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Complete graphs

Theorem

For every n≥ 4, we have χ′irr(Kn)= 3.

Your turn ,
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For every n≥ 4, we have χ′irr(Kn)= 3.

Proof. Quite similar as for the 1-2-3 Conjecture. For n= 4:
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Trees

Theorem

For every decomposable tree T , we have χ′irr(T )≤ 3.

Proof. For instance, by induction. If a pendant path of length ≥ 3:

30 / 45



Trees

Theorem

For every decomposable tree T , we have χ′irr(T )≤ 3.

Proof. For instance, by induction. If a pendant path of length ≥ 3:

30 / 45



Trees

Theorem

For every decomposable tree T , we have χ′irr(T )≤ 3.

Proof. For instance, by induction. If a pendant path of length ≥ 3:

30 / 45



Trees

Theorem

For every decomposable tree T , we have χ′irr(T )≤ 3.

Proof. If a deepest branching node with ≥ 3 children:

30 / 45



Trees

Theorem

For every decomposable tree T , we have χ′irr(T )≤ 3.

Proof. If a deepest branching node with ≥ 3 children:

30 / 45



Trees

Theorem

For every decomposable tree T , we have χ′irr(T )≤ 3.

Proof. If a deepest branching node with ≥ 3 children:

30 / 45



Trees

Theorem

For every decomposable tree T , we have χ′irr(T )≤ 3.

Proof. So, deepest branching nodes have degree 3 (thus 2 children):

or

■

30 / 45



Trees

Theorem

For every decomposable tree T , we have χ′irr(T )≤ 3.

Proof. So, deepest branching nodes have degree 3 (thus 2 children):

or

■

30 / 45



Trees

Theorem

For every decomposable tree T , we have χ′irr(T )≤ 3.

Proof. So, deepest branching nodes have degree 3 (thus 2 children):

or

■

30 / 45



Trees

Theorem

For every decomposable tree T , we have χ′irr(T )≤ 3.

Proof. So, deepest branching nodes have degree 3 (thus 2 children):

or

■

30 / 45



Trees

Theorem

For every decomposable tree T , we have χ′irr(T )≤ 3.

Proof. So, deepest branching nodes have degree 3 (thus 2 children):

or

■
30 / 45



General bounds

Theorem [B., Merker, Thomassen, 2016]

For every decomposable bipartite graph G , we have χ′irr(G )≤ 10.
For every decomposable graph G , we have χ′irr(G )≤ 328.

General idea: Find edge-disjoint subgraphs G1, ...,Gk of G s.t.
χ′irr(G − (E (G1)∪ ...∪E (Gk))) is “small”
χ′irr(G1), ...,χ′irr(Gk) are “small”

⇒ Decompose the Gi ’s and G − (E (G1)∪ ...∪E (Gk)) independently

Even-size graph = Graph whose all components have even size
Analogously, notion of odd-size graph

Main steps:
1 Reducing the conjecture to even-size graphs
2 Decomposing even-size bipartite graphs
3 Using Przybyło’s and the bipartite results
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Main steps, explained

1 Reducing the conjecture to even-size graphs
⇒ Because exceptional graphs are odd-size!

Result: In every odd-size decomposable graph, one can find a or a
whose deletion makes the graph (all components) even-size
Result 2: χ′irr(decomposable,odd− size)≤χ′irr(even− size)+1
How: Seat at a vertex, and try selecting edges

2 Decomposing even-size bipartite graphs
Result: χ′irr(bipartite,even− size)≤ 9
How: Remove “nice” structures ⇒ even degrees in A and odd degrees in B

3 Using Przybyło’s and the bipartite results
1 Decompose G (even-size) into H + D, where

δ(H)≥ 1010

D is an even-size (2 ·1010+2)-degenerate graph

2 Decompose D into log2(2 ·1010+3)+1 even-size bipartite graphs
3 χ′irr(G)≤χ′irr(H)+χ′irr(D)≤ 3+9 ·36= 327
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Recent result

Lužar, Przybyło and Soták proved χ′irr(decomposable,bipartite)≤ 6

⇒ χ′irr(decomposable)≤ 220!
(just plug new result in previous approach)
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Locally irregular decompositions
– Open questions –
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Some open problems/questions

Prove that χ′irr(decomposable,bipartite)≤ 3
By our approach, would improve the best bound on χ′irr

Prove that χ′irr(decomposable,subcubic)≤ 3
Best bound is 4 [Lužar, Przybyło, Soták, 2018]

Complexity of determining whether χ′irr(decomposable,bipartite)≤ 2?
Better general bounds via different approaches?
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A generalization
– Introduction –
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Coloured weights and sums

Each edge → Coloured weight (α,β) w/ colour α and value β
⇒ Each vertex → Several coloured sums σ•, σ•, σ•, etc. (or σ1,σ2, ...)

v1

v2

v3

v4

v5

v6

v7

•,1

•,2

•,2

•,2

•,1

•,2

•,1

•,2

•,1

•,2

•,1

•,1

σ•(v1)= 3, σ•(v1)= 0 σ•(v2)= 3, σ•(v2)= 3 σ•(v3)= 5, σ•(v3)= 2
σ•(v4)= 7, σ•(v4)= 0 σ•(v5)= 2, σ•(v5)= 4 σ•(v6)= 2, σ•(v6)= 3

σ•(v7)= 2, σ•(v7)= 0

When are adjacent vertices considered distinguished?
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Three distinction conditions

Colours ∈ {1, ...,α}, Weights ∈ {1, ...,k}

Three more or less strong distinction conditions:

u v
(α,β)

Weak condition: ∃c ∈ {1, ...,`} s.t. σc(u) 6=σc(v)

Standard condition: σα(u) 6=σα(v)
Strong condition: ∀c ∈ {1, ...,`} s.t. σc(u),σc(v) 6= 0, we have σc(u) 6=σc(v)

Note: Strong ⇒ Standard ⇒ Weak; but no converse is true:

a

b

c d

•,1

•,1 •,1

•,1 •,2

•,2

a

b

c d

•,1

•,1 •,1

•,1 •,2

•,2

a

b

c d

•,2

•,2 •,1

•,1 •,2

•,2
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Remarks and connections

(`,k)-colouring: colour pool {1, ...,`}, weight pool {1, ...,k}
weak/standard/strong colouring: each edge fulfils the corresponding condition

Remarks: For `= 1:
weak = standard = strong
strong (1,k)-colouring = n-s-d k-edge-weighting
Hence:

1-2-3 Conjecture = Are all nice graphs strongly (1,3)-colourable?
They are strongly (1,5)-colourable

Also: For k = 1:
standard (`,1)-colouring = locally irregular `-edge-colouring
Hence:

L.I. Conjecture = Are all decomposable graphs standardly (3,1)-colourable?
They are all (220,1)-colourable

also, weak (`,1)-colouring = `-edge-colouring distinguishing by multisets
Hence:

All nice graphs are (3,1)-colourable
Are they all (1,3)-colourable?
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Going beyond

Playing with at least two colours and at least two weights?

nicer graph = no K2 nor K3 as connected component

Conjecture [Baudon, B., Davot, Hocquard, Przybyło, Senhaji,
Sopena, Woźniak, 2019]

Every nicer graph is strongly (2,2)-colourable.

Note: K2 and K3 are the only exceptional graphs with χeΣ > 2

Recall: “Strong Conjecture” ⇒ “Standard Conjecture” ⇒ “Weak Conjecture”
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Results towards the Strong Conjecture

Base result: nicer graphs are strongly (1,5)-colourable

Strong Conjecture verified for:
Complete graphs
⇒ Earlier proof: alternate between using •,2’s and •,2’s only
Bipartite graphs
⇒ Proof reduces to odd multicacti
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Results towards the Standard Conjecture

Alternative formulation:

Standard Conjecture

Nicer graphs decompose into two graphs fulfilling the 1-2-3 Conjecture.

A.t.m., only a few graphs are known to fulfil the 1-2-3 Conjecture / ...

Recall: Results towards the Strong Conjecture apply
Standard Conjecture further verified for:

2-degenerate graphs
⇒ Via basic induction, decomposition into two nice forests
Subcubic graphs
⇒ Via the previous result + induction
9-colourable graphs
⇒ Decompositions into two nice 3-colourable graphs

Watch out: When using induction, B bad components!
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Results towards the Weak Conjecture

Base result: nice graphs are weakly (1,3)-colourable

Bound towards (3,1)-colourability:
Weak (3,2)-colourability
⇒ Proof that χeΣ ≤ 5, replacing one weight by the additional colour

Recall: Results towards the Strong or Standard Conjecture apply
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A generalization
– Open questions –
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Some open problems/questions

For strong (`,k)-colourability, general bounds when `,k ≥ 2?

For standard (`,k)-colourability?
More classes of graphs?

Thank you for your attention!
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